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Non-classicality and criticality in symmetry protected magnetic phases
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Centre for Theoretical Atomic, Molecular and Optical Physics,
Queen’s University Belfast, Belfast BT7 1NN, United Kingdom

(Dated: May 25, 2015)

Quantum and global discord in a spin-1 Heisenberg chain subject to single-ion anisotropy (uniaxial field) are
studied using exact diagonalisation and the density matrix renormalisation group (DMRG). We find that these
measures of quantum non-classicality are able to detect the quantum phase transitions confining the symmetry
protected Haldane phase and show critical scaling with universal exponents. Moreover, in the case of thermal
states, we find that quantum discord can increase with increasing temperature.

I. INTRODUCTION

The study of strongly-correlated magnetic systems has ex-
perienced a tremendous boost thanks to inputs from quantum
information processing [1]. In particular, the analysis of var-
ious forms of entanglement has revealed deep connections to
quantum phase transitions [2–4] and order parameters [5, 6],
conformal field theory [7] and numerical simulations of quan-
tum many-body systems [8, 9]. The fidelity approach has been
successful for the analysis of quantum phase transitions (QPT)
with no order parameters or with infinite order [10, 11].

An alternative approach based on quantum correlations has
allowed the quantum information/condensed matter commu-
nity to analyse the “quantumness” of not only the ground state
of magnetic Hamiltonians, but also thermal states. For the lat-
ter, entanglement tends to disappear quite rapidly with tem-
perature and is subject to mathematical pathologies such as
the “sudden death” [12]. Quantum discord (QD) is a mea-
sure of nonclassicality that has attracted a lot of attention re-
cently [13–15]. While the resource nature of QD is still an
open question [16], it has shown to be a remarkably effective
tool in studying a range of quantum phenomena and protocols
including QPTs [17, 18], entanglement distribution [19], and
work extraction [20]. While most of the literature is devoted
to the discord of two-level systems and continuous variable
Gaussian states, very little has been done for higher dimen-
sional quantum states [21]. This can be understood in light of
the difficulty in evaluating QD [22]. Thus, this work aims at
providing a concrete analysis of the QD in a realizable physi-
cal system beyond those typically examined, namely a spin-1
chain.

In this paper, we study the quantum discord of spin-1 chains
governed by a Heisenberg Hamiltonian and in the presence of
single-ion anisotropy, i.e. a uniaxial (quadratic Zeeman) field.
The model gives rise to three gapped magnetic phases (Néel,
Haldane, Large-D) separated by a second order transition and
a Gaussian one respectively. The Haldane phase, a symmetry
protected phase, is quite peculiar as it is characterised by the
absence of local order but by the establishment of a hidden
string order parameter.

While this model has been studied extensively in the con-
densed matter and quantum information communities using
the entanglement and fidelity [23–37], a systematic investiga-
tion of its discord content is missing. The aim of this paper
is to fill this gap by analysing the two-spins discord and the

global version introduced in Ref. [38]. We employ numerical
simulations based on exact diagonalisation and density matrix
renormalisation group (DMRG) [39, 40]. We find that discord
is able to locate very accurately the two transitions by showing
singular behaviour as a function of the single-ion anisotropy.
Moreover, for the Gaussian transition we are able to extract
an estimate for the critical exponent for the correlation length.
Finally, we analyse the thermal behaviour of discord and find
that while it normally decays with increasing temperature, in
the large-D phase and for two non nearest-neighbour spins it
actually increases.

The paper is organised as follows: in Sec. II we revise the
measures of non-classicality used in the rest of the paper; in
Sec. III we revise the magnetic properties of the spin-1 model
we consider; finally in Sec. IV we show our numerical results
and in Sec. V we conclude.

II. MEASURES OF NON-CLASSICALITY

The quantum discord (QD) between two systems A and B
described by a density matrix ρAB can be defined as the differ-
ence of two distinct ways to measure correlations in a quan-
tum system that would otherwise give the same result clas-
sically [13, 14]. The first way is to use the quantum mutual
information

I(ρAB) = S (ρA) − S (ρA|ρB), (1)

where S (ρA) = −Tr[ρA log2 ρA] is the von Neumann entropy
of the reduced state ρA = TrBρAB of system A and analogously
for system B. The quantity

S (ρA|ρB) = S (ρAB) − S (ρB), (2)

is the conditional entropy. An alternative definition of cor-
relations can be given in terms of information acquired on A
after performing a measurement of B with a set of projectors
{Π

j
B}. Let us call ρA| j = (1/p j)TrB[Π j

BρAB] the state of system
A after outcome j is obtained measuring system B with prob-
ability p j = Tr[Π j

