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Abstract: 

Our knowledge of the effects of consumer species loss on ecosystem 

functioning is limited by a paucity of manipulative field studies, particularly 
those that incorporate inter-trophic effects. Further, given the ongoing 
transformation of natural habitats by anthropogenic activities, studies 
should assess the relative importance of biodiversity for ecosystem 
processes across different environmental contexts by including multiple 
habitat types. We tested the context-dependency of the effects of 
consumer species loss by conducting a 15-month field experiment in two 
habitats (mussel beds and rock pools) on a temperate rocky shore, 
focussing on the responses of algal assemblages following the single and 
combined removals of key gastropod grazers (Patella vulgata, P. 
ulyssiponensis, Littorina littorea and Gibbula umbilicalis). In both habitats, 
the removal of limpets resulted in a larger increase in macroalgal richness 

than that of either L. littorea or G. umbilicalis. Further, by the end of the 
study, macroalgal cover and richness were greater following the removal of 
multiple grazer species compared to single species removals. Despite 
substantial differences in physical properties and the structure of benthic 
assemblages between mussel beds and rock pools, the effects of grazer 
loss on macroalgal cover, richness, evenness and assemblage structure 
were remarkably consistent across both habitats. There was, however, a 
transient habitat-dependent effect of grazer removal on macroalgal 
assemblage structure that emerged after three months, which was 
replaced by non-interactive effects of grazer removal and habitat after 15 
months. This study shows that the effects of the loss of key consumers 

may transcend large abiotic and biotic differences between habitats in 
rocky intertidal systems. While it is clear that consumer diversity is a 
primary driver of ecosystem functioning, determining its relative 
importance across multiple contexts is necessary to understand the 
consequences of consumer species loss against a background of 
environmental change. 
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Abstract: 16 

 17 

Our knowledge of the effects of consumer species loss on ecosystem functioning is limited by 18 

a paucity of manipulative field studies, particularly those that incorporate inter-trophic effects. 19 

Further, given the ongoing transformation of natural habitats by anthropogenic activities, 20 

studies should assess the relative importance of biodiversity for ecosystem processes across 21 

different environmental contexts by including multiple habitat types. We tested the context-22 

dependency of the effects of consumer species loss by conducting a 15-month field 23 

experiment in two habitats (mussel beds and rock pools) on a temperate rocky shore, 24 

focussing on the responses of algal assemblages following the single and combined removals 25 

of key gastropod grazers (Patella vulgata, P. ulyssiponensis, Littorina littorea and Gibbula 26 

umbilicalis). In both habitats, the removal of limpets resulted in a larger increase in 27 

macroalgal richness than that of either L. littorea or G. umbilicalis. Further, by the end of the 28 

study, macroalgal cover and richness were greater following the removal of multiple grazer 29 

species compared to single species removals. Despite substantial differences in physical 30 

properties and the structure of benthic assemblages between mussel beds and rock pools, the 31 

effects of grazer loss on macroalgal cover, richness, evenness and assemblage structure were 32 

remarkably consistent across both habitats. There was, however, a transient habitat-dependent 33 

effect of grazer removal on macroalgal assemblage structure that emerged after three months, 34 

which was replaced by non-interactive effects of grazer removal and habitat after 15 months. 35 

This study shows that the effects of the loss of key consumers may transcend large abiotic and 36 

biotic differences between habitats in rocky intertidal systems. While it is clear that consumer 37 

diversity is a primary driver of ecosystem functioning, determining its relative importance 38 

across multiple contexts is necessary to understand the consequences of consumer species loss 39 

against a background of environmental change.  40 
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Introduction 41 

 42 

Global biodiversity loss continues to threaten the provision of ecosystem services and 43 

ultimately human wellbeing (Naeem et al. 2009, Hooper et al. 2012). Following more than 44 

two decades of intensive research, it is now accepted widely that declining biodiversity affects 45 

rates of ecosystem processes, such as resource capture and biomass production (Loreau et al. 46 

2001, Cardinale et al. 2012, Gamfeldt et al. in press). In recognition of the complexity of 47 

biotic interactions within natural communities, an increasing number of biodiversity–48 

ecosystem functioning studies have incorporated inter-trophic effects (Duffy et al. 2007). 49 

Despite this important move towards a multi-trophic perspective, our knowledge of the 50 

influence of consumer diversity loss on lower trophic levels is relatively incomplete (Duffy et 51 

al. 2007, Griffin et al. 2013). This is of particular concern, given that consumers generally 52 

have impacts that are disproportionate to their abundance and face a higher risk of extinction 53 

compared to producers (Duffy 2002). 54 

 55 

Long-term field removal experiments are an effective means of characterising the effects of 56 

species loss within diverse natural assemblages (Díaz et al. 2003) and complement laboratory 57 

studies by revealing mechanisms that may not be manifested in smaller scale experiments 58 

conducted under more homogeneous conditions (Stachowicz et al. 2008). Further, as the 59 

ecological effects of biodiversity change are influenced by environmental context (Boyer et 60 

al. 2009, Crowe et al. 2011, Mrowicki and O’Connor in press), empirical studies that examine 61 

consumer diversity effects under a range of abiotic and biotic conditions (Griffin et al. 2009, 62 

O’Connor and Donohue 2013) will improve our ability to predict the consequences of species 63 

loss in the face of global environmental change involving multiple anthropogenic stressors 64 

(Harley et al. 2006). 65 
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 66 

Coastal ecosystems are exposed to a range of anthropogenic impacts, which can result in 67 

rapid declines in biodiversity and dramatic transformation or loss of habitat (Airoldi and Beck 68 

2007). For example, on temperate rocky shores, overexploitation and pollution, coupled with 69 

the physiological and phenological responses of organisms to climate change, may lead to 70 

reduced densities or extinctions of key grazer species in certain localities (Thompson et al. 71 

