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Hungering for New Mechanism-Based Strategies to Break the Obesity-Cancer Link: 1	

A Narrative Review 2	

 3	

Research Snapshot 4	

Research Question: What are the mechanisms through which obesity increases cancer 5	

risk and progression? Does implementation of dietary or lifestyle interventions attenuate 6	

obesity-associated cancer risk factors?  7	

 8	

Key Findings: A traditional literature review revealed that obesity-associated metabolic 9	

perturbations are emerging as major drivers of obesity-related cancer including 10	

alterations in growth factor signaling, inflammation and angiogenesis. Preclinical 11	

evidence suggests that dietary interventions such as calorie restriction, intermittent 12	

fasting, ketogenic diet and physical activity have the potential to reverse some of these 13	

obesity-associated alterations; however, more clinical data is needed to confirm 14	

translation to human subjects. 15	

 16	

Abstract  17	

The prevalence of obesity, an established risk factor for many cancers, has increased 18	

dramatically over the past 50 years in the United States and many other countries. 19	

Relative to normoweight cancer patients, obese cancer patients often have poorer 20	

prognoses, resistance to chemotherapies, and are more likely to develop distant 21	

metastases. Recent progress on elucidating the mechanisms underlying the obesity-cancer 22	

connection suggests that obesity exerts pleomorphic effects on pathways related to tumor 23	
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development and progression, and thus there are multiple opportunities for prevention 24	

and treatment of obesity-related cancers.  We now know that obesity can impact each of 25	

the well-established hallmarks of cancer, but obesity-associated perturbations in systemic 26	

metabolism and inflammation, and the interactions of these perturbations with cancer cell 27	

energetics, are emerging as the primary drivers of obesity-associated cancer development 28	

and progression. Several obesity-related host factors, including components of the 29	

adipose secretome and structural components of the tumor microenvironment, are 30	

extrinsic to, and interact with, the intrinsic molecular characteristics of cancer cells 31	

(including cancer stem cells). Each will be considered in the context of potential 32	

preventive and therapeutic strategies to reduce the burden of obesity-related cancers.  33	

This review will focus on current knowledge of the mechanisms behind the obesity-34	

cancer link as well as relevant dietary and lifestyle interventions that are being 35	

implemented in preclinical and clinical trials, with the ultimate goal of reducing 36	

incidence and progression of obesity-related cancers. 37	

 38	

Abbreviations : AMP kinase (AMPK); body mass index (BMI); brown adipose tissue 39	

(BAT); calorie restriction (CR); cardiovascular disease (CVD); estrogen receptor (ER); 40	

free fatty acids (FFA); insulin-like growth factor-1 (IGF-1); interleukin (IL); intermittent 41	

fasting (IF); ketogenic diet (KD); monocyte chemo-attractant protein-1 (MCP-1); 42	

mammalian target of rapamycin (mTOR); non-alcoholic steatohepatitis (NASH); nuclear 43	

factor kappa-light-chain-enhancer of B cells (NFκB); plasminogen activator inhibitor-1 44	

(PAI-1); phospatidylinositol-3 kinase (PI3K); peroxisome proliferator-activated receptor 45	

(PPAR); physical activity (PA); signal transducer and activator of transcription (STAT); 46	
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tumor necrosis factor-α (TNF-α); type II Diabetes (T2DM); vascular endothelial growth 47	

factor (VEGF); white adipose tissue (WAT) 48	

  49	
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Introduction  50	

Over the past half century in the United States the prevalence of obesity, defined as body 51	

mass index (BMI) of 30 kg/m2 or greater, has tripled.  Today nearly 40% of adults and 52	

20% of children in the United States are obese1. Worldwide, more than 600 million adults 53	

are obese and 2.1 billion are overweight2. Obesity increases risk of several chronic 54	

diseases and comorbidities including type II diabetes (T2DM), cardiovascular disease 55	

(CVD), hypertension, chronic inflammation and, as discussed in this review, many types 56	

of cancer3. 57	

 58	

As illustrated in Figure 1, and based on the recent report from the International Agency 59	

for Research on Cancer, risk of 13 distinct cancer types is increased with excess body 60	

fatness4.  These obesity-associated cancers include breast (in postmenopausal women), 61	

ovarian, liver, gallbladder, kidney, colon, pancreatic, gastric, esophageal, endometrial, 62	

thyroid, multiple myeloma, and meningioma4.  Overall, an estimated 13% of incident 63	

cases worldwide, and approximately 20% of incident cases in Europe and North America, 64	

are attributable to obesity5. Aside from higher risk of developing cancer, obese 65	

individuals are more likely to have reduced response to anticancer therapies6, and obesity 66	

is implicated in approximately 20% of all cancer-related mortalities7.  This includes 67	

prostate cancer, for which obesity increases progression but not incidence8. Here, we 68	

discuss (with a focus on developing mechanism-based intervention strategies) many ways 69	

in which obesity can influence normal epithelial tissue homeostasis and cancer 70	

development and/or progression, including metabolic perturbations involving hormonal, 71	