BρAB]. We thus define the one-way classical
information as

J(ρAB) = S (ρA) −
∑

j

p jS (ρA| j). (3)

QD is the difference of the quantum mutual information and
the classical one-way information, minimized over the set of
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orthogonal projective measurements on B

DB→A(ρAB) = inf
{Π

j
B}

[I(ρAB) − J(ρAB)]. (4)

This definition is not symmetric under the exchange of A
and B as the measurements are performed on system B only.
A symmetrized version of the QD can be obtained with a
bi-local measurement Πi j = Πi

A ⊗ Π
j
B such that Π(ρAB) =∑

i j Πi jρABΠi j. We define the symmetric QD

D2(ρAB) = min
{Π}

S (ρAB||Π(ρAB)) −
∑
α=A,B

S (ρα||Πα(ρα))

 ,
(5)

where we have introduced the relative entropy:

S (ρ||σ) = Tr[ρ log2 ρ] − Tr[ρ log2 σ], (6)

which vanishes as σ approaches ρ. Eq. (5) can be interpreted
as the difference between the first term, that is global on A
and B, and the second term, which is the sum of two local
contributions. Eq. (5) was shown to be generalizable to mul-
tipartite states [38]. For a quantum system comprising of N
subsystems we define the global quantum discord (GQD)

DN(ρN) = min
{Π}

{
S (ρN ||Π(ρN)) −

N∑
α=1

S (ρα||Πα(ρα))
}
. (7)

In order to evaluate Eqs. (5) and (7) for the spin-1 system pre-
sented in the following section, we require suitable projective
measurements. In Ref. [21] the parametrization of local or-
thogonal measurements for spin-1 particles was given. We use
the spin-1 operators S x,y,z fulfilling the normal angular mo-
mentum commutation relations. For simplicity, we define the
eigenstates of the z-component of the angular momentum as:
S z |m〉 = m |m〉 with m = −1, 0,+1. A projective measure-
ment for three-level systems is specified by three orthogonal
projectors summing to the identity matrix∑

m=0,±1

|mA〉 〈mA| = 11, (8)

where A is a unitary matrix and we have defined the trans-
formed basis states as

|mA〉 = A |m〉 . (9)

Contrary to spin-1/2 systems, the norm of the Bloch vector
for pure states, P = 〈S〉 is not always one for spin-1 systems,
i.e. they are not always coherent states. This is related to the
fact that, while for spin-1/2 particles unitaries can always be
written as spin rotations (apart from an irrelevant phase fac-
tor), for spin-1 there exist more general unitaries related to
quadrupolar operators, which induce spin squeezing. Thus,
the most general unitary should be written as the exponential
of a polynomial of degree 2 in the spin operators. Alterna-
tively one can split this exponential as the product of the ex-
ponentials of simpler combinations of spin operators.

Following Ref. [21], we first define the states

|mr〉 = exp
[
i
(
γ (S z)2

− γ − φ0S z
)]
×

× exp
[
−iα (S xS y + S yS x)

]
×

× exp
[

iβ
√

2
(S y + S yS z + S zS y)

]
|m〉 . (10)

Then the most general basis is obtained by rotating the states
|mr〉 in any possible direction using the following combination
of rotations:

|mA〉 = e−iψS x
e−iθS y

e−iφS z
|mr〉 . (11)

It is therefore sufficient to parametrize the most general or-
thonormal basis of spin-1 systems with six coefficients (since
φ0 is constrained by the other parameters [21]).

III. THE MODEL

We conduct our analysis on the ground and thermal states
of a spin-1 chain described by the Heisenberg Hamiltonian
with uniaxial anisotropy of strength U

H =
∑

i

S x
i S x

i+1 + S y
i S y

i+1 + S z
i S

z
i+1 + U

∑
i

(
S z

i

)2
, (12)

where the subscript i runs over the sites in the chain and we
will consider both open and periodic boundary conditions.
When U < 0 (U > 0) the anisotropy is usually referred to as
“easy-axis” (“easy-plane”) anisotropy. The ground state phase
diagram consists of three phases: for U & 0.968 the system
is in the “large D” phase [41] in which the ground state has a
strong component onto the |00 . . . 0〉 state. For U < −0.315,
the system is in the Néel antiferromagnetic phase, character-
ized by the staggered magnetization. For the intermediate
values of U ∈ [−0.315, 0.968], the system is in the Haldane
phase, a symmetry protected phase, characterized by the ab-
sence of local ordering, a nonlocal string-order parameter and
an entanglement spectrum with even degeneracies [31, 35].
The transition separating the Néel and Haldane phases is of
the Ising type, with the staggered magnetization ordering in
the Néel phase. The transition from Haldane to large D is of
Gaussian type and has been recently studied in [36]. The en-
tanglement properties of spin-1 chains have been studied us-
ing the block entropy and entanglement spectrum [27, 31, 35],
thus connecting with predictions from conformal field theory.