2002, Mieszkowska et al. 2005). Additionally, intertidal biogenic habitats, such as macroalgal 72 

and mussel beds on rocky substrata, have decreased in extent and structural complexity in 73 

many regions in response to various factors including physical disturbance and compromised 74 

water quality (Airoldi and Beck 2007). Changes in habitat complexity and heterogeneity alter 75 

interspecific interactions and the degree of resource partitioning among consumers, and can 76 

thus modify consumer diversity effects on resources (Hughes and Grabowski 2006, Griffin et 77 

al. 2009). In combination, these processes have the potential to shift the dynamic balance 78 

between producers and consumers and alter the functioning of coastal marine ecosystems 79 

(Hawkins et al. 2009). 80 

 81 

The aim of this study was to determine whether the ecological consequences of consumer 82 

species loss vary with environmental context, in light of ongoing reductions in biodiversity 83 

and habitat homogenisation in coastal ecosystems. We quantified changes in macroalgal 84 

assemblages in response to individual and combined removals of common gastropod grazers, 85 

Patella vulgata, P. ulyssiponensis, Littorina littorea and Gibbula umbilicalis, in two different 86 

habitats on an exposed north-east Atlantic rocky shore. Patellid limpets are key grazers in 87 

European rocky intertidal habitats, and although their presence or absence often dominates the 88 

effects of grazer assemblages on algal communities on emergent rock and in rock pools 89 

(Hawkins and Hartnoll 1983, O’Connor and Crowe 2005, Coleman et al. 2006, Griffin et al. 90 
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2010), the extent of their influence in other habitats, such as mussel beds, is less well known 91 

(O’Connor and Crowe 2008). Further, the relative roles of these grazer species may vary 92 

across different conditions, and the importance of changes in the richness versus identity of 93 

these species is likely to increase with environmental heterogeneity (Griffin et al. 2009). To 94 

examine the context-dependency of the roles of these key consumers, we performed 95 

simultaneous grazer removals in mussel beds (on emergent rock) and in rock pools. These 96 

two distinct habitats differ greatly with respect to the intensity and variability of a range of 97 

abiotic stressors such as desiccation potential, temperature and wave disturbance. 98 

Specifically, emergent rock habitats experience relatively greater fluctuations in abiotic 99 

variables, but conditions can be more spatially variable among rock pools (Metaxas and 100 

Scheibling 1993). At the same time, the physical structure afforded by either mussels or turf 101 

algae (e.g. Corallina officinalis) enables diverse, yet divergent, biotic assemblages to persist 102 

(Seed 1996, Kelaher 2002). Thus, owing to contrasting patterns of physical and biological 103 

heterogeneity in mussel beds versus rock pools, the relative effects of grazer removal may 104 

differ between these two habitats. Focussing on changes in macroalgal abundance, diversity 105 

and assemblage structure, we hypothesised that: (1) there are species-specific consumer 106 

identity effects, dominated by the influence of Patella spp. in both mussel beds and rock 107 

pools; (2) the effects of the combined removal of multiple grazer species will exceed the 108 

effects of removals of single species; and (3) these effects of grazer species loss will differ 109 

between rock pools and mussel beds and vary according to experimental duration. 110 

 111 

Materials and methods 112 

 113 

Study site 114 

 115 
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The experiment was conducted on an exposed rocky shore in Glashagh Bay, Fanad, Co. 116 

Donegal, Ireland (55.265°N, 7.675°W). The shore was characterised by a large, gently sloping 117 

granitic platform, covered by a mosaic of patches of barnacles and macroalgae, typical of 118 

exposed shores in the region (O’Connor and Crowe 2008, Mrowicki et al. 2014). Beds of 119 

mussels (Mytilus spp.) were distributed patchily along the shore above mid-tidal level (2.0–120 

2.5 m above Chart Datum). Numerous discrete rock pools of varying area and depth were 121 

present throughout the intertidal zone.  Macroalgal assemblages associated with mussels 122 

consisted of extensive epibiotic turfs of coarse red algae (mostly Gelidium spp.) interspersed 123 

with ephemeral red (e.g. Porphyra umbilicalis) and green (e.g. Ulva intestinalis) algae. Small 124 

clumps of brown algae (e.g. Fucus spiralis and F. serratus) were also found in and around the 125 

mussel beds. The rock pools were dominated by turfs of upright calcareous algae (Corallina 126 

officinalis), which supported an array of macroalgal species including fine (e.g. Polysiphonia 127 

elongata and Ceramium rubrum) and coarse (e.g. Osmundea hybrida and Gelidium spp.) 128 

branched red algae, ephemeral (e.g. U. compressa) and perennial (e.g. Codium tomentosum) 129 

green algae and brown canopy algae (e.g. F. vesiculosus and Halidrys siliquosa). Encrusting 130 

coralline algae (‘Lithothamnia spp.’) covered most of the remaining substratum. Thus, on this 131 

shore, in addition to there being large differences in algal assemblage structure between the 132 

two habitats, the diversity of algae was greater in rock pools compared to mussel beds (see 133 

Results). 134 

 135 

Grazing gastropods were common and widespread across the shore. The most conspicuous 136 

species, which occurred in both mussel beds and rock pools, were the common and China 137 

limpets (Patella vulgata and P. ulyssiponensis, respectively), common periwinkle (Littorina 138 

littorea) and flat top shell (Gibbula umbilicalis). Although the two limpet species co-occurred 139 

in both habitat types, particularly as newly settled juveniles in rock pools, P. ulyssiponensis 140 
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adults were dominant in rock pools (Firth and Crowe 2008), whereas P. vulgata, which tends 141 

to disperse out onto emergent rock, constituted the majority of limpets in mussel beds. Other 142 

gastropod species, including L. saxatilis, L. obtusata and G. cineraria, were also present in 143 

both habitats. Non-gastropod grazers such as chitons (e.g. Acanthochitona crinita) and 144 

amphipods (e.g. Echinogammarus marinus) were found on the shore at lower densities. 145 

 146 

Experimental design 147 

 148 

Our experiment involved the single and combined removal of three genera of gastropod 149 

grazer within each of the two habitat types (mussel beds and rock pools). We employed a 150 