	 5

growth factor and inflammatory alterations, as well as interactions with the 72	

microenvironment.  73	

 74	

Methods 75	

A traditional literature review was performed to describe the multiple mechanisms 76	

underlying the obesity-cancer link, as well as dietary interventions targeting those 77	

mechanisms for cancer prevention and treatment. Searches were completed using 78	

PubMed and Google Scholar. A variety of key words were searched including obesity, 79	

metabolic syndrome, cancer prevention, cancer treatment, calorie restriction, intermittent 80	

fasting, ketogenic diet, and physical activity.  81	

 82	

Obesity Impacts Each Hallmark of Cancer 83	

Hanahan and Weinberg identified essential biological capabilities acquired by all cancer 84	

cells during the multistep development of tumors in their classic article titled “The 85	

Hallmarks of Cancer” first published in 20009 and updated in their 2011 “Hallmarks of 86	

Cancer: the Next Generation”10.  These essential aberrations of cancer cells, include 87	

sustaining proliferative signaling, increased chronic inflammation, evading growth 88	

suppressors, resisting cell death, displaying genome instability, enabling replicative 89	

immortality, inducing angiogenesis, and activating processes related to invasion and 90	

metastasis. Conceptual progress in the decade between these two articles led to 91	

identification of additional hallmarks, including reprogramming of energy metabolism, 92	

evading immune destruction, and creation of the tumor microenvironment through 93	

recruitment of various non-cancerous cells.  Emerging evidence supports the concept that 94	
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metabolic reprogramming, inflammation, and genome instability (including epigenetic 95	

changes) represent the “hallmarks of hallmarks” and underlie many of the other essential 96	

aberrations of cancer.  In the case of cancer-associated metabolic reprogramming, cancer 97	

cells often preferentially metabolize glucose through glycolysis rather than oxidative 98	

phosphorylation (even under normoxic conditions) to generate substrate for cell 99	

division10-12.  Thus, citric acid cycle intermediates not utilized for ATP production are 100	

shuttled out of the mitochondria providing precursors for nucleotide, amino acid and lipid 101	

synthesis pathways for the dividing cell12. In this way, cancer cells readily take up and 102	

metabolize glucose to provide substrate for daughter cell production, with glucose 103	

transporters and glycolytic enzymes being elevated in most cancers13.  104	

 105	

Metabolic Syndrome and Systemic Metabolic Perturbations 106	

Interactions between cellular energetics in cancer cells and systemic metabolic changes 107	

associated with obesity are emerging as critical drivers of obesity-related cancer. 108	

Intrinsically linked with obesity and associated with alterations in several cancer-related 109	

host factors is metabolic syndrome, characterized by insulin resistance, hyperglycemia, 110	

hypertension and dyslipidemia. In both obesity and metabolic syndrome, alterations occur 111	

in circulating levels of insulin and insulin-like growth factor (IGF)-1; adipokines (e.g. 112	

leptin, adiponectin, resistin, and monocyte chemotactic protein (MCP)-1); inflammatory 113	

factors (e.g. interleukins (IL)-6, 10, and 17, interferon- and tumor necrosis factor (TNF)-114	

); several chemokines; lipid mediators such as prostaglandin E2; and vascular-115	

associated factors (e.g. vascular endothelial growth factor (VEGF) and plasminogen 116	

activator inhibitor (PAI)-1)14-16.  Each of these factors has a putative role in development 117	
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and progression of cancer, as well as a number of other chronic diseases14,16 including 118	

CVD and T2DM, and will be explored in more detail below.  119	

 120	

Insulin, IGF-1 and Growth Factor Signaling 121	

In response to elevated blood glucose level, pancreatic β-cells release insulin, a peptide 122	

hormone that stimulates peripheral uptake of glucose, glucose metabolism, and energy 123	

storage pathways. As depicted in Figure 2, obesity and metabolic syndrome are 124	

characterized by hyperglycemia and associated aberrations in insulin signaling, growth 125	

factor signaling, and glucose metabolism17. One growth factor implicated in cancer risk 126	

and progression is IGF-1. Produced primarily following growth hormone stimulation in 127	

the liver, IGF-1 functions as a regulator of growth and development processes18. IGF 128	

binding proteins bind to IGF-1 in circulation and limit its bioavailability to bind to IGF-1 129	

receptor and induce downstream signaling to promote growth and/or survival19. 130	

Hyperglycemia and hyperinsulinemia, hallmarks of metabolic syndrome, increase IGF-1 131	

production and bioavailability. Hyperglycemia suppresses IGF-1 binding protein 132	

synthesis and hyperinsulinemia promotes expression of growth hormone receptor and 133	

subsequent IGF-1 synthesis17. Growth and survival functions of IGF-1 give it the 134	

potential to impact many hallmarks of cancer, including suppression of apoptosis and 135	

promotion of cell cycle progression, angiogenesis and metastatic potential20. As a result, 136	

elevated IGF-1 is established as a risk factor for many types of cancer19.  137	

 138	

IGF-1 receptor and insulin receptor stimulate the same downstream activation of 139	

phosphoinositide 3-kinase (PI3K)/Akt pathway (Figure 2), a pathway frequently altered 140	
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in epithelial cancers21. In response to these growth factors and nutrient availability, 141	

