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Abstract

Inspired by Switching Systems and Automata theory, we investigate how combinatorial analysis techniques can be performed on a hybrid
automaton in order to enhance its safety or invariance analysis. We focus on the particular case of Constrained Switching Systems, that is,
hybrid automata with linear dynamics and no guards. We follow two opposite approaches, each with unique benefits: First, we construct
invariant sets via the ‘Reduced’ system, induced by a smaller graph which consists of the essential nodes, called the unavoidable nodes.
The computational amelioration of working with a smaller, and in certain cases the minimum necessary number of nodes, is significant.
Second, we exploit graph liftings, in particular the Iterated Dynamics Lift (T -Lift) and the Path-Dependent Lift (P -Lift). For the former
case, we show that invariant sets can be computed in a fraction of the iterations compared to the non-lifted case, while we show how the
latter can be utilized to compute non-convex approximations of invariant sets of a controlled complexity.

We also revisit well studied problems, highlighting the potential benefits of the approach. In particular, we apply our framework to (i)
invariant sets computations for systems with dwell-time restrictions, (ii) fast computations of the maximal invariant set for uncertain linear
systems and (iii) non-convex approximations of the minimal invariant set for arbitrary switching linear systems.

1 Introduction

Discrete-time linear switching systems consist of a finite
collection of dynamics, called modes, which are allowed to
switch at each time instant, according to a set of rules (see
Equations (1)–(6) below for a precise description). They
constitute a particularly interesting and important family of
hybrid systems Goebel et al. (2012); Jungers (2009); Liber-
zon (2003); Shorten et al. (2007). Apart from their simplic-
ity, their ability to capture particular hybrid phenomena (De-
hghan and Ong, 2012b; Donkers et al., 2011; Hernandez-
Mejias et al., 2015; Zhang et al., 2016) and approximate ar-
bitrarily well nonlinear dynamics (Girard and Pappas, 2011)
makes them a central model in the class of hybrid systems.
Thus, it is not surprising that switching systems have been
the subject of huge research efforts with existing techniques
arguably more powerful than the ones targeted to general
hybrid systems. Our goal in this paper is to push further
the boundary of application of these techniques, by com-
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bining them with combinatorial techniques from graph and
automata theory. As a first step, we tackle an intermediate
family of systems, known as constrained switching systems
(Dai (2012), Athanasopoulos and Lazar (2014); Philippe
et al. (2015); Wang et al. (2017)). These systems are more
general than classical switching systems in that they have
their switching signals restricted by a labeled directed graph,
namely the switching constraints graph. For example, in Fig-
ure 1, the system switches between the modes 1 and 2 and
an admissible switching sequence is the one that can be re-
alized by a path in the directed graph G1.
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Fig. 1. A switching constraints graph G1 for a system with two
modes. For example, the sequence 21121 is admissible whereas
212122 is not.

Recently, multi-sets have been introduced in order to anal-
yse invariance properties of constrained switching systems
(Athanasopoulos et al., 2017; Blanchini and Miani, 2008;
De Santis et al., 2004; Philippe et al., 2015). A multi-set, is
a collection of sets, one per node of the graph that defines



the switching constraints. When a multi-set is invariant, the
system trajectories that start from within this multi-set are
always confined in one of its members. In this article we es-
tablish new, efficient, invariant (multi-)set constructions by
exploiting the topological properties of the switching con-
straints graph. We highlight that the notion of multi-set is
useful, beyond its proper physical meaning, for improving
the state of the art in classical problems on simpler models,
like LTI systems, or arbitrary switching systems. We adopt
two opposite and complementary approaches, one reducing
and the other increasing the size of the graph.

The first direction borrows the concept of unavoidability of
a set of nodes, a notion used in Computer Science, e.g.,
(Lothaire, 2002, Proposition 1.6.7). Roughly, by keeping
only a subset of ‘important’ nodes we are able to show that
we can work with a reduced graph, and consequently a re-
duced system, and associate explicitly invariance properties
of the reduced system with the original one, leading to effi-
cient algorithmic constructions. See for example two possi-
ble reduced graphs of G1 in Figure 2.
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Fig. 2. Two possible reductions of G1 (Figure 1). We observe that
the sequence of labels appearing in any infinite length path of G1

can be generated by either graph.

The second direction considers the lifting of the switch-
ing constraints graph, a classical idea in switching systems
analysis, e.g., Bliman and Ferrari-Trecate (2003); Lee and
Dullerud (2006); Philippe et al. (2015). Firstly, we consider
the Iterated Dynamics Lifted graph (abbr. T -lifted graph),
which captures the switching constraints for the iterated dy-
namics of the systems, see, e.g., Figure 3 for the 2-lift of G1

of Figure 1. We exploit this construction to improve exist-
ing invariant multi-set computation algorithms by reducing
the number of iterations required.

Secondly, we explore the Path-Dependent Lifted graph
(abbr. P-lifted graph), see, e.g., Figure 4 for the 1-lifted
graph of G1, in forward reachability computations. This
choice enables us to establish algorithms for non-convex
approximations of invariant multi-sets described by a union
of a prespecified number of convex sets.
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Fig. 3. The T -lifted graph of G1 of Figure 1, T = 2. There are as
many edges as admissible switching sequences of length 2 in G1.
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Fig. 4. The P -lifted graph of G1 of Figure 1 using the Path-De-
pendent Lift, P = 1. The graph has as many nodes as different
walks of length 1 in G1.

Together with the theoretical contributions, we revisit three
problems of set invariance in control. In particular, we con-
sider systems under dwell-time specifications (Dehghan and
Ong, 2012a,b; Liberzon, 2003; Zhang et al., 2016). We com-
pute, to the best of our knowledge for the first time, the min-
imal invariant multi-set and its approximations, via a Re-
duced graph consisting of the minimum number of nodes.
Moreover, we compute the maximal invariant set for uncer-
tain linear systems faster compared to the standard backward
reachability algorithm, see e.g., Blanchini and Miani (2008).
Last, we propose a new method to compute non-convex ap-
proximations of the minimal invariant set for switching sys-
tems (Artstein and Rakovic, 2008; I. V. Kolmanovsky and
E. G. Gilbert, 1998; Rakovic et al., 2005a,b).

Notation: The ball of radius α of an arbitrary norm is B(α)
and of the infinity norm is B∞(α). The Minkowski sum
of two sets S1 and S2 is S1 ⊕ S2. A C-set S ⊂ R

n is a
convex compact set which contains the origin in its interior
Blanchini (1999). The cardinality of a set V is denoted by
|V|. Let G(V , E), or G, be a labeled directed graph with a
set of nodes V and a set of edges E . The set of sequences
of labels appearing in a path from a node s ∈ V to a node
d ∈ V is denoted by σ(s, d). The set of sequences of nodes
appearing in a walk from s ∈ V to d ∈ V is m(s, d). We
denote the 1-norm of a vector x with ‖x‖1, and the vector
with elements equal to one with 1. The convex hull of a set
S ⊂ R

n is denoted by conv(S).

2 Preliminaries

We consider a set of matrices A := {A1, ..., AN} ⊂ R
n×n

and disturbance sets W = {W1, ...,WN}, Wi ⊂ R
n. We

consider the sets of nodes and edges V := {1, 2, ...,M}
and E = {(s, d, σ) : s ∈ V , d ∈ V , σ ∈ {1, ..., N}}. We
denote the corresponding graph by G(V , E), or G. The set
of outgoing nodes of a node s ∈ V is Outgoing(s,G) :=
{d ∈ V : (∃σ ∈ {1, ..., N} : (s, d, σ) ∈ E)}. Finally, we
consider constraint sets Xi ⊂ R

n, i ∈ {1, ...,M}.

Formally, the systems we study are described by the follow-
ing set of relations

x(t+ 1) = Aσ(t)x(t) + w(t), (1)

z(t+ 1) ∈ Outgoing(z(t),G(V , E)), (2)

w(t) ∈ Wσ(t), (3)

(x(0), z(0)) ∈ R
n × V , (4)
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subject to the constraints

(z(t), z(t+ 1), σ(t)) ∈ E , (5)

x(t) ∈ Xz(t), (6)

for all t ≥ 0. We underline that the switching signal σ(t)
depends on the discrete variable z(t) at each time instant,
however for notational convenience we make a slight abuse
and write σ(t) instead of σ(z(t)). We note the system (1)–(6)
is defined in the hybrid state space 1 [x⊤ z]⊤ ∈ R

n × V .
We call nominal the disturbance-free system, i.e., the system
x(t+1) = Aσ(t)x(t) together with (2), (4)–(6). The stability
of the nominal system is characterized by the constrained
joint spectral radius (Dai, 2012) ρ̌(A,G) = lim

t→∞
ρ̌t(A,G),

where

ρ̌t(A,G) := max{‖Aσ(t−1) · · ·Aσ(0)‖
1/t : z(0) ∈ V ,

z(t) satisfies (2), σ(t) satisfies (5), t = 0, ..., t− 1}.