‘subtractive’ approach with no compensation for the reduction in biomass of particular 151 

species by increasing that of the remaining species. Unlike a substitutive design, whereby 152 

total grazer density would be equalised across treatments, such an approach avoids 153 

confounding changes in intraspecific interactions with changes in interspecific interactions 154 

among grazers (Byrnes and Stachowicz 2009). Further, instead of standardising species 155 

densities across habitat types, we opted to mimic actual densities specific to mussel beds and 156 

rock pools. Thus, we did not elicit potentially unsustainable experimental densities by 157 

exceeding natural densities in either habitat (Harley 2006) and we minimised transplant-158 

induced stress or mortality of grazers, particularly limpets (Firth and Crowe 2010). 159 

Importantly, although our design did not allow the effects of grazer removal and habitat type 160 

to be separated from those of grazer density, incorporating (rather than eliminating) natural 161 

variability in species densities was intended to enhance the realism of our study (Diaz et al. 162 

2003) with respect to this particular system. 163 

 164 
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Within each of the two habitats, 20 plots (35 × 35 cm) were located haphazardly around mid-165 

tidal level across approximately 100 m of shoreline, with a minimum separation between any 166 

two plots of 1 m. Mussel bed plots were positioned on well-drained, approximately 167 

horizontal, substratum and incorporated 50.8 ± 2.2% (mean ± SE) mussel cover. Rock pool 168 

plots were situated in separate pools of relatively similar area (range 0.5–5.0 m
2
) and depth (< 169 

15 cm) and included 46.5 ± 4.2% cover of Corallina officinalis. By incorporating, rather than 170 

controlling for, environmental heterogeneity such as inherent differences in habitat size (i.e. 171 

mussel patch extent and rock pool volume), we aimed to enhance the relevance of this study 172 

to variable natural systems. 173 

 174 

Five grazer removal treatments were assigned randomly among the plots in each habitat type 175 

(n = 4): one ‘non-removal’ treatment requiring the removal of no species; three ‘single-176 

removal’ treatments involving the removal of either Patella spp. (P. vulgata and P. 177 

ulyssiponensis; hereafter Patella), Littorina littorea (hereafter Littorina) or Gibbula 178 

umbilicalis (hereafter Gibbula); and one ‘multi-removal’ treatment, in which all three grazer 179 

genera were removed. Owing to difficulties in the identification of P. vulgata and P. 180 

ulyssiponensis, particularly juveniles and small adults, without causing substantial 181 

disturbance, it was not possible to discriminate between limpet species. On rocky shores in 182 

Ireland, adults of these two species tend to be segregated so that P. vulgata is more common 183 

on emergent substrata than P. ulyssiponensis, which is more common in rock pools (Firth and 184 

Crowe 2010). Further, there is the potential for contrasting functional roles of different limpet 185 

species within the same habitat (Moore et al. 2007). Therefore, it is not possible here to 186 

separate the effects of P. vulgata and P. ulyssiponensis across mussel beds and rock pools. 187 

Instead, as both species are considered key grazers within their respective primary habitats 188 

(Hawkins and Hartnoll 1983, O’Connor and Crowe 2005), the removal of Patella should be 189 
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interpreted as the combined loss of putative strongly-interacting consumers in the case of both 190 

mussel beds and rock pools. While it is possible here to make inferences regarding the 191 

specific roles of Littorina and Gibbula, caution must be exercised when attributing the effects 192 

of Patella removal, and their context-dependency, to particular species.  193 

 194 

Experimental grazer abundances were derived from natural densities in mussel beds (Patella, 195 

27.5 ± 6.2 m
-2

 [mean ± SE; n = 25]; Littorina, 40.3 ± 14.3 m
-2

) and rock pools (Patella, 201.6 196 

± 26.8 m
-2

; Littorina, 90.2 ± 13.9 m
-2

; Gibbula, 9.6 ± 2.9 m
-2

), adjusted to account for the high 197 

proportion (~50%) of Patella juveniles (< 15 mm) encountered in both habitat types. 198 

Although not encountered within the area sampled by preliminary surveys, Gibbula was 199 

present in mussel beds at low overall density, often in small aggregations adjacent to mussel 200 

patches (R. J. Mrowicki, pers. obs.). Thus, experimental abundances were as follows: 3 201 

Patella, 5 Littorina and 2 Gibbula in mussel bed plots; and 12 Patella, 11 Littorina and 2 202 

Gibbula in rock pool plots. In a few cases, Littorina and Gibbula populations were 203 

supplemented with additional individuals to meet target densities, although this was not 204 

necessary for Patella. Treatments were maintained using stainless steel mesh cages (35 × 205 

35 cm area, 12 cm high) fixed to the substratum with stainless steel screws and washers. This 206 

method was found to be most effective means of manipulating densities of mobile grazers 207 

over extended time periods on this particular shore. The mesh size (0.9 mm wire diameter, 208 

4.17 mm aperture, 67% open area) of cages restricted the movement of the target grazer 209 

species while allowing access to smaller mobile consumers and leaving plots open to 210 

propagule supply. 211 

 212 

To enable the detection of cage effects on experimental assemblages, an additional four plots 213 

were established within each habitat and marked at opposite corners with stainless steel 214 
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screws, thus remaining open to ambient densities of mobile organisms. Although there is the 215 

potential for experimental artefacts to vary among treatments (Peterson and Black 1994, 216 

Benedetti-Cecchi and Cinelli 1997), testing for interactions between cage effects and grazer 217 

removal treatments would require the manipulation of grazer densities independently of the 218 

use of cages, which is not feasible. Therefore, these uncaged control plots were designed to 219 

test for the direct (e.g. shading and disruption of water flow) and indirect (e.g. altered grazer 220 

behaviour) effects of cages on algal assemblages in the presence of ambient grazer densities 221 

only, by comparing controls with non-removal caged plots. This approach follows previous 222 

studies that have demonstrated no consequences of identical cages on the structure of 223 

macroalgal assemblages in mussel beds and rock pools on similar shores (O’Connor and 224 

Crowe 2005, O’Connor and Donohue 2013).  225 

 226 

The experiment ran for 15 months starting in July 2011 and plots were surveyed at the 227 

beginning of the experiment, after three months (October 2011) and after 15 months (October 228 

2012). At each census, percent cover of macroalgal and sessile invertebrate species in each 229 

plot was recorded by identifying species under 64 intersections of a 25 × 25 cm quadrat. 230 