PI3K/Akt produces lipid messengers that initiate the Akt signaling cascade21, activating 142	

downstream mammalian target of rapamycin (mTOR) 22. When activated mTOR initiates 143	

downstream signaling that promotes cell growth, proliferation and survival. In response 144	

to low nutrient conditions AMP-activated kinase (AMPK), another energy responsive 145	

pathway, inhibits mTOR activation and downstream signaling23. Oncogenic signals or 146	

loss of tumor suppressors can activate mTOR and contribute to the hallmarks of cancer, 147	

promoting proliferation, survival, angiogenesis, and metastasis24. In preclinical models, 148	

blocking mTOR signaling with drugs such as rapamycin (mTOR inhibitor)25-27 and 149	

metformin (AMPK activator)25,28,29, block tumor-enhancing effects associated with the 150	

obese phenotype30. Interestingly, rapamycin has exhibited anti-inflammatory attributes, 151	

attenuating inflammation as well as tumor promotion, suggesting crosstalk between 152	

mTOR-related growth and survival signals and inflammatory signals31. 153	

 154	

Chronic Inflammation:  The Role of Adipose Tissue 155	

Mammals, including humans, have 2 major fat depots: subcutaneous and visceral (intra-156	

abdominal).  These adipose depots contain white adipose tissue (WAT) that stores energy 157	

in the form of triacylglycerol and brown adipose tissue (BAT) that dissipates energy by 158	

burning fatty acids to generate heat. WAT and BAT have important differences in their 159	

morphology, metabolism and transcriptional profiles.  White adipocytes have few 160	

mitochondria, low oxidative rate, and contain a unilocular lipid droplet comprised 161	

primarily of triacylglycerol, while brown adipocytes have a high number of mitochondria 162	

(hence the darker appearance), high rate of fatty acid and glucose uptake and oxidation, 163	
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and possess multilocular lipid droplets32. Moreover, the secretome of white versus brown 164	

adipocytes differs markedly (Figure 3); the former is characterized by secretion of leptin, 165	

resistin, PAI-1, inflammatory cytokines, and free fatty acids (FFA), while the latter is 166	

characterized by secretion of bone morphogenetic proteins, lactate (which induces 167	

uncoupling proteins), retinaldehyde, triiodothyonine (T3) and other factors associated 168	

with response to cold stress and/or increased energy expenditure32. Brown adipocytes 169	

also produce adiponectin (but not leptin) and fibroblast growth factor-21, which can be 170	

anti-inflammatory and insulin sensitizing32. WAT also contains a number of stromal cells 171	

including pre-adipocytes, vascular cells, fibroblasts and a host of immune cells such as 172	

adipose tissue macrophages33.  Increased WAT mass in obesity drives chronic 173	

inflammation in at least 3 ways, depicted in Figure 4 and summarized below:   174	

 175	

1.  Altered Adipose Secretome 176	

Leptin is an energy-sensing peptide hormone produced by adipocytes. Leptin levels, 177	

positively correlated with adiposity, function as an energy sensor through signaling to the 178	

hypothalamus, decreasing hunger cues, food intake and weight gain. Leptin release from 179	

adipocytes is stimulated by a variety of factors including insulin, TNFα, glucocorticoids, 180	

and estrogen34. In obesity, leptin is overproduced by adipocytes, reducing hypothalamic 181	

sensitivity to the signal35. Circulating leptin binds to various receptors in central nervous 182	

system and peripheral tissues, regulating processes including energy homeostasis, 183	

cytokine production, immune function, and carcinogenesis34,36. The leptin receptor OB-R, 184	

classified as a class I cytokine receptor, gives leptin the ability to activate signal 185	

transducer and activator of transcription (STAT) family transcription factors, resulting in 186	
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initiation of STAT-induced transcription programs for proliferation, cell growth and 187	

survival, migration and differentiation37. Deregulation of STATs activity is often 188	

observed in cancer38. 189	

 190	

Adiponectin, another peptide hormone secreted from adipocytes, functions as an energy 191	

sensor that promotes hunger and energy intake, opposing the functions of leptin. 192	

Although the most abundant hormone secreted from the WAT, adiponectin levels are 193	

negatively correlated with adiposity and release is stimulated during energy deficit. 194	

Adiponectin opposes obesity-associated metabolic alterations through regulating glucose 195	

metabolism, increasing insulin sensitivity and fatty acid oxidation, and reducing IGF-1 196	

signaling through activation of AMPK, inhibitor of downstream mTOR39. Adiponectin 197	

also attenuates inflammation through inhibition of nuclear factor kappa-light-chain-198	

enhancer of B cells (NF-B), which reduces expression of proinflammatory cytokines 199	

while increasing expression of anti-inflammatory cytokines40. Due to the anticancer 200	

functions of adiponectin, adiponectin agonists are emerging as possible chemotherapeutic 201	

agents, particularly for obesity-related cancers41. While associations between each of 202	

these adipokines and cancer risk are established, the leptin to adiponectin ratio is 203	

increasingly considered a more sensitive measure in evaluating cancer risk42. 204	