The nominal system is asymptotically stable if and only if
ρ̌(A,G) < 1 (Dai, 2012, Corollary 2.8). We consider the
following assumptions.

Assumption 1 The constraint and disturbance sets Xi ⊂
R

n, i = 1, ...,M and Wi, i = 1, ..., N , are C-sets.

Assumption 2 ρ̌(A,G) < 1.

Assumption 3 The sets Outgoing(i,G(V , E)), i ∈ V , are
nonempty.

The assumptions are standard, see e.g., Blanchini and Mi-
ani (2008) for Assumption 1. Assumption 2 is not restrictive
since ρ̌(A,G) > 1 excludes non-trivial invariant multi-sets
or safe sets 2 , while Assumption 3 guarantees the complete-
ness of solutions. We highlight that Assumption 2 can be
verified by computing arbitrarily close approximations of
the constrained joint spectral radius, utilizing, e.g., the re-
sults in Philippe et al. (2015), implemented in software in
Cambier et al. (2015).

Definition 1 (Multi-sets) We call multi-set a collection of
sets {Si}i∈V , Si ⊂ R

n, i ∈ V .

Definition 2 [Multi–set invariance, Athanasopoulos et al.
(2017)] The multi-set {Si}i∈V is an invariant multi-set with

respect to the System (1)–(5) if x(0) ∈ Sz(0) implies x(t) ∈
Sz(t), for all t ≥ 0, z(0) ∈ V and σ(t) satisfying (5). If
additionally Si ⊆ Xi, i ∈ V , then {Si}i∈V is called an
admissible invariant multi-set with respect to (1)–(6). The
multi-set {Si

M}i∈V is the maximal admissible invariant set

1 Indeed, from (2), (4) it follows that z(t) ∈ V , for all t ≥ 0.
2 For the case when ρ̌(A,G) = 1 we still cannot guarantee bound-
edness of trajectories and a fortiori the existence of invariant sets.
See Protasov and Jungers (2015) for the arbitrary switching case.

if for any admissible invariant multi-set {Si}i∈V it holds
that Si ⊆ Si

M , i ∈ V . The multi-set {Si
m}i∈V is the minimal

(convex) admissible invariant set if for any admissible (con-
vex) invariant multi-set {Si}i∈V it holds Si

m ⊆ Si, i ∈ V .

Remark 1 (Related notions) Multi-set invariance, as op-
posed to classical set invariance, is a necessary generaliza-
tion for translating the invariance property to systems under
constrained switching. Indeed, it is not difficult to construct
a simple, scalar system for which an invariant multi-set ex-
ists, however no common invariant set can be found, see,
e.g., (Athanasopoulos et al., 2017, footnote 3). In the liter-
ature, different notions of invariance have been introduced,
motivated mostly by the need to establish efficient algo-
rithmic characterizations. In Rakovic et al. (2010), Rakovic
et al. (2011) the concept of an invariant collection of sets
is introduced for decentralized and large scale systems re-
spectively, with each member of the collection being defined
in a subspace of the state space, allowing to construct lin-
ear comparison systems and analyze stability and stabiliz-
ability. In Lazar et al. (2013), (k, λ)-contractiveness is pro-
posed as a generalization of invariance for homogeneous
discrete-time systems. Roughly, (k, λ)-contractiveness (or
(k, 1)-invariance) is related to periodic invariance, or, alter-
natively, to invariance of the iterated dynamics of the system.
In our setting, this notion is related to the T-Lift developed in
Section 4.1. Another relevant contribution is in Artstein and
Rakovic (2008), Artstein and Rakovic (2011): In Artstein
and Rakovic (2008) the study of nonlinear autonomous sys-
tems is performed by an infinite-dimensional representation
of the system in the space of sets. This makes the conver-
gence proofs and approximation estimates possible, using
contraction theory. In Artstein and Rakovic (2011), the same
reasoning is utilized to propose a new theoretical framework
of invariance under output feedback, which can be properly
defined only on the space of sets. Contrary to this piece of
work, our tools propose a finite dimensional and directly im-
plementable combinatorial lifting, induced by the switching
constraints graph. Last, it must be mentioned that De Santis
et al. (2004) study invariance properties of general hybrid
systems with inputs, capturing in some cases the multi-set
invariance, referred to there simply as invariance.

Consider the System (1)–(4) and a switching sequence
σ1...σp, σi ∈ {1, ..., N}, p ≥ 1. The p-step forward
reachability map is R(σ1...σp,S) := (

∏p
i=1 Aσp+1−i

S) ⊕

(
p
⊕

j=1

p−j
∏

i=1

Aσp+1−i
Wσj

). The p-step backward reachabil-

ity map is C(σ1...σp,S) := {x :
(
∏p

i=1 Aσp+1−i
{x}
)

⊕

(
p
⊕

j=1

p−j
∏

i=1

Aσp+1−i
Wσj

) ∈ S}. We write RN (σ1...σp,S) :=
{
∏p

i=1 Aσp+1−i
x : x ∈ S

}

.

We consider the multi-set sequence {N j
l }j∈V , l ≥ 0, gen-
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erated by 3

N j
0 := ∪(s,j,σ)∈EWσ, j ∈ V , (7)

N j
l+1 := ∪(s,j,σ)∈ERN(σ,N

s
l ), j ∈ V . (8)

The multi-set sequence (7), (8) has as elements the forward
reachability multi-sets of the nominal system starting from

the disturbance sets. Under Assumptions 1–2, the sets N j
l ,

l ≥ 0, j ∈ V are compact, and for any ρ̌(A,G) ≤ ρ < 1,
the relation

N j
t ⊆ ΓρtN j

0 , ∀j ∈ V , ∀t ≥ 0 (9)

holds, for some Γ ≥ 1. Several methods exist for computing
the constants in (9), e.g., Athanasopoulos and Lazar (2014),
Philippe et al. (2015), Cambier et al. (2015).

We consider the forward reachability multi-set sequence

{F j
l }j∈V , l ≥ 0, with

F j
0 := {0}, j ∈ V , (10)

F j
l+1 := ∪(s,j,σ)∈ER(σ,Fs

l ), j ∈ V , (11)

and the backward reachability multi-set sequence {Bj
l }j∈V ,

where

Bj
0 = Xj , j ∈ V , (12)

Bj
l+1 = (∩(j,d,σ)∈EC(σ,B

d
l )) ∩ Bj

0, j ∈ V . (13)

The sequence (10), (11) captures the propagation of all
solutions starting from the zero singleton in time. The l-th
term of the multi-set sequence (12), (13) contains the initial
conditions (x(0), z(0)) ∈ Xz(0) × V which satisfy the state
constraints for at least the first l time instants. Intuitively,

each set Bj
l+1, l ≥ 0, j ∈ V , contains the set of states in

the constraint set Bj
0 that can be transferred to each set Bd

l
via the dynamics σ, where d is any outgoing node of j.
We recall the main theoretical results from (Athanasopoulos
et al., 2017, Theorems 1–3) that are utilized in this paper.
To this purpose, given the System (1)–(6) and the minimal
invariant multi-set {Sj

m}j∈V , consider the scalars

α1 := min{α > 0 : ∪σ∈{1,...,N}Wσ ⊆ B(α)}, (14)

α2 := min{α > 0 : ∪i∈{1,...,N}Wi ⊆ α ∩i∈{1,...,N} Wi},
(15)

α3 := min{α > 0 : B(1) ⊆ α ∩i∈{1,...,N} Wi}, (16)

Rj := max{R : B(R) ⊆ Xj}, (17)

rj := min{r : Sj
m ⊆ B(r)}, (18)

c := min{c : Xj ⊆ cN j
0 , j ∈ V}. (19)

3 We slightly abuse the notation and write (s, j, σ) ∈ E instead
of {σ : (s, j, σ) ∈ E}.

Theorem 1 (Athanasopoulos et al. (2017)) The minimal
invariant multi–set {Sj

m}j∈V with respect to the System (1)–

(6) is unique and equal to Sj
m = liml→∞ F j

l , j ∈ V . Con-
sider a pair (Γ, ρ) satisfying (9), the multi-set sequence (10),
(11). Given an accuracy ǫ > 0 the following hold.