Species present within the quadrat but not located under an intersection were recorded and 231 

assigned a value of 1% each. The quadrat was positioned centrally within plots to avoid edge 232 

effects. Total percent cover values often exceeded 100% owing to the multi-layered nature of 233 

macroalgal communities. The numbers of grazer species within each plot were also recorded. 234 

Treatments were maintained during monthly visits, at which times cages were also cleaned of 235 

fouling species or debris to minimise cage effects on assemblages. 236 

 237 

To determine whether percent cover served as a reliable proxy for macroalgal biomass, on the 238 

final sampling date, a destructive sample of the central 25 × 25 cm area in each experimental 239 
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plot was taken to estimate biomass of each macroalgal species (excluding crustose corallines) 240 

following drying to constant mass at 60°C. Dry biomass values for Corallina officinalis were 241 

multiplied by 0.2 to convert them to calcium carbonate-free estimates (Griffin et al. 2010). 242 

There was a significant linear relationship between total dry biomass and total cover of 243 

macroalgae (excluding crustose corallines), which differed between mussel beds and rock 244 

pools (mussel beds: biomass [g m
-2

] = –2.07 + 4.42 × cover [%], R
2
 = 0.929, P < 0.001; rock 245 

pools: biomass = –31.98 + 1.74 × cover, R
2
 = 0.808, P < 0.001). 246 

 247 

Data analysis 248 

 249 

For each sampling date separately, differences in macroalgal total cover, taxon richness (S) 250 

and evenness (Simpson’s 1–λ) were tested using two-way factorial ANOVA involving habitat 251 

(fixed, 2 levels) and grazer removal treatment (fixed, 5 levels). Richness and evenness are 252 

complementary measures that are recommended for use in studies examining the 253 

consequences of biodiversity change (Altieri et al. 2009). Total algal cover was found to 254 

differ among grazer removal treatments across both habitats at the start of the experiment, 255 

although it was not possible to resolve these differences fully (Supplementary material 256 

Appendix 1 Table A1). Therefore, algal cover data were converted into the overall change in 257 

total cover to simplify interpretation. We used a priori planned contrasts to test for differences 258 

between the single-removal treatments and the multi-removal treatment but, given the 259 

limitations on making inferences regarding limpet identity, the variance explained by grazer 260 

removal was not partitioned further to isolate grazer ‘identity’ effects explicitly (Duffy et al. 261 

2005). To test for cage effects, comparisons between caged non-removal plots and uncaged 262 

control plots were made for all variables. Prior to ANOVA, Shapiro-Wilk and Cochran’s tests 263 

were used to check normality and homoscedasticity of data, respectively.  In the case of total 264 
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cover data for three months, transformation was unable to stabilise heterogeneous variances, 265 

therefore results were interpreted with caution by reducing the limit for statistical significance 266 

(α = 0.01). Student-Newman-Keuls (SNK) tests were used to make post hoc comparisons 267 

between levels of significant effects. Although SNK tests have the potential for excessive 268 

Type I error rates when treatments fall into groups spaced widely apart (Day and Quinn 269 

1989), which was generally not the case in the current study, a greater problem is the loss of 270 

power resulting from the use of alternative procedures where SNK tests would otherwise be 271 

suitable (Underwood 1997). Therefore, in this study, SNK tests were an appropriate means of 272 

examining alternatives following the rejection of null hypotheses. 273 

 274 

Permutational multivariate analysis of variance (PERMANOVA; McArdle and Anderson 275 

2001, Anderson 2001) was used to test for effects of grazer treatments on macroalgal 276 

assemblage structure in mussel beds and rock pools, separately for each sampling date, based 277 

on the same model structure as the ANOVAs. Analyses were performed on zero-adjusted 278 

Bray-Curtis dissimilarity matrices, i.e. via the addition of a dummy species with 1% cover to 279 

all plots (Clarke et al. 2006), to deal with instances where no algae were recorded within 280 

plots. Tests involved 9,999 permutations of residuals under the reduced model (Anderson and 281 

ter Braak 2003). Differences among levels of significant factors were examined with post hoc 282 

pairwise permutational t-tests. Where significant differences were found, similarity of 283 

percentages analysis (SIMPER; Clarke 1993) was used to identify the algal taxa responsible 284 

for differences in assemblage structure between treatment levels. To visualise differences in 285 

macroalgal assemblage structure among treatment groups, nonmetric multidimensional 286 

scaling (MDS) plots were produced. For all multivariate analyses, percent cover data were 287 

log10(x+1)-transformed to reduce the influence of dominant algal species (Clarke and 288 

Warwick 2001). All analyses were conducted in R (v3.0.1; R Development Core Team 2013), 289 
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except for the PERMANOVAs, which were performed using the PERMANOVA+ add-on 290 

(v1.0.3) in PRIMER (v6.1.13; PRIMER-E Ltd., Plymouth, UK). 291 

 292 

Results 293 

 294 

At the start of the experiment, macroalgal total cover, richness and evenness were greater in 295 

rock pools than in mussel beds, and macroalgal assemblage structure differed between the two 296 

habitats (Appendix 1 Table A1). After three months, there were still differences in algal 297 

richness, evenness and assemblage structure between habitats (Fig. 1c,e; Table 1b–d). 298 

Additionally, richness and evenness differed among grazer removal treatments, independently 299 

of habitat (Fig. 1c,e; Table 1b,c). Across both mussel beds and rock pools, algal richness was 300 

greater in the multi-removal treatment than in any other treatment (Fig. 1c). Although post 301 

hoc tests were unable to resolve differences among the non-removal and single-removal 302 

treatments fully, the removal of Patella appeared to result in an increase in algal richness 303 

relative to the non-removal treatment across both habitats (Fig. 1c). Further, algal richness 304 

was greater in the multi-removal treatment compared to the single-removal treatments (Table 305 