 205	

Sex hormones, including estrogen, androgens and progestogens, regulate a variety of 206	

growth and developmental processes including weight homeostasis43. Long established is 207	

the association between sex hormone levels and obesity44. In postmenopausal women, 208	

BMI is positively correlated with estrone, estradiol, and free estradiol45. Elevation of 209	
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estrogens is also detected in obese men44,46; however, testosterone levels are significantly 210	

reduced47. Alteration of sex hormones can result in several biological disorders including 211	

hypertension, menstrual disturbances, erectile dysfunction, gynecomastia, hirsutism, and 212	

increased adiposity44. Moreover, sex hormones have been implicated in risk and/or 213	

progression of multiple cancer types48. In prostate cancer, sex hormone levels are 214	

associated with disease progression, not disease risk49. Low levels of circulating 215	

testosterone correlates with aggressive disease progression50. Elevated estrogen levels are 216	

associated with increased risk of breast44,45,51, ovarian52, and endometrial cancers53.  217	

 218	

Menopausal status can also modulate sex hormone secretion and signaling in women. 219	

Prior to menopause, ovaries are the main site of estrogen production, whereas after 220	

menopause, peripheral sites including adipose tissue, are the main source of estrogen 221	

production. In postmenopausal, obese women adipose tissue serves as the main site of 222	

estrogen synthesis45. Once released, circulating estrogens bind to one of two estrogen 223	

receptors (ER), ERα or ERβ. Once bound, receptors dimerize and translocate to the 224	

nucleus where they bind to DNA or other transcription factors, influencing gene 225	

expression profiles that regulate growth, proliferation and differentiation54. In the context 226	

of cancer, the two receptors have differing roles. ERα is mitogenic and an established 227	

target in treatment of estrogen receptor-positive breast cancer, while ERβ is suggested to 228	

be tumor suppressive55. Obesity and postmenopausal status increases risk of ER-positive 229	

breast cancers compared with ER-negative breast cancer56. Due to the positive 230	

association between obesity, circulating estrogen and risk of ER-positive breast cancer, 231	
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aromatase inhibitors and ER antagonist, including tamoxifen, have been investigated for 232	

their effectiveness as adjuvant therapy57.  233	

 234	

2. Crown-Like Structures  235	

Obesity drives subclinical inflammation in visceral and subcutaneous WAT, 236	

characterized by crown-like structures, or rings of activated macrophages surrounding 237	

engorged or necrotic adipocytes (Figure 4).  This adipocyte-macrophage interaction 238	

results in a proinflammatory secretome from both cell types, activating the cellular 239	

transcription factor NF-kB, increasing levels of cytokines and other inflammatory factors, 240	

and triggering inflammation58. 241	

 242	

3. Adipose Remodeling and Lipid Infiltration in Other Tissues 243	

During conditions of low nutrient availability or increased energy needs, glucagon 244	

secretion stimulates lipolysis of adipocytes, releasing FFA into the blood stream59. 245	

Circulating FFA can then be utilized by peripheral tissues, providing substrate for β-246	

oxidation and serving as intermediates for energy production through the citric acid cycle 247	

and oxidative phosphorylation. Overnutrition remodels existing adipose tissue, expanding 248	

adipocyte number and size, and altering adipokine secretion, FFA flux, and adipocyte 249	

death60. In response, adipose stromal cells modify their functions to promote clearance of 250	

necrotic adipocytes and generation of new adipocytes and vasculature. Tissue remodeling 251	

in chronic overnutrition or obesity, results in sustained, low-grade inflammation and 252	

metabolic alterations60. As stated above, cancer cells adapt to changing energy needs for 253	

proliferation through metabolic reprogramming, increasing anaerobic metabolism  and 254	
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shunting citric acid cycle intermediates to synthetic pathways10,12. Production of daughter 255	

cells demands increased levels of FFA for formation of lipid bilayers, thus excess WAT 256	

promotes proliferation of tumor cells through provision of circulating FFA61. 257	

 258	

Chronic overnutrition can lead to lipid accumulation beyond capacity of adipose depots, 259	

leading to deposition of lipids in peripheral tissues including muscle, liver and pancreatic 260	

tissue62. Ectopic lipid intermediates exert lipotoxic effects, impairing cellular organelle 261	

functions, releasing inflammatory cytokines, and fostering development of insulin 262	

resistance63. Consequently, individuals can develop muscle dysfunction and hepatic and 263	

pancreatic steatosis, all of which have been positively correlated with insulin resistance 264	

and impaired lipid metabolism62.  265	

 266	

Nonalcoholic fatty liver disease, diagnosed as >5-10% liver fat content by weight in the 267	

absence of alcohol use or other liver disease, encompasses a variety of liver diseases 268	

including simple steatosis, nonalcoholic steatohepatitis (NASH) and cirrhosis64. One of 269	

the most common chronic diseases65-67, Nonalcoholic fatty liver disease is present in 65-270	

85% of obese patients64,68 with rapidly rising incidence among adults and children66,69. 271	