(i) For any l ≥ ⌈logρ(
ǫ(1−ρ)
α1Γ

)⌉, it holds that F j
l ⊆ Sj

m ⊆

F j
l ⊕ B(ǫ), j ∈ V .

(ii) For any pair (k, λ) that satisfies the inequali-

ties α2Γρ
k ≤ λ,

Γ(1−ρk−1)
1−ρ ≤ ǫ(1−λ)

α1λ
, the multi-set

{ 1
1−λF

j
k−1}j∈V is invariant, and furthermore, Sj

m ⊆
1

1−λF
j
k−1 ⊆ Sj

m ⊕ B(ǫ), j ∈ V .

(iii) Consider the sequence (12), (13) and assume Sj
m ⊆

int (Xj), j ∈ V and let N j
0 given in (7). Then, there is k such

that Bj

k+1
= Bj

k
, j ∈ V , with k ≤ logρ(

minj∈V (Rj−rj)
α1Γc

).

Moreover, {Bj

k
}j∈V is the maximal admissible invariant

multi-set.

In the absence of disturbances, i.e., when Wσ = 0, σ ∈
{1, ..., N}, we can adapt Theorem 1(iii), with the equiv-

alent bound being k ≤ logρ(
minj∈V (Rj)

Γc ), where Γ, ρ sat-

isfy ‖x(t)‖ ≤ Γρt‖x(0)‖ and c := min{c : Xj ⊆ B(c)},
Rj = {R : B(R) ⊆ Xj}, j ∈ V .

We note that under Assumptions 1–3 the elements of
the maximal invariant multi-set {Si

M}i∈V are convex
while the elements of the minimal invariant multi-set
{Si

m}i∈V are in general non-convex (precisely they are
radially convex). Following the same line of reasoning
with the literature, e.g., Blanchini and Miani (2008),
we can define the ‘convexified’ forward reachability

multi-set sequence {F
j

l }j∈V , l ≥ 0, with F
j

0 := {0},

F
j

l+1 := ∪(s,j,σ)∈E conv(R(σ,Fs
l )), j ∈ V . The con-

vex hull of the fixed point of the above sequence which
converges to the minimal convex invariant multi-set. This
allows for more efficient computations, at the price of los-
ing accuracy on the approximation of the minimal invariant
set. For more details on the convex version of Theorem1(i),
(ii), see (Athanasopoulos et al., 2017, Section III.A).

3 The Reduced System

In this section, we compute invariant multi-sets efficiently
by reducing the number of modes in the constraints graph.
We focus on a subset Y of the nodes of G(V , E), for which
at least one element is visited in a walk of length m ≥ 1.

Definition 3 (Lothaire (2002), Proposition 1.6.7.) Given a
graph G(V , E) and an integer m ≥ 1, a set of nodes Y ⊆ V
is called m-unavoidable if any walk of length m starting
from any node passes through at least one node v ∈ Y at
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least once. We call a set of nodes unavoidable if it is m-
unavoidable for some m ≥ 1.

Unavoidable sets of nodes are classically known in graph-
theory as feedback vertex sets, which are the sets of nodes
whose removal leaves a graph acyclic. Finding the feedback
vertex set of the minimum cardinality has been shown to be
NP-complete Karp (1972). Nevertheless, efficient approxi-
mation schemes of the minimal feedback vertex sets exist,
see for example the seminal paper Even et al. (1998). More-
over, our construction only requires to find a set containing
such an unavoidable set, which allows one to operate a trade-
off between algorithmic efficiency and size of the obtained
set.

Example 1 The graph G1 shown in Figure 1, has two min-
imal 2-unavoidable sets of nodes, namely {a, b} and {a, c}.

Letting Y ⊆ V be a set of m-unavoidable nodes of G(V , E),
we define the Reduced Graph G(Y, EY), where

EY := {(s, d, σ⋆) : (s, d) ∈ Y × Y, σ⋆ ∈ σ(s, d),

with no unavoidable node in the path from s to d}. (20)

The edges of G(Y, EY) are labeled with the sequences of
labels appearing in paths between unavoidable nodes in

G(V , E). We consider the set of matrices Ã ⊂ R
n×n, where

Ã := {
p
∏

i=0

Aσp−i
: (s, d, σ0...σp) ∈ EY} and denote each

member of Ã by Ãi, i ∈ {1, ..., Ñ}, for some Ñ ≥ 1. We

consider the corresponding set of disturbance sets W̃ :=

{
⊕p−1

j=0(
∏p−1−j

i=0 Aσp−1−i(t)Wj) ⊕ Wp : (s, d, σ0...σp) ∈

EY} and use the notation W̃i for each member of W̃.

Definition 4 (Reduced System) The Reduced System re-
lated to the System (1)–(6) via the unavoidable set of nodes
Y ⊂ V is a constrained switching system with constraints

graph G(Y, EY), matrix set Ã, disturbance sets W̃ and state
constraints Xi, i ∈ Y .

Given a graph G(V , E) and a set Y ⊆ V , we denote by θm
and θM the smallest and largest number of edges in a path
connecting two nodes i ∈ Y in G, i.e.,

θm := min
(i,j)∈Y×Y

{|σ⋆| : σ⋆ ∈ σ(i, j)}, (21)

θM := max
(i,j)∈Y×Y

{|σ⋆| : σ⋆ ∈ σ(i, j)}. (22)

The stability properties of the nominal (i.e., its disturbance
free version) System (1)–(6) and the nominal Reduced Sys-
tem coincide, as shown in the following result.

Lemma 1 Consider the System (1)-(4) and the Reduced Sys-
tem associated to the System via a set of unavoidable nodes

Y ⊆ V . The following equivalence holds.

ρ̌(A,G(V , E)) < 1 ⇔ ρ̌(Ã,G(Y, EY) < 1. (23)

Proof Direction (⇒) can be shown from the fact that the
trajectories of the Reduced System are generated by subse-
quences of the ones of the original one. To show (⇐), let
c := maxi1...il{‖Ail ...Ai1‖, 1}, where 1 < l ≤ θM − 1, θM
is given in (22), and i1...il is an admissible switching se-
quence for the graphG(V , E). For any t ≥ θM , we can divide
any switching signal in three parts, namely σ(0)...σ(t1−1),
σ(t1)....σ(t2), σ(t2 + 1)....σ(t − 1), where σ(t1)....σ(t2)
corresponds to a path in G(Y, EY). Then, we have

ρ̌t(A,G(V , E)) = max
σ(0)...σ(t−1)

{‖Aσ(t−1) · · ·Aσ(0)‖
1/t}

≤ c1/t max
σ(t1)...σ(t2)

‖Aσ(t2)...Aσ(t1)‖
1/tc1/t

≤ c2/t(ρ̌t⋆(Ã,G(Y, EY))
t⋆/t,

with θmt ≤ t⋆ ≤ θM t. Taking the limit when t → ∞, the
result follows. �

The starting point for deriving the results is the observation
that the forward reachability maps on the Reduced System

provide inner and outer bounds on the multi-set {F j
l }j∈V

of the original System (1)–(6).

Lemma 2 Let {F j
l }j∈V , {F̃ j

l }j∈Y , l ≥ 0, be the forward
reachability multi-set sequences (10), (11) of the System (1)–
(4) and the Reduced System associated to the System via the
set of nodes Y respectively. Then,

F j
lθm

⊆ F̃ j
l ⊆ F j

lθM
, ∀j ∈ Y, ∀l ≥ 0, (24)

where θm, θM are in (21) and (22).

Proof To prove the left inclusion, we exploit that each path

appearing in F j
lθm

is a part of a path appearing in F̃ j
l . Re-

lation (24) holds with equality for l = 0. Given an in-
teger j ∈ Y , we define the sets of pairs S1(j,G(V , E)),
S2(j,G(Y, EY )),

S1(j,G(V , E)) = {(i1, σ1) :

σ1 ∈ σ(i1, j), i1 ∈ V , |m(i1, j)| = lθm + 1},

S2(j,G(Y, EY)) = {(i2, σ2) :

σ2 ∈ σ(i2, j), i2 ∈ Y, |m(i2, j)| = l + 1}.

Let us consider an arbitrary pair (i1, σ1) ∈ S1(j,G(V , E)).
By construction of the Reduced graph, there exists an ad-
missible subsequence 4 σ̄, a pair (i2, σ2) ∈ S2(j,G(Y, EY ))

4 σ̄ might be possibly empty, i.e., σ̄ = ε where ε denotes the
empty word.
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such that σ2 = σ̄σ1. Moreover,

R(σ2,F
i2
0 ) = R(σ1,R(σ̄,F i2

0 )) ⊇ R(σ1,F
i1
0 ),

because F i
0 = F j

0 = {0} for any i, j ∈ V . Consequently,

F j
lθm

=
⋃

(i,σ)∈S1(j,G(V,E))

R(σ,F i
0)

⊆
⋃

(i,σ)∈S2(j,G(Y,EY))

R(σ,F i
0) = F̃ j

l .