1b). There also appeared to be an increase in algal evenness in the multi-removal treatment 306 

compared to both the non-removal treatment and the Littorina single-removal treatment, but 307 

post hoc tests were unable to resolve treatment differences fully (Fig. 1e). 308 

 309 

After 15 months, the overall decline in total macroalgal cover was greater in rock pools than 310 

in mussel beds (Fig. 1b; Table 1a). Again, macroalgal richness and evenness were found to be 311 

greater in rock pools compared to mussel beds (Fig. 1d,f; Table 1b,c) and assemblage 312 

structure differed between the two habitats (Table 1d). In addition to algal richness, total 313 

cover change and assemblage structure were affected by grazer removal independently of 314 
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habitat (Fig. 1b,d; Table 1a,b,d). The removal of Patella led to an increase in algal richness 315 

relative to the non-removal treatment and the other two single-removal treatments (Fig. 1d). 316 

Further, the multi-removal of all three grazers resulted in greater algal richness than any other 317 

treatment (Fig. 1d) in addition to the mean of the single-removal treatments (Table 1b). The 318 

multi-removal treatment led to an overall increase in total algal cover, which appeared to 319 

differ significantly from the overall declines exhibited by the non-removal and the Patella and 320 

Gibbula single-removal treatments, but post hoc tests were unable to resolve differences 321 

among all treatments fully (Fig. 1b). In terms of algal evenness, there was no longer any 322 

effect of grazer removal (Fig. 1f; Table 1c). The presence of cages reduced macroalgal 323 

richness at three months (ANOVA; F1,12 = 5.83, P = 0.033; Fig. 1c) and evenness at 15 324 

months (F1,12 = 5.23, P = 0.041; Fig. 1f; Appendix 2 Table A2) 325 

 326 

There was a significant interaction between habitat and grazer removal treatments affecting 327 

algal assemblage structure after three months, indicating that the responses of algal 328 

assemblages to grazer removal differed between mussel beds and rock pools (Fig. 2a,c; Table 329 

1d). Although post hoc tests were unable to resolve differences among treatments fully, they 330 

suggested tentatively that, in mussel beds, the Patella single-removal and multi-removal 331 

treatments resulted in a shift in algal assemblage structure relative to the Littorina and 332 

Gibbula single-removal treatments (Fig. 2a; Appendix 3 Table A3). In contrast, in rock pools, 333 

algal assemblage structure appeared to differ only between the non-removal and multi-334 

removal treatments (Fig. 2c; Appendix 3 Table A3). Algal assemblage structure also differed 335 

between caged non-removal and uncaged control plots (Appendix 2 Table A2). After 15 336 

months, there was no longer any interactive effect of habitat and grazer removal on algal 337 

assemblage structure, indicating that the effects of grazer species loss were consistent between 338 

mussel beds and rock pools (Fig. 2b,d; Table 1d). Across both habitats, there was a shift in 339 
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algal assemblage structure in the Patella single-removal and multi-removal treatments relative 340 

to all other treatments (Appendix 3 Table A3). This shift was driven consistently (i.e. 341 

δ��/SD�δ�� > 1) by a relative increase in Fucus vesiculosus (δ�� = 13.3%) and by relative 342 

decreases in calcareous encrusting algae and Corallina officinalis, both of which were 343 

primarily constituents of rock pool assemblages (Table 2). These changes were accompanied 344 

by an increase in Cladophora rupestris and fucoid germlings across both habitats (Table 2). 345 

 346 

Discussion 347 

 348 

To advance our understanding of the consequences of species loss in the face of changing 349 

environmental conditions, we must assess the relative contribution of biodiversity to 350 

ecosystem processes across a range of contexts, while incorporating the complexity that 351 

characterises natural ecosystems (Duffy et al. 2007, Cardinale et al. 2012). We performed 352 

single and multiple removals of common grazer species, or groups of species, simultaneously 353 

in mussel beds and rock pools, which represent two contrasting ecological contexts against a 354 

background of natural environmental variability. The most striking aspect of our findings is 355 

the overall consistency of responses to consumer loss across habitats over the duration of the 356 

study, demonstrated by a general lack of interactions between habitat and grazer removal 357 

treatments. While the effects of limpet removal cannot be attributed to individual species, the 358 

loss of this group of putative key grazers, versus that of other grazer species, resulted in 359 

similar relative changes to algal assemblages in mussel beds and rock pools. The fact that this 360 

pattern emerged despite obvious differences in grazer densities and relative abundances 361 

between habitats, in addition to initial differences in algal assemblages and environmental 362 

conditions, suggests that consumer diversity (i.e. both identity and richness) is a major driver 363 

of ecological processes in this system. In addition, the changes in the patterns of algal 364 
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abundance and diversity over the course of the experiment and the transient habitat-dependent 365 

response of algal assemblage structure emphasise that experimental duration is critical to the 366 

interpretation of studies examining the effects of species loss across environmental contexts 367 

(Cardinale et al. 2004, O’Connor and Crowe 2005, Stachowicz et al. 2008). 368 

 369 

In both mussel beds and rock pools, algal total cover, species richness and evenness 370 

underwent significant changes in response to grazer removal. In particular, the removal of 371 

limpets led to a greater increase in algal richness than the removal of either Littorina littorea 372 

or Gibbula umbilicalis. The key ecological role of patellid limpets, relative to other grazer 373 

species, regulating the establishment of algae on emergent substrata and in tide pools on 374 

European rocky shores is well known (Hawkins and Hartnoll 1983, O’Connor and Crowe 375 

2005, Coleman et al. 2006, Griffin et al. 2010). The extent of their influence on algal 376 

community dynamics in mussel beds, however, is perhaps less well appreciated (O’Connor 377 

and Crowe 2008, Crowe et al. 2011). Our findings suggest that the relative functional roles of 378 

limpets collectively, whether represented predominantly by Patella ulyssiponensis or by P. 379 

vulgata, may be of similar importance in mussel beds compared to other habitats on rocky 380 

shores, in spite of natural differences in total abundance. 381 

 382 

Further, the differences among single-removal treatments suggest that other common grazer 383 

species, even those present at higher natural densities, appear to be limited in their capacity to 384 

compensate for the loss of limpets in mussel beds as well as rock pools (O’Connor and Crowe 385 