Excess accumulation of lipids in the liver, exerts lipotoxic effects including production of 272	

reactive oxygen species, activation of pro-inflammatory programs, and endoplasmic 273	

reticular stress, impairing function of cellular organelles and potentially inducing hepatic 274	

cell death70. Additionally, accumulation of lipids and pro-inflammatory cytokines 275	

promotes activation of intracellular kinases, leading to impaired insulin signaling and 276	

development of insulin resistance71. While simple steatosis is benign, NASH is more 277	
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detrimental, characterized by liver injury, inflammation and/or fibrosis. NASH can 278	

further result in the development of cirrhosis, liver failure, and hepatocellular 279	

carcinoma72.  280	

 281	

Deposition of adipocytes in the pancreas appears to occur early in obesity-associated 282	

pancreatic dysfunction, altering secretion and signaling of endocrine factors including 283	

insulin. Infiltrating fat in the pancreas has been associated with increased visceral WAT 284	

mass and insulin resistance73,74. These endocrine alterations further complicate the 285	

complex metabolic and inflammatory perturbations characterized in obesity and 286	

metabolic syndrome and can trigger the development of pancreatic steatosis, pancreatitis 287	

and/or nonalcoholic fatty pancreatic disease, established risk factors for pancreatic 288	

cancer73,74.  289	

 290	

Angiogenesis 291	

As adipose tissue depots expand in obesity, the existing vasculature must expand to meet 292	

demand. This outgrowth of new blood vessels is termed angiogenesis. Key mediators of 293	

this process include VEGF and PAI-1.  VEGF, is a potent angiogenic factor that is 294	

produced by adipocytes and tumor cells. VEGF acts on endothelial cells stimulating 295	

mitogenic and vascular permeability-enhancing activities75. Obesity is associated with 296	

increased circulating VEGF, and elevated VEGF correlates with poor prognosis for many 297	

obesity-related cancers76. PAI-1 is another angiogenic factor, produced by adipocytes, 298	

endothelial cells, and stromal cells in visceral WAT77, that is frequently elevated in obese 299	

subjects. Increased circulating PAI-1 is associated with increased risk of other chronic 300	
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diseases including CVD, T2DM and a number of cancers77. While interaction of 301	

angiogenic factors with proximal endothelial cells induce formation of local blood 302	

vessels, providing a route for oxygen and nutrient delivery and waste removal, these 303	

factors can also interact with peripheral tissues, facilitating angiogenesis, and potentially 304	

promoting progression at tumor sites. These newly formed blood vessels would 305	

potentially provide primary tumor mass with oxygen and nutrients to sustain proliferation 306	

and survival as well as a route for metastasis to distant sites. PAI-1 functionally inhibits 307	

plasminogen activators, thus regulating extracellular matrix integrity78. Extracellular 308	

matrix remodeling is a key feature of invasive disease, and integral in the development of 309	

metastatic lesions79. Due to the antitumorigenic potential of factors that modulate 310	

angiogenesis, targeted drugs have been developed. However, caution should be advised 311	

in administration of anti-angiogenic treatments in obese patients, as these drugs can 312	

induce hypoxia in primary tumors, potentially encouraging metastasis, already a concern 313	

in the obese population79. Elevation of these factors may also impact efficacy of 314	

treatment regimens, as excess circulating VEGF in obese patients contributes to reduced 315	

efficacy of anti-VEGF therapies (e.g. bevacizumab) compared with non-obese ovarian 316	

cancer patients80. 317	

 318	

Dietary Interventions Targeting Obesity for Cancer Prevention and Treatment 319	

Given the multifaceted role of obesity in promoting a protumorigenic microenvironment 320	

that facilitates tumor development and progression, interventions are urgently needed to 321	

break the obesity-cancer link.  To date, the only weight loss intervention in obese people 322	

consistently associated with reduced cancer risk is bariatric surgery81.  In light of the 323	
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expense and complications inherent in surgical weight loss approaches, current efforts are 324	

focusing on reducing adiposity through lifestyle and dietary interventions. To achieve 325	

reductions in weight and adiposity these interventions have aimed to 1) promote negative 326	

energy balance through either reduced energy intake via calorie restriction (CR) or 327	

intermittent fasting (IF) or through increased energy expenditure via physical activity 328	

(PA) or 2) implementation of ketogenic diet (KD) a dietary pattern associated with 329	

weight loss and reduced cancer progression. Preclinical and some clinical studies suggest 330	

that these interventions can favorably and inversely modulate cancer risk biomarkers 331	

including insulin, IGF-1, leptin, adiponectin, cytokines, angiogenic factors, and crown-332	

like structures compared to the obese state. Modulation of these biomarkers could result 333	

in downstream reductions in growth factor signaling, inflammation, and angiogenesis, 334	

attenuating cancer risk and progression (Figure 5).  335	

 336	

1. Calorie Restriction 337	

Calorie restriction (CR), defined as reduction of dietary energy intake without 338	

malnutrition, is broadly effective dietary intervention that significantly decreases 339	

adiposity. Preclinical models demonstrate 30% CR, compared with ad libitum-fed 340	