We can show the right inclusion in (24) using a similar
reasoning. �

Given the graph G(V , E) and the related Reduced Graph

G(Y, Ẽ), we define the map f(·) from a multi-set {Mj}j∈Y ,

Mj ⊂ R
n to a multi-set {Kj}j∈V , Kj ⊂ R

n to be

f
(

{Mj}j∈Y

)

:=







Mj , j ∈ Y,
⋃

(σ,i)∈P(j)

R(σ,Mi), j ∈ V \ Y,

(25)
where

P(j) :={(σ⋆, i) : i ∈ Y, σ⋆ ∈ σ(i, j) and

no k ∈ Y appears in the path from i to j}. (26)

We write the minimal and maximal invariant multi-set of
the System (1)–(6) and the Reduced System with {Sj

m}j∈V ,

{Sj
M}j∈V and {S̃j

m}j∈Y , {S̃j
M}j∈Y respectively.

Theorem 2 Consider the System (1)–(6), a set of unavoid-
able nodes Y ⊆ V and the corresponding Reduced System.
The minimal invariant multi-set {Sj

m}j∈V with respect to
the System (1)–(6) is

{Sj
m}j∈V = f

(

{S̃j
m}j∈Y

)

. (27)

Proof Taking the limit in (24) for l → ∞, we have from

Theorem 1 that Sj
m ⊆ S̃j

m ⊆ Sj
m, thus, Sj

m = S̃j
m, for

all j ∈ Y . For all v ∈ V \ Y we have for any l ≥ θM

Fv
l =

⋃θM
p=1

⋃

{(σ⋆,i)∈P(j):|σ⋆|=p} R(σ⋆,F i
l−p), and taking

the limit as l → ∞ relation (27) follows. �

Analogously to Theorem 2 we can establish similar results
for the corresponding ǫ–approximations. In particular, we
can obtain inner and outer approximations of the minimal
invariant multi-set utilizing only the Reduced System. This
is stated formally in the following Corollary.

Corollary 1 Consider the System (1)–(6), a set of unavoid-
able nodes Y ⊂ V and the associated Reduced System. Let
α1–α3, α̃1–α̃3, (14), (15), (16) correspond to the System
and the Reduced System respectively. Let the pairs (Γ, ρ),

(Γ̃, ρ̃) satisfy (9) for the System and the Reduced System re-

spectively. Consider the multi-set sequence {F̃ j
l }j∈V , l ≥ 0,

where {F̃ j
l }j∈V = f({F̃ j

l }j∈Y) (25) and {F̃ j
l }j∈Y , l ≥ 0

is generated as in (10), (11) for the Reduced System. For
any accuracy ǫ > 0 the following hold.

(i) For any integer l ≥ ⌈logρ̃(
ǫ(1−ρ̃)

α̃1Γ̃max{1,Γρα3α1}
)⌉, it holds

that F̃ j
l ⊆ Sj

m ⊆ F̃ j
l ⊕ B(ǫ), ∀j ∈ V .

(ii) For any pair (k, λ), k ≥ 1, λ ∈ (0, 1) that satisfy the

inequalities α̃2Γ̃ρ̃
k ≤ λ, and max{1, α1α3Γρ}Γ̃α̃1λ(1 −

ρ̃k)leqǫ(1 − ρ̃)(1 − λ), the multi-set { 1
1−λ F̃

j
l }j∈V is in-

variant with respect to the System (1)–(6). Furthermore,

Sj
m ⊆ 1

1−λ F̃
j
k−1 ⊆ Sj

m ⊕ B(ǫ), ∀j ∈ V .

The proof is in Appendix A for completeness. We show next
an analogous result for the maximal invariant multi-set.

Lemma 3 Consider the maximal invariant multi-set
{Sj

M}j∈V with respect to the System (1)–(6). Consider

the multi-set sequence {B̃j
l }j∈V generated by (13) with

B̃j
0 = X̂j , where Sj

M ⊆ X̂j ⊆ Xj , j ∈ V and X̃j are C-
sets. Then, the multi-set sequence converges to the maximal

invariant multi-set {Sj
M}j∈V .

Proof By Theorem 1(iii) the multi-set {B̃j
l }j∈V converges

to the maximal invariant multi-set {S̃j
M}j∈V of (1)–(6) with

constraints X̂j , j ∈ V . Since Sj
M ⊆ X̂j , j ∈ V , then neces-

sarily S̃j
M ⊇ Sj

M , j ∈ V . On the other hand, since X̂j ⊆ Xj ,

j ∈ V , it holds that S̃j
M ⊆ Sj

M and the result follows. �

We define the sets of pairs

T (j) := {(σ⋆, i) : σ⋆ ∈ σ(j, i) and

no k ∈ Y appears in the path from j to i}. (28)

Theorem 3 Consider the System (1)–(6), a set of unavoid-
able nodes Y ⊆ V and the corresponding Reduced System

with a different constraint multi-set {X̃j}j∈Y , where

X̃j := Xj

⋂

(σ,d)∈T (j)

C(σ,Xd),

j ∈ Y and T (j) defined in (28). Let {S̃j
M}j∈Y be the max-

imal invariant multi-set of the Reduced System. Then, the

maximal invariant multi-set {Sj
M}j∈V with respect to the

System (1)–(6) is given by (30), where

Bj
0 :=

{

S̃j
M , j ∈ Y,

Xj , j ∈ V \ Y.
(29)
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Sj
M :=











S̃j
M , j ∈ Y,

⋂

{d∈Y:m(j,d)∩Y={d}}

((

⋂

{i∈m(j,d)\{j}}

C(σ(j, i),Bi
0)

))

∩ Xj , j ∈ V \ Y.
(30)

Proof Consider the multi-set sequence {Bj
l }j∈V , l ≥ 0

generated by (13) with initial condition (29). By Lemma 3,

{Bj
l }j∈V converges to the maximal invariant multi-

set {Sj
M}j∈V , since for each j ∈ V , it holds that

Sj
M ⊆ Bj

0 ⊆ Xj . We first show that the upper branch of
(30) holds for all l ≥ 0, j ∈ Y , i.e.,

Bj
l = S̃j

M , j ∈ Y, l ≥ 0. (31)

For l = 0, (31) holds by definition. Assuming that (31) holds

for l = k, for l = k + 1 we can write Bj
k+1 as

Bj
k+1 = S̃j

M ∩H1 ∩H2,

where

H1 =

max{θM ,k}
⋂

p=1

⋂

{(σ,d)∈T (j):d∈Y,|σ|=p}

C(σ,Bd
k−p), (32)

H2 =
⋂

{(σ,d)∈T (j):d∈V\Y,|σ|=k}

C(σ,Bd
0). (33)

Since Bj
0 = Bj

k = S̃j
M and the set sequence {Bj

l }l≥0, for any
index j ∈ V , is monotonically non-increasing, it necessarily

holds Bj
l = S̃j

M for all l = 0, ..., k. Consequently, in (32)

we have Bd
k−p = S̃d

M , and since {S̃j
M}j∈V is the maximal

invariant multi-set for the Reduced System, we have for

each element of the intersection that C(σ, S̃d
M ) ⊇ S̃j

M , thus,

S̃j
M ∩ H1 = Bj

0. Regarding the term H2, it is sufficient to
observe that for each element of the intersection we have
C(σ,Bd

0) = C(σ,Xd) ⊇ X̃d, thus, S̃j
M ∩ H2 = S̃j

M and

Bj
k+1 = S̃j

M .

To show the lower branch of (30), it suffices to take any

l ≥ θM and calculate Bj
l , for all j ∈ V \ Y . �

3.1 Application to minimum dwell time constraints

Systems under dwell time constraints can be modeled as
constrained switching systems. These constraints impose a
restriction on how fast the switching from one mode to an-
other is allowed. In specific, given a set of N modes, N > 1,
and a dwell time τ > 1, the dynamics of the system may
switch from a mode i to another mode j only if the system
followed the dynamics of the mode i for at least τ consecu-
tive time instants. This system can be described by (1)–(6)
with a graph G(V , E) with |V| = N(N − 1)(τ − 1) + N ,
|E| = N(N − 1)τ +N . For example, when N = 2, a graph
G(V , E) that captures these constraints is shown in Figure 5.