2005, Griffin et al. 2010). Although our experiment allowed only for behavioural rather than 386 

numerical compensation, previous research has demonstrated that even corresponding 387 

increases in the abundance of L. littorea and G. umbilicalis are insufficient to compensate for 388 

limpet removal in this system over similar timescales (O’Connor and Crowe 2005). While we 389 
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cannot separate the effects of different limpet species, our results imply some degree of 390 

functional complementarity between P. ulyssiponensis and P. vulgata at the scale of this study 391 

owing to their spatial segregation between mussel beds and rock pools (Firth and Crowe 392 

2010). Nonetheless, further experimentation is required to determine precisely how the 393 

relative roles of these key species vary across habitats in which they coexist, particularly 394 

because other closely related limpet species are known to have idiosyncratic effects on rocky 395 

shore communities in this region (Moore et al. 2007).  396 

 397 

A key finding of our study was that the removal of multiple grazer species led to a greater 398 

increase in algal richness than did the removal of limpets alone, even though the single 399 

removal of either Littorina littorea or Gibbula umbilicalis had no effect. This effect was 400 

accompanied by a shift in algal assemblage structure in the limpet single-removal and multi-401 

removal treatments compared to all other treatments, which was driven largely by the 402 

increased establishment and growth of fucoid macroalgae at the apparent expense of other 403 

species. While consumer identity can be of overarching importance for the functioning of 404 

marine ecosystems (O’Connor and Crowe 2005, Stachowicz et al. 2007), declines in 405 

consumer diversity per se may lead to reduced top–down control owing to trait differentiation 406 

among consumer species in terms of, for example, feeding preferences (Duffy 2002, Griffin et 407 

al. 2009). 408 

 409 

Alternatively, these patterns may have resulted from the reduction in grazer abundance 410 

associated with the multi-removal treatment in our ‘subtractive’ experimental design, rather 411 

than a reduction in grazer species richness. For example, the establishment of fucoid 412 

macroalgae on rocky shores may occur only when grazer density falls below a certain 413 

threshold (Jonsson et al. 2006). Indeed, the effects of grazer removal observed here may have 414 
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been driven, at least in part, by differences in density among experimental treatments as 415 

opposed to grazer identity or richness. Previous research has emphasised the importance of 416 

density-dependent effects in regulating biodiversity–ecosystem functioning relationships (e.g. 417 

Benedetti-Cecchi 2004, Maggi et al. 2009). To improve our understanding of complex, non-418 

linear effects of consumer species loss, future studies should aim to separate the importance 419 

of consumer density from that of identity and richness, such as by incorporating density 420 

explicitly as an additional treatment (Benedetti-Cecchi 2004, Byrnes and Stachowicz 2009). 421 

While there were logistical constraints on the maximum number of treatments and replicates 422 

in our study, incorporating (rather than eliminating) differences in grazer density between 423 

treatments helped to maintain the relevance of our findings to species loss from natural 424 

habitats in this system, at least for comparable spatial and temporal scales. Importantly, even 425 

though the mechanisms underlying differences between the single-removal and multi-removal 426 

treatments are unclear, our results suggest that, in both mussel beds and rock pools, the roles 427 

of grazer species, or groups of species, depend on the presence or absence of other grazers 428 

and, therefore, cannot be deduced from the effects of their removal in isolation. 429 

 430 

Initially, grazer-driven changes in algal assemblage structure varied according to habitat. 431 

Although the mechanisms driving this context-dependency remain unclear, there was some 432 

indication of a greater overall response of algal assemblages, at least in terms of the number 433 

of differences between treatment groups, in mussel beds compared to rock pools. 434 

Nonetheless, the suggestion of a transient effect of habitat on community responses highlights 435 

the importance of experimental duration in assessing the consequences of species loss from 436 

complex ecosystems (O’Connor and Crowe 2005, Stachowicz et al. 2008). It is perhaps 437 

surprising that habitat-dependent effects of grazer removal were not more common in our 438 

study, given the contrasting patterns of environmental heterogeneity (Metaxas and Scheibling 439 
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1993) and inherent differences in the abundance and structure of grazer and algal assemblages 440 

between habitats (e.g. the difference in limpet densities between mussel beds and rock pools). 441 

Instead, for the majority of responses measured in our study, the effects of grazer removal on 442 

algal assemblages were remarkably consistent across habitats. Although this may mean that 443 

the effects of consumer loss on algal communities were not mediated strongly by local-scale 444 

variability between habitats on the same shore, other processes such as variation in 445 

recruitment or disturbance regimes may play a greater role over larger scales (Jenkins et al. 446 

2005, Mrowicki et al. 2014). For example, divergent effects of grazer removal may emerge 447 

even in similar habitats on different rocky shores separated by kilometres (Crowe et al. 2011). 448 

While the consequences of changing diversity are expected to be more apparent over larger 449 

spatial and temporal scales (Cardinale et al. 2004, Stachowicz et al. 2008), it is less clear how 450 

the importance of abiotic factors in determining the effects of species loss varies across 451 

multiple scales.  452 

 453 

There are some caveats that should be considered when attempting to extend our findings to 454 

rocky intertidal systems in general. First, the presence of experimental cages appeared to 455 

influence the structure of algal assemblages, either directly, via shading or hydrodynamic 456 

disruption, or indirectly, by altering the movement of grazers or providing habitat for other 457 

consumers. Owing to the nature of the study system, cages were the most suitable means of 458 

manipulating grazer populations over the timescale of the experiment, and it was not possible 459 

to test whether cage effects interacted with grazer removal treatment. The fact that clear 460 

differences emerged among caged treatments despite substantial environmental variability 461 

within and between habitats, however, suggests that the observed effects of grazer species 462 

loss may indeed be representative of unmanipulated, ‘real world’ communities within this 463 

system. Second, it was found that total algal cover was not equivalent across treatments at the 464 
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start of the experiment, which may have influenced the responses of algal assemblages to 465 

grazer removal. The initial pattern of algal cover, however, did not correspond with that 466 

observed later in the experiment, in addition to the differences (or lack thereof) in richness 467 

and evenness between treatments. Again, this suggests that grazer removal was the most 468 

important force driving changes in algal assemblages over the course of the experiment. 469 