control, ameliorates risk factors and delays onset of cancer through metabolic alterations 341	

fostering increased insulin sensitivity and decreased serum glucose, growth factor 342	

signaling, inflammation, oxidative stress and angiogenesis82-85. These metabolic changes 343	

translate into significantly decreased cancer incidence in murine models86.  Due to long 344	

latency of cancer in humans, the literature does not have data linking CR directly with 345	

cancer incidence in humans. However, randomized control trials implementing long-term 346	
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20% CR in overweight human subjects has confirmed reduced adiposity, improved 347	

glucose homeostasis, increased adiponectin, and reduced leptin and inflammatory 348	

markers TNF and C-reactive protein87,88.  Substantial weight loss of >10% may be 349	

necessary to consistently gain these benefits89-91. 350	

 351	

Limited clinical studies exist on CR during cancer treatment. Direct application of CR in 352	

cancer patients is complicated by high rates of weight loss associated with cancer 353	

cachexia, a condition in which tumor-derived signals degrade muscle and adipose tissue. 354	

Emerging findings from preliminary clinical trials suggest that application of CR as an 355	

adjuvant therapy in combination with chemotherapy and/or radiation has potential to 356	

increase responsiveness to treatment92,93. 357	

 358	

2. Intermittent Fasting  359	

Preclinical and clinical studies have begun to explore implementation of intermittent 360	

fasting (IF), which may be easier for most people to adopt and may have beneficial 361	

metabolic effects relative to chronic CR. Human trials most often study one of three IF 362	

regimens: alternate day fasting, alternate day energy restriction (~75%) or 2 consecutive 363	

days of 65% energy restriction, the latter often referred to as intermittent calorie 364	

restriction94. Periods of IF stimulate reduced insulin and increased glucagon, resulting in 365	

increased lipolysis and fatty acid oxidation to provide alternate substrates for energy 366	

production. These metabolic alterations are accompanied by reductions in several cancer-367	

related risk factors including lower insulin resistance, inflammation, and circulating IGF-368	

195. The impact of IF on angiogenesis in the context of cancer remains unexplored in 369	
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currently published research. Preclinical studies with IF consistently exhibit a cancer 370	

preventative effect with reduced rates of tumor growth for multiple cancer types95-97. To 371	

our knowledge there is no published data on IF and cancer incidence in human subjects, 372	

although there are reports of favorable effects of IF in overweight human, including 373	

improved adipokine ratios and reduced inflammation96,98, suggesting the reported 374	

preclinical anticancer effects of IF may be translatable to humans.  375	

 376	

One IF regimen being examined as a breast cancer prevention strategy is called the 5:2 377	

diet and involves 5 days/week of a healthy diet, such as the Mediterranean diet, with two 378	

consecutive days of a low calorie, low carbohydrate diet.  The Mediterranean diet is 379	

primarily a plant-based diet high in fruits, vegetables, whole grains, legumes and nuts. 380	

Compared to North American dietary patterns, the Mediterranean diet has been 381	

associated with better control of body weight, reduction of cancer risk biomarkers and 382	

decreased cancer incidence99-103. The diet results in favorable modulation of 383	

inflammation, oxidative stress, and growth factor signaling. Combining a Mediterranean 384	

diet with 2 days of a very low calorie, low carbohydrate diet for one month in 24 obese 385	

women at high risk for breast cancer induced changes in breast tissue gene expression 386	

and metabolites associated with reduced risk of breast cancer104. 387	

 388	

Regarding the effects of IF on cancer prognosis, a study by Safdie, et al suggests IF 389	

during cancer therapy may decrease adverse effects of chemotherapy. Ten cancer patients 390	

(various cancer types) voluntarily fasted prior to (48-140 hours) or following (5-56 hours) 391	

chemotherapy treatment. Compared with non-restricted control subjects, fasting reduced 392	
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chemotherapy-induced side effects including fatigue, weakness and gastrointestinal side 393	

effects while exhibiting the same chemotherapy-induced reduction in tumor volume or 394	

biomarkers105. Following this ground breaking study, others have implemented IF in 395	

small scale clinical trials including de Groot, S., et al., 2015, where short term IF among 396	

stage II/III breast cancer patients was well tolerated, reduced signs of hematological 397	

toxicity and stimulated faster recovery from DNA damage in normal host peripheral 398	

blood mononuclear cells106. Limited preclinical findings suggest that IF may selectively 399	

protect healthy cells and make cancer cells more vulnerable to chemotherapeutic agents, 400	

reducing side-effects and increasing drug efficacy95. More research is needed to confirm 401	

these findings and identify underlying mechanisms. 402	

 403	

 404	

3. Physical Activity 405	

Engaging in physical activity (PA), alone or in combination with reduced dietary energy 406	

intake, can be another effective method in generating a negative energy balance, reducing 407	

weight and adiposity.  A published systematic review of the literature on PA in cancer 408	

survivors revealed that PA produced favorable modulation of insulin/IGF-1 pathways and 409	

inflammation107. Limited evidence from preclinical studies suggest that PA may also 410	