When computing discord we need to optimize the basis so
as to minimize the quantities introduced in the previous sec-
tion. The ground and thermal states of the real symmetric
HamiltonianH can be chosen real. It follows that the optimal
basis is always real as in Ref. [18]. This further reduces the
number of parameters to optimize over since we impose

γ = ψ = φ = φ0 = 0,

so that the basis |mA〉 is a real superposition of the states |m〉.
We remark that this constraint is only applied to the optimiza-
tion of the GQD, which due to computational complexity, ne-
cessitates such simplifications. However, when dealing with
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FIG. 1: (Color online) Lowest three energy levels of Hamiltonian
Eq. (12) with periodic boundary conditions as a function of U for
L = 5. For odd length chains the ground state changes suddenly due
to energy level crossings. Here we see the first crossing at U ' −1.6
and a second crossing at U ' 0.9.

the symmetric QD, Eq. (5), a full minimization with the full
set of angles is tractable.

IV. NON-CLASSICALITY IN THE SPIN-1 HEISENBERG
MODEL

When considering finite-length chains, we find an even/odd
parity effect with the total length, the origin of which lies
in a geometrical frustration for odd lengths. In fact, in the
repulsively interacting Heisenberg chain we are considering,
nearest-neighbor spins tend to form strongly correlated pairs,
an effect observed in the alternating behavior of the block en-
tropy and other correlations. Thus, while for an even chain all
spins are paired, for odd chains there is always an unpaired
spin. This frustration gives rise to energy crossings as ob-
served in Fig. 1. This means that, at these energy crossings,
the ground state of the system changes discontinuously with
U. For this reason, we examine even and odd lengths sepa-
rately, as for the latter we will observe discontinuities in the
discord measures. However, we remark that this is a finite size
effect that will vanish in the thermodynamic limit, as the three
phases of the model are all gapped.

A. Nearest-neighbor spins

We begin by analyzing the reduced state of the two central
spins for the thermal ground state when open ended-boundary
conditions are imposed on Eq. (12). Further, to capture the
pertinent features of the model, we consider only even-L and,
thus avoid pathological features due to energy level crossings
in the ground state when L is odd. Through DMRG calcula-
tions, we are able to determine the reduced state of the two
central spins and calculate the symmetric discord Eq. (5). In
Fig. 2 we plot D2 for L = 8, 16, 32, 64, 128 and 256 spins.
We see several interesting features emerging for increasingly
large chains. For U < −0.6 and U > 1.6, we see the curves for
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FIG. 2: (Color online) Nearest-neighbor symmetric QD, D2, for the
reduced state of the two central spins of an open-ended chain of
length L = 8 (red), 16 (green), 32 (blue), 64 (gray), 128 (black) and
256 (orange) going from bottom to top. Notice that the curves for
L = 32, 64, 128, and 256 are almost indistinguishable except near
U∼−0.3.

all lengths have collapsed on top of each other and the reduced
states are virtually identical. This indicates that, in these re-
gions (which are sufficiently far from the QPTs of the model),
already with 8 spins, we are close to the properties of the ther-
modynamic limit. In the intermediate region, U ∈ [−0.6, 1.6],
the curves exhibit a much richer behavior, and as we increase
L the value of the QD increases. A striking feature is the cusp
at U = 0. This corresponds to the point when the optimiz-
ing angles required to minimize D2 change. When U < 0 we
find D2 is optimized when both spins are measured using the
angles θ = α = β = 0, corresponding to a projection onto
the eigenbasis of S z, while for U > 0 we require θ = π/2,
α = β = 0, corresponding to a projection onto the eigenbasis
of S x. For U = 0 both sets of angles give identical values of
D2. Such a sudden change is unsurprising considering that at
this point we are switching from easy-axis for U < 0 to easy-
plane for U > 0 anisotropy. Although U = 0 is not a critical
point, the Hamiltonian, and therefore its ground state, is SU(2)
invariant, and projective spin measurements differing only by
a spin rotation give the same discord. Indeed, such behavior
is not uncommon when dealing with nonclassicality indicators
that involve complex parameter optimizations. A similar be-
havior was recently reported in the spin-1/2 XY model when
examining measures of local quantum coherence [42].