While it is important to exercise caution in relating the results of manipulative studies to real 470 

world scenarios, field-based removal experiments are useful for understanding how complex 471 

ecosystems respond to species loss, serving as much-needed tests of fundamental ecological 472 

theory (Díaz et al. 2003, Stachowicz et al. 2008, Gamfeldt et al. in press). 473 

 474 

In conclusion, our results demonstrate that the relative effects of the loss of key groups of 475 

consumers can transcend different physical and biological conditions between habitats. 476 

Specifically, limpets, which comprised predominantly Patella vulgata in mussel beds and P. 477 

ulyssiponensis in rock pools, were of comparable importance, in relation to Littorina littorea 478 

and Gibbula umbilicalis, in the maintenance of the abundance, diversity and structure of algal 479 

assemblages. We found clear effects of grazer removal despite inherent environmental 480 

heterogeneity both between and within habitats, which provides compelling evidence of the 481 

overarching importance of these grazer species across the contexts examined in this study. On 482 

European rocky shores, community processes and energy transfer are driven by the spatial 483 

and temporal dynamics of algae, which in turn are regulated largely by the activities of such 484 

mobile grazers (Hawkins and Hartnoll 1983). Therefore, although the applicability of our 485 

findings to other rocky shore habitats remains to be tested, shifts in the dynamics of algal 486 

communities resulting from changing compositions and densities of consumer populations 487 

may have important consequences across multiple environmental contexts in coastal 488 

ecosystems. Overall, while it is clear that biodiversity plays a fundamental role in driving 489 

Page 21 of 34 Oikos



For Review O
nly

21 

 

ecosystem functioning, our ability to predict the ecological consequences of species loss will 490 

be enhanced by determining the range of relevant contexts and scales over which it has the 491 

greatest influence, particularly against the current background of global environmental change 492 

(Hooper et al. 2012). 493 

 494 
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Tables 623 

Table 1. ANOVAs and PERMANOVA testing effects of habitat (mussel beds versus rock pools) and grazer removal treatments (non-removal; 624 

single-removals of Patella, Littorina and Gibbula; multi-removal of all three grazers) on macroalgal (a) total cover change, (b) taxonomic 625 

richness, (c) Simpson’s evenness (1−λ) and (d) assemblage structure, after three and 15 months. Initial total algal cover and grazer density are 626 

included as covariates. Significant P-values are highlighted in bold. 627 

   (a) Total cover change†  (b) Richness  (c) Evenness  (d) Assemblage structure 

Source of variation DF  MS F P  MS F P  MS F P  MS Pseudo-F P 

Three months:                  

Habitat, H 1  23.93 0.07 0.789  455.62 236.69 <0.001  0.62 13.13 0.001  64400.00 93.74 <0.001 

Grazer removal, Gr 4  479.77 1.46 0.240  19.29 10.02 <0.001  0.16 3.41 0.021  2155.10 3.14 <0.001 

Single vs. multi 1  802.15 2.43 0.129  37.50 19.48 <0.001  0.18 3.78 0.061  3086.90 3.91 0.006 

H × Gr 4  62.87 0.19 0.941  3.81 1.98 0.123  0.06 1.29 0.295  1771.70 2.58 <0.001 

Residual 30  329.59    1.92    0.05    686.99   

15 months:                  

H 1  1329.00 6.13 0.019  250.00 100.00 <0.001  0.20 5.45 0.026  56223.00 75.95 <0.001 

Gr 4  1510.80 6.96 <0.001  37.96 15.19 <0.001  0.09 2.60 0.056  3770.90 5.09 <0.001 

Single vs. multi 1  3711.80 17.11 <0.001  82.51 33.00 <0.001  0.12 3.42 0.074  7052.70 7.74 <0.001 

H × Gr 4  199.60 0.92 0.465  0.69 0.28 0.892  0.02 0.63 0.644  1090.10 1.47 0.089 

Residual 30  216.90    2.50    0.04    740.24   

†
Transformation of data for three months was unable to stabilise heterogeneous variances. 628 
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Table 2. SIMPER analysis of algal assemblage structure across both habitats (mussel beds 629 

and rock pools) after 15 months, comparing the treatments involving the removal of Patella 630 

(the Patella single-removal treatment and the multi-removal treatment) to all other grazer 631 

removal treatments collectively (the non-removal treatment and the Littorina and Gibbula 632 

single-removal treatments). δ��/SD�δ�� = average species contribution to group dissimilarity 633 

divided by standard deviation of contributions; δ��% = percent contribution of species to 634 

overall between-group dissimilarity. Calculations are based on log10(x+1)-transformed species 635 

abundances. Only the most important species (δ�� > 3%) are shown. 636 

 Mean cover (%)   

Species 

Patella and 

multi-removal 

treatments 

Other removal 

treatments δ��/SD�δ�� δ��% 

Fucus vesiculosus 11.91 0.50 1.50 13.32 

Lithothamnia spp. 18.62 27.60 1.04 12.69 

Corallina officinalis
†
 30.66 19.79 1.08 12.59 

F. spiralis 6.15 0.07 0.87 8.82 

Ceramium shuttleworthianum
‡
 1.37 2.17 0.86 6.97 

Gelidium pusillum 2.37 1.44 0.98 5.44 

Cladophora rupestris 2.37 1.58 1.15 5.18 

Fucus sp. (juvenile) 0.95 0.04 1.05 4.51 

Asparagopsis armata
†
 0.58 1.84 0.90 3.73 

Ulva intestinalis
‡
 0.88 0.13 0.55 3.39 

Polysiphonia fucoides
†
 0.94 1.45 0.86 3.30 

†
Recorded in rock pools only; 

‡
Recorded in mussel beds only.637 
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Figure legends 638 

 639 

Figure 1. Mean (+ or − SE) macroalgal (a,b) total cover change, (c,d) species richness and 640 

(e,f) evenness for different grazer removal treatments (None = non-removal; P, L and G = 641 

single-removal of Patella, Littorina and Gibbula, respectively; PLG = multi-removal of all 642 

three grazers) in mussel beds (shaded bars, M) and rock pools (open bars, R), after (a,c,e) 643 

three and (b,d,f) 15 months. ‘M </> R’ indicates a significant difference between habitats (*P 644 