1

2 τ

τ + 1

τ + 22τ

1 1

22

21

1 τ + 1

1...1

2...2
21

Fig. 5. The dwell-time constraints graph G(V, E) (above) for a
system consisting of two nodes, with a dwell-time τ > 1 and the
Reduced Graph taking Y = {1, τ + 1} (below).
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-0.08 -0.04 0 0.04 0.08

-0.2

-0.1

0

0.1

0.2

Fig. 6. Example 2: Left, the two elements of the multi-set cor-
responding to the 10−2-approximation of the minimal invariant
multi-set of the Reduced system (see Fig. 5, lower part, for τ = 6)
are shown in blue. The minimal DDT-invariant set computed in
Dehghan and Ong (2012a) is depicted in grey. One can see that
the minimal-DDT-invariant set fails to represent a minimal set of
points in which the trajectories are confined. Right, all elements
of the 10−2-approximation of the minimal invariant multi-set of
the system are shown.

The smallest set of unavoidable nodes is unique and consists
of N nodes. The Reduced graph G(Y, EY) is a fully con-
nected graph with |Y| = N, |EY | = N2, significantly less
compared to the original graph G(V , E).

Example 2 We consider the example in (Dehghan and Ong,
2012a, Section 6, Systems Ia, Ib). Therein, the notions of
the minimal Disturbance Dwell-Time (DDT) invariance and
constraint admissible maximal DDT invariance were intro-
duced. DDT invariance is a type of invariance that relates to
a truncated system trajectory corresponding to the so-called
‘admissible sequence’ (Dehghan and Ong, 2012a, Defini-
tions 1, 2). In our framework, this switching sequence cor-
responds to a path G(V , E) that necessarily starts and ends
in an unavoidable node (for example the node 1 or τ +1 in
Figure 5). We consider two modes A1 =

[

0.1321 0.2494
−2.4940 −0.1173

]

,

A2 =
[

0.9885 0.4406
−0.0441 0.7682

]

, W1 = W2 = B∞(10−3), constraint

sets Xi = B∞(1), i ∈ V and dwell times equal to τ = 6
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dwell time τ max. multi-set max. DDT 10−2–min. multi-set min. DDT

6 0.036s 0.104s 7.03s 32.10s

10 0.044s 0.135s 6.65s 122.56s

Table 1
Example 2, computation times for the construction of the maximal invariant multi-set (second column, Theorem 3), the 10−2–approximation
of the minimal invariant multi-set (fourth column, Corollary 1(i)) and the maximal and minimal Disturbance Dwell Time Invariant set
from Dehghan and Ong (2012a) (third and fifth column respectively).

and τ = 10. From Theorem 3 and by the convex version of
Corollary 1(i), we compute the maximal invariant multi-set
and a 10−2–approximation of the convex minimal invariant
multi-set. The computation times are shown in Table 1 5 .
They are faster by at least an order of magnitude, compared
to Dehghan and Ong (2012a), although additional infor-
mation is generated about the behaviour of the system. The
computation time for obtaining the reduced system is neg-
ligible compared to the time required for the reachability
computations. The 102-approximation of the minimal invari-
ant multi-set is shown in Figure 6 (left), while the union of
the multi-set is compared to the computed minimal DDT set
in Figure 6 (right). We observe that the concept of multi-set
invariance offers an accurate characterization of where the
system trajectories lie at all times, as opposed to the con-
servative approximation offered by the minimal DDT set.

4 The Lifted System

In this section we take a somewhat opposite approach, and
show that one can also benefit from increasing the size of
the switching constraints graph. We apply two liftings on
the graph G(V , E) that defines the switching constraints on
the System (1)–(6). The relation between the minimal and
maximal invariant multi-sets between the System and the
Lifted System can be exploited in several directions.

4.1 The Iterated Dynamics Lift (T-Lift)

We consider first the Iterated dynamics Lift, see e.g. the
relevant works dealing with the stability analysis problem
Lazar et al. (2013), Geiselhart et al. (2014), Philippe et al.
(2015).

Definition 5 (Iterated Dynamics Lift (T -Lift) Philippe
et al. (2015)) Consider the System (1)–(6) and the switch-
ing constraints graph G(V , E). Given an integer T ≥ 1,
the T-product lifted graph GT (V , ET ), or, GT , is a graph
having the same nodes as G(V , E) and the set of edges
ET := {(i, j, σ⋆) : (i, j) ∈ V × V , σ ∈ σ(i, j), |σ⋆| = T }.

Intuitively, there is an edge between a node i ∈ V
and j ∈ V in GT (V , ET ) whenever there is a walk be-
tween i and j in G(V , E) of length T . We let AT :=

5 The same up-to-date desktop computer was used to compare
computational times for all constructions.

{
∏T

i=1 AσT−i
: (i, j, σ1...σT ) ∈ ET } denote the set of

matrices formed by the products corresponding to labels
appearing in a walk of length T in the graph (G,V) and

W
T := {

⊕T
i=1(

∏T−i
j=1 AσT−j

Wσi
) : (i, j, σ1...σT ) ∈ ET }

the corresponding set of disturbance sets of the iterated
dynamics.

We note that in terms of memory storage space, the size
of the lifted graph is in general an exponential function
of the lifting parameter T . Nevertheless, the sets computed
by the backward or forward reachability iterative methods
have a description of an exponentially increasing complexity
as well in general (for example half-space or vertex repre-
sentation when dealing with polytopes). As a consequence,
the price paid by increasing the problem size by the lift-
ing may well be negligible in comparison to the cost of the
brute-force application of a propagation algorithm. In Sec-
tion 4.1.1, we explicitly describe the computational gain ob-
tained due to the lifting method.

Definition 6 [Iterated Dynamics Lifted System (T -Lifted
System)] Given an integer T ≥ 1, the Iterated Dynamics
Lifted System, or, T -Lifted System, related to the System
(1)–(6) is a constrained switching system with constraints

graph GT (V , ẼT ), matrix set AT , disturbance sets WT and
state constraints Xi, i ∈ V .

The asymptotic stability properties of the System (1)–(6)
and the T -Lifted System coincide (Philippe et al., 2015,
Theorem 3.2), precisely it holds

ρ̌(AT ,GT ) = (ρ̌(A,G))T . (34)

We establish next the relationship between the minimal and
maximal invariant multi-sets of the System and the Lifted
System.

Theorem 4 Consider the System (1)–(6), an integer T ≥
1 and the corresponding T -Lifted System. Let {Šj

m}j∈V ,

{Šj
M}j∈V be the minimal and the maximal invariant multi-

set of the T-Lifted System. The following hold.

(i) The multi-set {Sj}j∈V , with

Sj = Šj
m

⋃

{(σ⋆,s):σ⋆∈σ(s,j),|σ⋆|≤T−1}

R(σ⋆, Šs
m), (35)

j ∈ V , is the minimal invariant multi-set with respect to the
System (1)–(6).
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(ii) The multi-set {Sj}j∈V , with

Sj = Šj
M

⋂

{(σ⋆,d):σ⋆∈σ(j,d)|,|σ⋆|≤T−1}

C(σ⋆, Šd
M ), (36)

j ∈ V , is the maximal invariant multi-set with respect to the
System (1)–(6).

Proof (i) Given a node j ∈ V and a graph G we define the
set

L(G, j) := lim
p→∞

{σ⋆ ∈ σ(i, j) : i ∈ V , |σ⋆| = p}.

By considering the sets L1 = L(G, j), L2 = L(GT , j),
we can express the elements Sj

m and Šj
m of the minimal

invariant multi-set of the System and the T-Lifted System
respectively by

Sj
m =

⋃

σ∈L1

R(σ, {0}), Šj
m =

⋃

σ∈L2

R(σ, {0}).

For any sequence σ1 ∈ L1, there is a (possibly empty) se-
quence σ, 0 ≤ σ ≤ T − 1 such that σ1 = σ2σ. Taking
into account that R(σ2σ, {0}) = R(σ,R(σ2, {0}))the re-
sult follows. The proof of (ii) follows a similar path. �

Similarly to Theorem 1(i), (iii), we establish upper bounds
for computing invariant multi-sets for the T-Lifted System
and show that they can be computed in a fraction of steps
compared to System (1)–(6).

Proposition 1 Consider the System (1)–(6), an integer T ≥
1, the corresponding T-Lifted System, the respective scalars
(14)–(19) for the System and the T-Lifted System, an accu-

racy ǫ > 0 and the quantities l1 = ⌈logρ(
ǫ(1−ρ)
α1Γ

)⌉, l2 =

⌈logρ
minj∈V Rj−rj

α1Γc
⌉. An inner ǫ–approximation of the mini-

mal invariant multi-set {Šj
m}j∈V and the maximal invariant

multi-set {Šj
M}j∈V of the T-Lifted System can be computed

at most after ľ1 and ľ2 iterations respectively, where

ľ1 = ⌈ l1+δ1
T ⌉, ľ2 = ⌈ l2+δ2

T ⌉, (37)

and δ1 = logρ
α1(1−ρT )
α̌1(1−ρ) , δ2 = logρ(

α1cminj∈V (Rj−řj)
α̌1 čminj∈V (Rj−rj)

).