In Fig. 3 (a) we examine the derivative of the QD with re-
spect to U for chains of increasing length. We see a peaked
behavior appearing near U=−0.3, which becomes more pro-
nounced for larger L. Such behavior is consistent with the
signature of a second order QPT [17]: a discontinuity of the
second order derivative of the ground state energy or of the
first derivative of the state (and therefore of discord). We
can accurately predict the critical value for L → ∞ through
finite size extrapolation. In Fig. 3 (b) we disregard the two
smallest sized chains (L = 8 and 16) and find the linear fit for
the remaining four data points, which approximately lie on a
straight line, giving the critical point position at U = −0.3156,
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FIG. 3: (Color online) (a) Derivative of the nearest neighbor sym-
metric QD against U for L = 8 (red), 16 (green), 32 (blue), 64 (gray),
128 (black) and 256 (orange). (b) Finite size scaling of the value of
U where the derivative is maximum against inverse chain length.

precisely inline with the value determined in [33].

Turning our attention to the Haldane-large D QPT, this tran-
sition is Gaussian and expected to be a third order transition.
Furthermore, the critical region is known to be very tight, and
not extending more than ±0.1 from the critical point [36].
This results in its characterization being extremely difficult.
In fact, in Ref. [36] the authors employed a refined DMRG
technique in order to access lengths of up to 20,000 spins to
determine the critical point to a high degree of accuracy, find-
ing U = 0.96845. In [35] the critical value was estimated
to be U = 0.96 by studying the finite size scaling (FSS) of
the entanglement spectrum for up to L = 204, while using
Monte-Carlo simulation the predicted value was found to be
U = 0.971 [30]. As the Haldane-large D transition is a third
order continuous phase transition, we expect a point of inflec-
tion in the second derivative of the energy, and consequently,
in the first derivative of the ground state and therefore of D2.
Thus, we anticipate, by examining the second derivative of
D2, to find a minimum. Using finite size extrapolation, as be-
fore, even with the best quadratic rather than linear fit, we find
the QPT predicted at U = 0.994 (results not shown) which is a
few percent off the value predicted in Ref. [36], indicating that
the nature of this QPT will require larger sizes to accurately
locate its critical point using discord. However, a curious re-
sult appears when studying the second derivative. In Fig. 4

FIG. 4: (Color online) Second derivative of the symmetric QD
with respect to U in the critical region of the Gaussian QPT. The
point markers are the numerically calculated values L=16 (down-
ward green triangles), 32 (blue diamonds), 64 (gray circles), 128
(black squares), and 256 (upward orange triangles). The solid lines
are quadratic functions of best fit for each data set. The vertical red
dashed line at U = 0.9667 is approximately where the curves cross
each other. Inset: finite size scaling of the second derivative of D2

using the estimate for the critical point U = 0.9667 and the fitted
value ν = 1.6 ± 0.1 (see Eq. (13)).

we show the behavior of ∂2D2/∂U2 within the critical region.
The various symbols correspond to the numerically calculated
values, while the solid curves are quadratic lines of best fit for
each data set. For all chains with L > 32 we see the second
derivatives cross each other near the same point located ap-
proximately at U = 0.9667. Smaller chains behave markedly
different, although this is in keeping with the behavior of the
Néel-Haldane transition where L = 8 and 16 were too small
to apply finite extrapolation to. Since we expect a point of in-
flection in the first derivative of the discord, or equivalently, a
vanishing value for third order derivative, we conjecture that
close to the critical point the second derivative of the discord
scales as:

∂2D2

∂U2 = f [(U − 0.9667)L1/ν], (13)

where f is an analytic function close to f [0] and ν is the criti-
cal exponent associated with the divergence of the correlation
length. That is, the critical exponent associated to the sec-
ond derivative of discord equals to zero, and thus, the third
derivative vanishes in the thermodynamic limit. This way all
the dependence on the parameter U is reabsorbed in the cor-
relation length. By fitting our results we find that the value
ν = 1.6 ± 0.1 collapses the data for different lengths as shown
in the inset in Fig. 4. The value we find is in agreement with
the more accurate result ν = 1.47 found in Ref. [36]. There-
fore, if our conjecture is correct, discord is not only able to
locate the position of the QPT but also the universal scaling
exponents associated with it.