reduce the level of intratumoral mTOR activation, VEGF expression and 411	

angiogenesis108,109. Intervention studies suggest that reduction in these risk biomarkers 412	

associated with PA may be reliant on significant weight loss110-112. Furthermore, the 413	

amount of exercise can influence effectiveness of PA. For example, in one study PA did 414	

not significantly reduce inflammatory markers unless participants achieved 120 minutes 415	
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per week, just  short of the American Cancer Society’s recommendation of 150 416	

minutes113. Epidemiological and cohort studies confirm an anticancer potential and 417	

demonstrate a 20-30% reduction in cancer risk with substantial PA for multiple cancer 418	

types including breast, colon and endometrial114.  419	

 420	

PA is also safe and beneficial during cancer therapy for multiple cancer types115-117. Not 421	

only can PA improve body composition, it can also reduce unwanted side effects of 422	

treatment and improve physical functioning and quality of life parameters. A randomized 423	

control trial in stage II breast cancer patients found that 10 weeks of interval-based, 424	

aerobic exercise reduced chemotherapy-induced nausea and increased individual 425	

functional capacity118,119. Courneya, et al. findings suggest that PA may increase 426	

chemotherapy completion rate without causing adverse events such as lymphedema in 427	

breast cancer patients120.  Benefits are further exhibited in elderly patients with exercise 428	

during treatment improving memory and self-reported health and reducing fatigue121. 429	

Studies on exercise during treatment suggest that higher-intensity exercise provides more 430	

benefit than low-intensity exercise122.  431	

 432	

Despite the observed positive benefits of PA, important questions remain regarding 433	

intensity and amount of physical activity that must be performed to fully reap the 434	

benefits. Based on current knowledge, the American Cancer Society advises 150 minutes 435	

of moderate or 75 minutes of vigorous per week for cancer prevention and 436	

survivorship123. 437	

 438	
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4. Ketogenic Diet 439	

Ketogenic diet (KD) is a very-low carbohydrate diet with high fat and moderate protein 440	

composition. Low carbohydrate consumption reduces available glucose, a cancer cell’s 441	

preferred energy source, and increases catabolism of proteins and fats to provide 442	

gluconeogenic glucose and ketones. With prolonged consumption of KD, glycogen stores 443	

reach critical levels and the body is no longer able to oxidize fats to glucose via 444	

gluconeogenesis. This results in a shift to increased ketone production and physiological 445	

ketosis. Ketosis is not to be confused with ketoacidosis that is seen with diabetes mellitus. 446	

In ketosis there is less accumulation of ketones, as they are being used efficiently by the 447	

brain and body as an energy source, and individuals do not experience adverse side 448	

effects associated with ketoacidosis124.  Ketosis from KD favorably modulates many 449	

cancer risk biomarkers including IGF-1, leptin, adiponectin, inflammatory markers, and 450	

angiogenic factors (Figure 5)125-128. Preclinical studies suggest that KD can attenuate 451	

these markers without a reduction in caloric intake; however, weight loss may be 452	

needed129,130. KD may induce weight loss via several interrelated mechanisms, including: 453	

reduced appetite due to high protein intake, which can induce higher satiety, and high 454	

ketones, known to modulate appetite-regulating hormones; reduced caloric intake due to 455	

the satiety; reduced lipogenesis and increased lipolysis; greater metabolic efficiency; and 456	

increased metabolic cost of gluconeogenesis and ketogenesis124. 457	

 458	

Beneficial effects of the ketogenic diet have long been established for epilepsy and 459	

T2DM; emerging is its role in cancer prevention and treatment124. Early preclinical 460	

studies found KD reduced tumor burden and cachexia in a mouse model of colon 461	
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cancer131. Further preclinical models have confirmed these findings and extended benefits 462	

of decreased tumor growth and increased survival to other cancer types including 463	

malignant glioma, gastric and prostate cancers132. To date results from clinical trials 464	

focused on implementation of KD in cancer prevention and treatment have been limited, 465	

and ongoing clinical trials are addressing this gap in the literature with multiple cancer 466	

types133. 467	

 468	

It is important to also consider potential adverse effects of KD. Reduction of 469	

carbohydrate in KD is replaced with increased protein and fat. High protein intake has 470	

been linked to kidney damage134, although this is not widely accepted with other 471	

preclinical, human, and meta-analysis studies finding no evidence of renal damage with 472	

high protein intake124. Additionally, select preclinical studies have found long-term KD 473	

to cause dyslipidemia, hepatic steatosis and glucose intolerance135. More research is 474	

needed to evaluate the safety and efficacy of ketogenic diets as cancer prevention and 475	

treatment interventions.   476	

 477	

Summary and Conclusions 478	

A strong link between obesity and cancer risk has been established in the epidemiological 479	

and preclinical literature. Obesity is associated with several systemic metabolic 480	

perturbations that are correlated with increased cancer risk and/or poor prognosis, 481	

including dysregulation of insulin and growth factor signaling, adipokine signaling, 482	

inflammation, and angiogenesis. Establishment of this obesity-cancer link has spurred 483	