Proof From (34), there exist pairs (Γ, ρ), (Γ̌, ρ̌) such that (9)
holds for the System (1)–(6) and the T-product Lifted System

respectively. Moreover, we have N j
0 = ∪(s,j,σ)∈EWσ ⊆

∪{σ⋆∈σ(i,j):|σ|=T}R(σ⋆, {0}) = Ň j
0 , where N j

0 , Ň j
0 , j ∈ V

are defined as in (7). We consider the multi-set sequences

{N j
l }j∈V , {Ň j

l }j∈V , l ≥ 0, generated by (8). Since N j
0 ⊆

Ň j
0 , j ∈ V , we have N j

tT ⊆ ΓρtTN j
0 ⊆ ΓρtT Ň j

0 . Thus, we

can choose the pair (Γ̌, ρ̌) to be

ρ̌ = ρT , Γ̌ = Γ. (38)

Applying Theorem 1(i), (iii) to the T-Lifted System and tak-
ing into account (38), the upper bounds (37) are calculated
directly. �

4.1.1 How to choose the lift degree T

Proposition 1 and Theorem 4 can be combined to compute ǫ–
approximations of the minimal invariant multi-set, as well as
the maximal invariant multi-set of the System (1)–(6) via the
T-Lifted System. In this subsection, we focus on quantifying
this potential computational gain by formulating a suitable
cost function on the computational burden that depends on
the lift degree T . From the backward reachability multi-
set sequence (12), (13) and relation (36) we can distinguish
between two main operations, the basic iteration and the
intersection operation.

Definition 7 Given a matrix A ∈ R
n×n and the sets

S ⊂ R
n and W ⊂ R

n, we call basic iteration the mapping
f−(S,W) := {x ∈ R

n : ∀w ∈ W , Ax + w ∈ S} and
the mapping f+(S,W) = {Ax + w : x ∈ S, w ∈ W}.
Moreover, given an integer q ≥ 2 and the sets Si ⊂ R

n,
i = 1, ..., q, the intersection operation is the mapping
f∩(S1, ...,Sq) = ∩q

i=1Si.

Given a graph G(V , E), we define its adjacency matrix A ∈
R

|V|×|V| to have elements aij equal to the number of edges
starting from node i and ending to node j, and equal to 0
otherwise. Letting d1(T ) denote the number of basic itera-
tions required for the computation of the maximal invariant
multi-set and d2(T ) denote the corresponding number of in-
tersections of sets, we have

d1(T ) =

(

⌈ l2+δ2
T ⌉‖AT 1‖1 +

T−1
∑

i=0

‖Ai1‖1

)

, (39)

d2(T ) =
(

⌈ l2+δ2
T ⌉+ 1

)

|V|, (40)

where l2, δ2 are given in Proposition 1. One can formulate
a cost function J(d1(T ), d2(T )) that models the computa-
tional burden of the procedure and retrieve an optimal lift
degree 6 . Similar formulations are possible for describing
the computational cost of computing ǫ–approximations of
the minimal invariant multi-set via Theorem 4(i).

Example 3 We consider the arbitrary switching system
in (Blanchini and Miani, 2008, Example 5.23), con-

sisting of two modes with A1 =
[

1 2.5·10−4

−5·10−4 0.99975

]

,

A2 =
[

1 2.5·10−4

−2.2425·10−3 0.99975

]

. The switching constraints

graph G(V , E) has one node with two self-loops, labeled by
1 and 2. We consider X = B∞(1) and W1 = W2 = {0}.

6 A more accurate expression of the computational burden de-
pends strongly on the shape of the state and disturbance sets, the
choice of algorithms implementing the set intersections, e.g., con-
vex hull algorithms, etc.
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The adjacency matrix of the graph is A = 2. To decide the
lift degree T , we choose the cost J(T ) = d1(T )+40d2(T ),
where d1(T ), d2(T ) are given in (39) and (40) respectively.
The choice is motivated by empirical observation of the
computational cost of the mathematical operations. The
minimizer of the cost function is T ⋆ = 4. Utilizing Propo-
sition 1, we first compute the maximal invariant set of the
4-Lifted system ŠM . Next, from Theorem 4(ii) we compute
the maximal invariant set SM , with a corresponding com-
putation time 23 seconds 7 . In comparison, the classical
backward reachability algorithm corresponds to T = 1 and
90 seconds computation time. In Figure 7 the actual time
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Fig. 7. Example 3, the time spent for computing SM (blue) and
the number of vertices of ŠM (red), for different choices of the
lift T .

spent for computing SM for different choices of the T is
shown in blue line in logarithmic scale. We observe that the
actual optimal lift degree is equal to T ⋆ = 4. In the same
Figure, the number of vertices of ŠM is also shown in red.

4.2 The Path-Dependent Lift (P-Lift)

We exploit the Path-Dependent lifting, studied in Bliman
and Ferrari-Trecate (2003), Lee and Dullerud (2006), and
Philippe et al. (2015) where it provided asymptotically tight
approximations to the constrained joint spectral radius.

Definition 8 [Path Dependent Lift (P -Lift) Lee and
Dullerud (2006)] Consider an integer P ≥ 1 and a
System (1)–(6) corresponding to a graph G(V , E). The
Path-Dependent lifted graph GP (VP , EP ), or GP , is a
graph with the set of nodes VP := {vi1σi1vi2 · · · viP+1

:
(vij , vij+1

, σij ) ∈ E , j ∈ {1, ..., P}}, and the set of
edges EP := {(va, vb, σ) : va = vi1σi1 · · · viP+1

, vb =
vi2σi2 · · · viP+2

, σ = σiP+1
, σij ∈ {1, ..., N}, vij ∈ V , j ∈

{1, ..., P + 2}}.

Roughly, the P -Lifted graph GP (VP , EP ) has as many nodes
as different walks of length P in the graph G(V , E). For a

7 The computation times include the time required to construct
the T-lifts, which in this example is negligible compared to the
reachability iterations.

node j ∈ V , we define the subsets of nodes J (j) ⊆ VP to
be

J (j) := {v ∈ VP : v = vi1σi1 · · · j}. (41)

Similarly to the T-lifted graph, the memory size required to
store the obtained lifted graph is generally an exponential
function of the lifting parameter P . Nevertheless, as we see
in the sequel, it is a controlled price that is paid to establish
non-convex approximations of the minimal invariant multi-
set. Compared to the brute-force strategy of storing the non-
convex forward reachability multi-sets (which are unions
of an exponentially increasing number of convex sets), this
additional degree of freedom allows us to establish non-
convex approximations of forward reachability operations
efficiently.

Definition 9 [Path-Dependent Lifted System (P -Lifted
System)] Given an integer P ≥ 1, the Path-Dependent
Lifted System, or P -Lifted System, related to the System (1)–
(6) is a constrained switching system with constraints graph
GP (VP , EP ), matrix set A, disturbance sets W and state
constraints Xa := Xj for any node a ∈ J (j).

Example 4 The P -Lifted Graph, P = 1, of the Graph in
Figure 1 is in Figure 4. Moreover, we have Xa2a := Xa,
Xa1b = Xb, Xb1c = Xc, Xc2b = Xb, Xc1a = Xa andJ (a) =
{a1a, c1a}, J (b) = {a1b, c2b}, J (c) = {b1c}.

Theorem 5 Consider the System (1)–(6), an integer P ≥
1 and the corresponding P -Lifted System. Let {Sm}j∈V ,

{Sj
M}j∈V , {Šj

m}j∈VP
and {Šj

M}j∈VP
be the minimal and

maximal invariant multi-set of the System (1)–(6) and the
P-Lifted System respectively. The following hold.

(i) Sj
m =

⋃

i∈J (j)

Ši
m, for all j ∈ V .