< 0.05, **P < 0.01, ***P < 0.001), based on ANOVA results. Letters denote grazer removal 645 

groups (i.e. across both levels of habitat) that are not significantly different (P ≥ 0.05), based 646 

on post hoc SNK tests, to illustrate significant main effects of grazer removal independently 647 

of habitat. 648 

 649 

Figure 2. Non-metric MDS ordinations of macroalgal assemblages for different grazer 650 

removal treatments (None = non-removal; P, L and G = single-removal of Patella, Littorina 651 

and Gibbula, respectively; PLG = multi-removal of all three grazers) in (a,b) mussel beds and 652 

(c,d) rock pools after (a,c) three and (b,d) 15 months, based on log10(x+1)-transformed species 653 

abundances. Care should be taken when interpreting plots for which stress > 0.2 (Clarke 654 

1993). 655 
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CONSISTENT EFFECTS OF CONSUMER SPECIES LOSS ACROSS DIFFERENT HABITATS 

ROBERT J. MROWICKI, CHRISTINE A. MAGGS & NESSA E. O’CONNOR 

 

Appendix 1. Results of tests for differences in algal assemblages among treatments at the start of the experiment. 

 

Table A1. ANOVAs and PERMANOVA testing effects of habitat (mussel beds versus rock pools) and grazer removal treatments (non-removal; 

single-removals of Patella, Littorina and Gibbula; multi-removal of all three grazers) on macroalgal (a) total cover, (b) taxonomic richness, (c) 

Simpson’s evenness (1−λ) and (d) assemblage structure at the start of the experiment in July 2011. Significant P-values are highlighted in bold. 

Source of variation DF  (a) Total cover  (b) Richness  (c) Evenness
†
  (d) Assemblage structure 

   MS F P  MS F P  MS F P  MS Pseudo-F P 

Habitat, H 1  156622.00 615.84 <0.001   161.33 80.67 <0.001  0.60 20.38 <0.001  69095.00 76.70 <0.001 

Grazer removal, Gr 5  816.00 3.21 0.017
‡  

4.88 2.44 0.053  0.05 1.54 0.201  1407.00 1.56 0.073 

H × Gr 5  294.00 1.16 0.350   2.43 1.22 0.321  0.02 0.70 0.630  1307.30 1.45 0.114 

Residual 36  254.00    2.00    0.03    900.85                

†
Data were squared to improve normality and stabilise heterogeneous variances; 

‡
Student-Newman-Keuls post hoc tests were unable to resolve 

differences fully among grazer removal treatments. 
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Appendix 2. Results of tests for the effects of experimental cages on algal assemblages. 

 

Table A2. ANOVAs and PERMANOVA testing the effects of habitat (mussel beds versus rock pools) and the presence of cages (caged non-

removal treatment versus uncaged control treatment) on macroalgal (a) total cover change, (b) taxonomic richness, (c) Simpson’s evenness (1−λ) 

and (d) assemblage structure, after three (October 2011) and 15 (October 2012) months. Significant P-values are highlighted in bold. 

Source of variation DF  (a) Total cover change
†
  (b) Richness  (c) Evenness

‡
  (d) Assemblage structure 

   MS F P  MS F P  MS F P  MS Pseudo-F P 

Three months:                  

Habitat, H 1  7.91 0.02 0.894  126.56 69.83 <0.001  0.29 18.57 0.001  26479.00 30.47 <0.001 

Cage, C 1  0.35 0.00 0.978  10.56 5.83 0.033  0.06 4.10 0.066  2541.60 2.92 0.029 

H × C 1  243.17 0.57 0.465  0.06 0.03 0.856  0.01 0.64 0.439  1807.90 2.08 0.096 

Residual 12  426.59    1.81    0.02    869.07   

15 months:                  

H 1  2 × 10
−4

 3 × 10
−3

 0.959  110.25 31.88 <0.001  0.03 0.52 0.486  25273.00 28.18 <0.001 

C 1  0.05 0.74 0.408  4.00 1.16 0.303  0.27 5.23 0.041  1046.60 1.17 0.310 

H × C 1  0.08 1.21 0.292  4.00 1.16 0.303  0.11 2.09 0.174  1183.70 1.32 0.254 

Residual 12  0.07    3.46    0.05    896.76   

†
Data for 15 months were squared to stabilise heterogeneous variances; 

‡
Data for three months were squared to improve non-normality. 
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Appendix 3. Results of post hoc tests for differences in algal assemblage structure among 

experimental treatments. 

 

Table A3. PERMANOVA post hoc pairwise tests of differences in algal assemblage structure 

among grazer removal treatments (None = non-removal; P, L and G = single-removal of 

Patella, Littorina and Gibbula, respectively; PLG = multi-removal of all three grazers), (a) 

after three months, for mussel beds and rock pools separately, and (b) 15 months, across both 

habitats. Significant P-values are highlighted in bold. 

  (a) Three months
†
  (b) 15 months 

  Mussel beds  Rock pools  Both habitats 

Comparison  t P  t P  t P 

None vs. P  1.38 0.161  1.31 0.178  1.88 0.012 

None vs. L  1.07 0.339  1.48 0.100  1.14 0.280 

None vs. G  1.08 0.337  1.36 0.152  0.88 0.555 

None vs. PLG  1.59 0.099  2.44 0.011  3.38 <0.001 

P vs. L  2.47 0.016  1.31 0.180  2.27 0.003 

P vs. G  2.14 0.022  0.97 0.443  2.00 0.009 

P vs. PLG  1.18 0.272  1.31 0.176  1.49 0.054 

L vs. G  0.68 0.686  1.21 0.233  1.03 0.407 

L vs. PLG  2.98 0.007  1.17 0.273  3.37 <0.001 

G vs. PLG  2.34 0.012  1.54 0.078  3.41 0.001 

†
Owing to the low number of possible permutations (≤ 35), Monte Carlo asymptotic P-values, 

rather than standard permutational P-values, are presented. 
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