research focused on a variety of lifestyle and dietary interventions to promote a negative 484	
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energy balance, attain weight loss, attenuate risk biomarkers, and prevent obesity-485	

associated cancers. Preclinical and early clinical work on these putative anticancer dietary 486	

and lifestyle interventions, including CR, PA, IF, and KD, are also being evaluated, some 487	

showing promise in reducing cancer risk. Additionally, the literature suggests that these 488	

interventions may improve response to chemotherapy for multiple cancer types.  While 489	

many clinical studies have evaluated the safety and efficacy of PA as adjuvant therapy 490	

and suggest it is safe for patients, there are few clinical trials that evaluate the utilization 491	

of dietary interventions such as CR, IF, and KD as adjuvant therapy (Table 1). Future 492	

studies will need to focus on the safety and added benefit to current therapies, and should 493	

also consider the potential of the dietary interventions to sensitize patients and facilitate 494	

the use of lower doses of chemotherapy or radiation therapy to improve therapeutic 495	

response.  496	

 497	
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Figure Legends 867	

Figure 1: Obesity is associated with increased risk of developing and dying from the 868	

following cancers: breast (in postmenopausal women), ovarian, liver, gallbladder, kidney 869	

(renal cell), colon, pancreatic, gastric, esophageal (adenocarcinoma), endometrial, 870	

thyroid, multiple myeloma, and meningioma4.  In addition, obesity is associated with 871	

progression (but not incidence) of prostate cancer8. 872	

 873	

Figure 2: Obesity and metabolic syndrome result in many metabolic disturbances 874	

including elevations in circulating insulin, adipokines (e.g. leptin-to-adiponectin ratio), 875	

cytokines, angiogenic factors (PAI-1 and VEGF), as well as increased prevalence of 876	

adipose tissue crown-like structures, a marker of adipose inflammation. These factors can 877	

activate receptor tyrosine kinase signaling through the PI3 kinase (PI3K)/Akt/mammalian 878	

target of rapamycin (mTOR) pathway. An increase in steady state signaling through this 879	

pathway can drive increases in cellular proliferation and protein translation, and reinforce 880	

cancer-associated metabolic reprogramming. Activation of NF-B by proinflammatory 881	

cytokines, induces translocation to the nucleus and upregulates expression of genes 882	

involved in survival proliferation, inflammation and immune regulation. Together, 883	

obesity-associated elevation of growth factor signaling and inflammation and reduction 884	

of vascular integrity fosters a microenvironment favorable for tumorigenesis, increasing 885	

cancer risk and progression. 886	

 887	

Figure 3: The human body contains two types of adipocytes: white adipocytes (which 888	

have a unilocular lipid droplet) and brown adipocytes (which have many small lipid 889	
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droplets). When engorged with triglyceride, white adipocytes secrete a number of factors 890	

that promote growth factor signaling and inflammation including leptin, resistin, insulin-891	

like growth factor (IGF)-1, free fatty acids, tumor necrosis factor (TNF)-  and 892	

interleukin (IL)-6.  Additionally, they reduce production of anti-inflammatory 893	

adiponectin.  Brown adipocytes secrete several factors involved in thermogenesis, 894	

decreased inflammation, normalized insulin sensitivity and/or increased energy 895	

expenditure such as adiponectin, bone morphogenetic proteins, neuregulin-4, lactate, 896	

triiodothyronine (T3), retinaldehyde, and fibroblast growth factor (FGF)-21.   897	

 898	

Figure 4: In obesity, as adipocytes accumulate triglycerides, their secretomes shift 899	

towards the production of pro-inflammatory and/or insulin resistant molecules, including 900	

numerous cytokines, adipokines (e.g. leptin and resistin), and free fatty acids.  901	

Engorged/necrotic adipocytes attract macrophages and other immune cells that further 902	

contribute to the pro-inflammatory environment. The altered secretome resulting from 903	

macrophage-adipocyte interactions modulates several enzymes associated with increased 904	

inflammation-related lipid mediators (such as prostaglandins and leukotrienes) and 905	

hormones (such as aromatase, which converts androgens to estrogens). 906	

 907	

Figure 5: Dietary and lifestyle interventions of caloric restriction (CR), intermittent 908	

fasting (IF), physical activity (PA) and adherence to a ketogenic diet (KD), have been 909	

shown to reduce adiposity and favorably modulate many of the same cancer risk 910	

biomarkers that are impacted by obesity including: insulin, IGF-1, leptin, adiponectin, 911	

cytokines, angiogenic factors, and crown-like structures. These metabolic alterations 912	
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could result in downstream reductions in growth factor signaling, inflammation, and 913	

angiogenesis and attenuate cancer risk and progression. Metabolic alterations with CR, IF 914	

and PA interventions have been associated with reduced cancer risk and progression. 915	

While KD has not been linked to cancer risk, it has been demonstrated that adherence to 916	

KD reduces cancer risk and progression in preclinical studies. a) Insufficient evidence 917	

exist to conclude the impact of PA and IF on PAI-1 and VEGF expression. b) Current 918	

literature does not exist examining the impact of KD on crown-like structures. 919	