(ii) Sj
M = Ši

M , for all j ∈ V , for all i in J (j),

Proof (i) Let {F j
l }j∈V and {F̌ j

l }j∈VP
, l ≥ 0 denote the

members of the multi-set sequences generated by (10), (11),
for the System (1)–(6) and the P -Path-dependent Lifted sys-
tem respectively. We show that

F j
l =

⋃

i∈J (j)

F̌ i
l , j ∈ V . (42)

For l = 0 we have F j
0 = ∪i∈J (j)F̌

i
0 = {0}. Assuming

(42) holds for l = k, we have for l = k + 1 that F j
k+1 =

∪(sj ,j,σ)∈ER(σ,F
sj
k ) = ∪(sj ,j,σ)∈ER(σ,∪i∈I(sj )F̌

i
k) =

∪(sj ,j,σ)∈E ∪i∈J (sj) R
(

σ, F̌ i
k

)

= ∪i∈J (sj) ∪(sj ,j,σ)∈E

R
(

σ, F̌ i
k

)

= ∪i∈J (j)F̌
i
k+1, thus, (42) holds for all l ≥ 0.

Taking the limit as l → ∞, the result follows.

(ii) By construction of GP , for any j ∈ V , for any i ∈ I(j)
and for each edge (j, d, σ) ∈ E , there exists a node ď ∈ VP
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such that (i, ď, σ) ∈ EP . Taking into account that for all
j ∈ V , for all i ∈ J (j) it holds that Xi = Xj , the members

of the multi-set sequences {Bj
l }j∈V , {B̌

j
l }j∈VP

, generated
by (12), (13) for the System (1)–(6) and the P-Lifted Sys-

tem respectively satisfy Bj
l = B̌i

l . The result follows from
Theorem 1(iii) by taking a large enough integer l⋆ such that

Bj
l = B̌i

l = Sj
M . �

By combining Theorem 5 and Theorem 1(i), (ii) one can
adapt in a straightforward manner all results concerning the
ǫ–approximations of the minimal invariant multi-set of the
System (1)–(6). This is illustrated in the following subsection
for the case of arbitrary switching systems.

4.2.1 Approximations of the minimal invariant set

Utilizing Theorem 5(i), we can compute non-convex approx-
imations of the minimal invariant multi-set. In specific and
especially for arbitrary switching systems, by utilizing the
P -Lift and the convex version of Theorem 5(i) we can ap-
proximate the minimal invariant set with the union of a finite,
pre-specified number, of convex sets. The P-Lifted graph of
an arbitrary switching system is a de Bruijn graph (Lothaire,
2002, Section 1.3.4). For example, for N = 2 modes, the 1
and 2 Path-Dependent Lifted graphs are shown in the upper
and lower part of Figure 8.

a1

2

a1a a2a1

2

1

2

a1a1a a1a2a a2a1a a2a2a1 2
1

2

2

1

2

1

Fig. 8. Upper left, a graph representing an arbitrary switching
system consisting of two modes. Upper right, its 1-Path-Dependent
Lifted Graph. Lower part, its 2-Path-Dependent Lifted Graph.

Example 5 We compute the minimal invariant set for an
arbitrary switching linear system inspired by (Rakovic et al.,
2005b, Example 1). In specific, we consider the system
x(t + 1) = (Aσ(t) + BK)x(t) + w(t), σ(t) : N → {1, 2},

with A1 = [ 1.2 1
0 1 ], A2 = [ 0.8 1

0 1 ], B = [ 11 ], K = [−1.2 −1 ],
w(t) ∈ B∞(10). By considering the P -Lift, P = 1, we ob-
tain the graph GP (VP , EP ), shown in the upper right part
of Figure 8. Utilizing the convex version of Theorem 1(i)
(Athanasopoulos et al., 2017, Corollary 1) we compute
an inner ǫ–approximation of the minimal convex invariant
multi-set of the Lifted System for ǫ = 10−3, reached in
40 iterations. In Figure 9, the sets {Sa1a

i }i∈{1,...,40} and

{Sa2a
i }i∈{1,...,40} are shown in blue and red respectively.

Consequently, by Theorem 5(i), the 10−3–approximation
of the minimal invariant set of the original system is
Sa1a
40 ∪ Sa2a

40 .We note that for the specific example this set

is the exact non-convex inner approximation of the minimal
invariant set.

x
2

x1

-15 0 15

-30

0

30

Fig. 9. Example 5, the sets {Sa1a
i }i∈{1,...,40} and

{Sa2a
i }i∈{1,...,40} are depicted in blue and yellow respectively.

The minimal invariant set for the system is Š = Sa1a
40 ∪ Sa2a

40 .

5 Conclusions

We demonstrated how combinatorial constructions can be
used for general models of hybrid systems. As a starting
point, we considered constrained switching systems and
studied the computation of the minimal and maximal invari-
ant (multi-)sets. We illustrated the usefulness of our con-
structions in applications dealing with minimum dwell-time
specifications and arbitrary switching linear systems. We
believe that the combinatorial and algebraic reductions and
liftings established can be useful for more general classes of
hybrid automata, both for qualitative and quantitative anal-
ysis. Further work should investigate the so-called horizon-
dependent lifting from Essick et al. (2014), which seems
well fit for parallelizing optimally the maximal invariant
multi-set computations. Moreover, it is worth investigating
the possibility to extend the results to state-dependent con-
strained switching. Last, it would be interesting to explore
the possible gain in applying the techniques presented here
to systems with inputs, whether by investigating classical
problems, or by extending the notion of multi-set invariance
to controlled multi-set invariance and compare with existing
notions from the literature, e.g., De Santis et al. (2004).

Acknowledgements

Part of the research was performed when R.J. was on sab-
batical leave at UCLA, Department of Electrical Engineer-
ing, LA, USA and when N.A. was with ICTEAM, UCLou-
vain, Louvain-la-Neuve, Belgium. The authors would like
to thank the reviewers for invaluable comments and Dr.
Matthew Philippe for numerous comments and discussions.

11



References

Artstein, Z., Rakovic, S. V., 2008. Feedback and Invariance
under Uncertainty via Set Iterates. Automatica 44, 520–
525.

Artstein, Z., Rakovic, S. V., 2011. Set Invariance Under Out-
put Feedback : A Set–Dynamics Approach. International
Journal of Systems Science 42, 539–555.

Athanasopoulos, N., Lazar, M., 2014. Stability analysis of
switched systems defined by graphs. In: 53rd IEEE Con-
ference on Decision and Control. Los Angeles, CA, USA,
pp. 5451–5456.

Athanasopoulos, N., Smpoukis, K., Jungers, R. M., 2017.
Invariant sets analysis for constrained switching systems.
IEEE Control Systems Letters 1, 256–261.

Blanchini, F., 1999. Set Invariance in Control – A Survey.
Automatica 35, 1747–1767, Survey Paper.

Blanchini, F., Miani, S., 2008. Set–Theoretic Methods in
Control. Systems & Control: Foundations & Applications.
Birkhauser, Boston, Basel, Berlin.

Bliman, P.-A., Ferrari-Trecate, G., 2003. Stability analysis of
discrete-time switched systems through Lyapunov func-
tions with nonminimal state. In: IFAC Conference on the
Analysis and Design of Hybrid Systems. St. Malo, France,
pp. 325–330.

Cambier, L., Philippe, M., Jungers, R. M.,
2015. CSS Toolbox for MATLAB.
http://www.mathworks.com/matlabcentral/
fileexchange/52723-the-cssystem-toolbox.

Dai, X., 2012. A Gel’fand-type spectral radius formula and
stability of linear constrained switching systems. Linear
Algebra and its Applications 436, 1099–1113.

De Santis, E., Di Benedetto, M. D., Berardi, L., 2004. Com-
putation of maximal safe sets for switching systems. IEEE
Transactions on Automatic Control 49, 184–195.

Dehghan, M., Ong, C.-J., 2012a. Characterization and com-
putation of disturbance invariant sets for constrained
switched linear systems with dwell time restriction. Au-
tomatica 48, 2175–2181.

Dehghan, M., Ong, C.-J., 2012b. Discrete-time switch-
ing linear systems with constraints: Characterization and
computation of invariant sets under dwell-time consider-
ation. Automatica 48, 964–969.

Donkers, M. C. F., Heemels, W. P. M., van den Wouw, N.,
Hetel, L., 2011. Stability Analysis of Networked Systems
Using a Switched Linear Systems Approach. IEEE Trans-
actions on Automatic Control 56, 2101–2115.

Essick, R., Lee, J.-W., Dullerud, G. E., 2014. Control of
Linear Switched Systems with Receding Horizon Modal
Information. IEEE Transactions on Automatic Control 59,
2340–2352.

Even, G., Naor, S. J., Schieber, B., Sudan, M., 1998. Ap-
proximating minimum feedback sets and multicuts in di-
rected graphs. Algorithmica 20, 151–174.

Geiselhart, R., Gielen, R. H., Lazar, M., Wirth, F. R., 2014.
An alternative converse Lyapunov theorem for discrete-
time systems. Systems & Control Letters 70, 49–59.

Girard, A., Pappas, G. J., 2011. Approximate Bisimulation:
A Bridge Between Computer Science and Control Theory.

European Journal of Control 17, 568–578.
Goebel, R., Sanfelice, R. G., Teel, A. R., 2012. Hybrid

Dynamical Systems: Modeling Stability, and Robustness.
Princeton University Press.

Hernandez-Mejias, M. A., Sala, A., Arino, C., Querol, A.,
2015. Reliable controllable sets for constrained Markov-
Jump Linear Systems. International Journal of Robust and
Nonlinear Control 26, 2075–2089.

I. V. Kolmanovsky and E. G. Gilbert, 1998. Theory and Com-
putation of Disturbance Invariant Sets for Discrete–Time
Linear Systems. Mathematical Problems in Egineering 4,
317–367.

Jungers, R. M., 2009. The joint spectral radius: theory and
applications. Vol. 385 of Lecture Notes in Control and
Information Sciences. Springer.

Karp, R. M., 1972. Reducibility among combinatorial prob-
lems. Complexity of computer computations, 85–103.

Lazar, M., Doban, A. I., Athanasopoulos, N., 2013. On sta-
bility analysis of discrete–time homogeneous dynamics.
In: 17th International Conference on System Theory, Con-
trol and Computing. Sinaia, Romania, pp. 1–8.

Lee, J.-W., Dullerud, G. E., 2006. Uniform stabilization of
discrete-time switched and Markovian jump linear sys-
tems. Automatica 42, 205–218.

Liberzon, D., 2003. Switching in systems and control.
Birkhauser, Boston.

Lothaire, M., 2002. Algebraic Combinatorics on Words.
Cambridge University Press, Vol. 90.

Philippe, M., Essick, R., Dullerud, R., Jungers, R. M., 2015.
Stability of discrete-time switching systems with con-
strained switching sequences. Automatica 72, 242–250.

Protasov, V. Y., Jungers, R. M., 2015. Resonance and
marginal instability of switching systems. Nonlinear
Analysis: Hybrid Systems 17, 81–93.

Rakovic, S. V., Kern, B., Findeisen, R., 2010. Practical set in-
variance for decentralized discrete-time systems. In: 49th
IEEE Conference on Decision and Control. pp. 3283–
3288.

Rakovic, S. V., Kern, B., Findeisen, R., 2011. Practical ro-
bust positive invariance for large-scale discrete time sys-
tems. In: IFAC World Congress. pp. 6425–6430.

Rakovic, S. V., Kerrigan, E. C., Kouramas, K. I., Mayne,
D. Q., 2005a. Invariant approximations of the minimal
robustly positively invariant sets. IEEE Transactions on
Automatic Control 50 (3), 406–410.

Rakovic, S. V., Kouramas, K. I., Kerrigan, E. C. Allwright,
J. C., Mayne, D. Q., 2005b. The minimal robust positively
invariant set for linear difference inclusions and its robust
positively invariant approximations. Tech. Rep. EEE/C P
/SVR/9-d/2005, Imperial College, London, UK.

Shorten, R., Wirth, F., Mason, O., Wulff, K., King, C., 2007.
Stabiliy criteria for switched and hybrid systems. SIAM
Review 49, 545–592.

Wang, Y., Roohi, N., Dullerud, G. E., Viswanathan, M.,
2017. Stability Analysis of Switched Linear Systems de-
fined by Regular Languages. IEEE Transactions on Au-
tomatic Control 62, 2568–2575.

Zhang, L., Zhuang, S., Braatz, R. D., 2016. Switched model
predictive control of switched linear systems: Feasibility,

12



stability and robustness. Automatica 67, 8–21.

A Proof of Corollary 1

The following Lemma is required first.

Lemma 4 Consider the System (1)–(6), an admissi-
ble switching sequence σ1...σl, l ≥ 1 and two C-sets
S1 ⊂ R

n, S2 ⊂ R
n. It holds that R(σ1...σl,S1 ⊕ S2) =

R(σ1...σl,S1)⊕RN(σ1...σl,S2).

Proof We use induction: For l = 1 it holds that
R(σ,S1 ⊕ S2) = Aσ(S1 ⊕ S2) ⊕Wσ = (AσS1 ⊕Wσ) ⊕
AσS2 = R(σ,S1) ⊕ RN(σ,S2). Let us suppose that
the relation holds for l. Then, R(σ1...σl+1,S1 ⊕ S2) =
R(σl+1,R(σ1...σl,S1 ⊕ S2)) = R(σl+1,R(σ1...σl,S1) ⊕
RN(σ1...σl,S2)) = R(σ1...σl+1,S1) ⊕RN(σ1...σl+1,S2).
Thus, the relation holds for l + 1. �

Similarly to the multi-set {N j
l }j∈V generated by (7), (8),

we denote forward reachability multi-set sequence of the

nominal part of the Reduced System by {Ñ j
l }j∈Y , l ≥ 0.

Proof. (i) When j ∈ Y , from Theorem 2 and Theorem 1(i),

we have that F̃ j
l ⊆ S̃j

m = Sj
m ⊆ F̃ j

l ⊕ B(ǫ), for any l ≥

⌈logρ̃(
ǫ(1−ρ̃)

α̃1Γ̃
)⌉. When j ∈ V \ Y , for any integer k ≥ 0,

l ≥ θM , from (25), (26) and by setting Q(j, p) := {(σ, i) ∈
P(j) : |σ| = p}, where P(j) is defined in (26), we have

F̃ j
l+k =

θM
⋃

p=1

⋃

(σ,i)∈Q(j,p)

R(σ, F̃ i
l+k)

⊆
θM
⋃

p=1

⋃

(σ,i)∈Q(j,p)

R(σ, F̃ i
l+k−1 ⊕ Γ̃ρ̃l+k−1α̃1B(1)) ⊆ ...

⊆
θM
⋃

p=1

⋃

(σ,i)∈Q(j,p)

R(σ, F̃ i
l ⊕ ( Γ̃ρ̃

lα̃1(1−ρ̃k)
1−ρ̃ )B(1)).

Setting δ =
(

Γ̃ρ̃lα̃1

1−ρ̃

)

, taking the limit as k → ∞ and from

Lemma 4, it follows

F̃ j
∞ ⊆

θM
⋃

p=1

⋃

(σ,i)∈Q(j,p)

[R(σ(i, j), F̃ i
l )⊕RN(σ(i, j),B(δ))]

⊆ F̃ j
l ⊕ Γρα3α1B(δ),

which implies Sj
m ⊆ F̃ j

l ⊕ B(ǫ) for any l ≥ θM satisfying

l ≥ ⌈logρ̃(
ǫ(1−ρ̃)

α̃1Γ̃α3α1Γρ
)⌉. Combining the two above inequal-

ities on l the result follows.

(ii) By (23) and Theorem 1(ii) we have that the multi-

set { 1
1−λ F̃

j
k−1}j∈Y is invariant with respect to the Re-

duced System. Consequently, by construction of (25),
{ 1
1−λ F̃

j
k−1}j∈V is also invariant with respect to the System

(1)–(6), thus the left inclusion holds. By Theorem 1(ii) and
the hypothesis, the right inclusion holds for all j ∈ Y . For
j ∈ V \ Y , we have

1
1−λ F̃

j
k−1 =

θM
⋃

p=1

⋃

(σ,i)∈Q(j,p)

R(σ, (1 + λ
1−λ)F̃

i
k−1)

=

θM
⋃

p=1

⋃

(σ,i)∈Q(j,p)

(R(σ, F̃ i
k−1)⊕RN (σ, λ

1−λ F̃
i
k−1))

⊆
θM
⋃

i=1

⋃

(σ,i)∈Q(j,p)

(R(σ, F̃ i
k−1)⊕RN (σ, δB(1)),

with δ = λΓ̃α̃1(1−ρ̃k−1)
(1−λ)(1−ρ̃) . Consequently, we have that

1
1−λ F̃

j
k−1 ⊆

θM
⋃

i=1

⋃

(σ,i)∈Q(j,p)

(R(σ, F̃ i
k−1)⊕

RN (σ, δα3Γρ
pN i

0))

⊆





θM
⋃

i=1

⋃

(σ,i)∈Q(j,p)

(R(σ, F̃ j
k−1)



 ⊕ δΓρα1α3B(1)

⊆ F̃ j
k−1 ⊕ B(ǫ) ⊆ Sj

m ⊕ B(ǫ).

Thus, 1
1−λ F̃

j
k−1 ⊆ Sj

m ⊕ B(ǫ) for all j ∈ V . �
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