There is an additional parity effect for these even length
chains. In the above cases we consider chains such that
(L − 2)/2 is odd. Although for all even length chains the
spins form nearest neighbor pairs, in this situation we are ex-
amining (the central) two spins both of which have formed a
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pair with their other respective nearest neighbors, and not with
each other. This means the correlation between the two cen-
tral spins is weaker than with their other respective neighbors.
However, the larger we take L, the smaller this difference be-
comes and we see the behavior reported in Fig. 2 (a), i.e. in-
creasing QD for increasing L. In contrast, when (L − 2)/2 is
even (i.e. L =6, 10, 14, . . . ) the two central spins corre-
spond exactly to a dimer formed in the chain, and this results
in larger values for the QD that decreases as we increase L.
The qualitative behavior remains unaffected and, in fact, for
L > 30 any differences between these situations are negligi-
ble.

B. Global measures

While the previous section highlighted that using measures
of nonclassicality applied to reduced states can capture the
thermodynamic properties of systems beyond the paradig-
matic spin-1/2 models previously studied, we now turn our
attention to the global properties of finite size chains. For
spin-1/2 models the GQD was shown to be remarkably ef-
fective at spotlighting the critical nature emerging from spin
chains consisting of just 10 spins [18], and was able to ac-
curately recover the correct critical exponents. Furthermore,
in this paper we use the reformulation of the global discord
expression found in Ref. [18] which considerably simplifies
the optimisation of the local measurement basis. The calcu-
lation of GQD is significantly more involved than the nearest
neighbor calculations performed previously and requires us to
make as much use of the symmetries present in the system
to simplify our calculation (in fact we remark the calculation
of QD was recently shown to be NP-complete [22]). There-
fore, from here on we assume the chain has periodic boundary
conditions, thus making it translationally invariant. This im-
mediately simplifies our calculation of Eq. (7) as all spins will
now be optimized using the same set of angles. This is true
when the ground state does not break spontaneously transla-
tional invariance. When L = 2 we can determine the GQD
employing a full minimization and we find the angles optimiz-
ing the GQD correspond exactly to those found in the nearest
neighbor calculation, θ = α = β = 0 for U < 0 and θ = π/2,
α = β = 0 for U > 0. We conjecture that for a chain with
periodic boundaries these will be the optimizing angles for all
even and odd length chains. For L = 4, 5 we calculated the
full minimization for a smaller selection of values of U and
confirmed the conjecture. For larger systems, we calculate
the GQD using these known fixed values for the optimizing
angles. Despite not being accessible to analytic proof, this
approach of using numerical confirmation has proven fruitful
when calculating such involved quantities [43].

In Fig. 5 (a) we show the GQD, Eq. (7), for finite sized
chains of length L = 2, 4, 6, 8. Consistent with the behavior
of the reduced state of large chains, we see a cusp at U =

0, which is once again a consequence of the change in the
nature of the uniaxial anisotropy. We see a significant increase
in the rate of change of the GQD by increasing the length.
In panel (b), we examine the behavior of the GQD for odd
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FIG. 5: (Color online) (a) GQD of the thermal ground state for L = 2,
4, 6 and 8 (going from bottom to top). (b) GQD for the thermal
ground state when L = 3, 5, and 7 from bottom to top. See text for
discussion.

length chains L = 3, 5, 7. Here we see the sudden changes in
the GQD occur when there is an energy level crossing in the
ground state. For L = 5, 7 a cusp is also emerging around U =

0. This feature is absent for the L = 3 case whose ground state
global discord is constant between the energy crossings. The
sharp jumps are a consequence of the energy level crossings
discussed above.

A significant advantage of examining such small lengths is
that it also allows us to study the thermal properties of the
states. We can directly compute the thermal state as

%(T ) =
e−H/T

Tr
[
e−H/T

] , (14)

where T is the temperature and we have assumed units such
that Boltzmann’s constant is one. In Fig. 6 we fully explore
the thermal effects for L = 6 when restricted to each of the
three regions of the model, although we remark that quali-
tatively similar results are achieved for other tractable even
length chains. In panel (a), we begin with the behavior of
the GQD, and it is apparent that for U = 0 (Haldane region)
and U = 2 (large D region) the behavior of the GQD is qual-
itatively similar. We see a small range of T where GQD is
resilient to the thermal effects until T ∼ 0.5, when a quick
decay occurs. In contrast, when U = −2 (Néel region), we
see the magnitude of the global quantum discord is signifi-
cantly less, although on the whole much more robust. How-
ever, we see a rapid initial decay that is related to a vanishingly
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FIG. 6: (Color online) (a) GQD against T for a closed ring of 6 spins with U = 0 [topmost], 2 [middle curve] and -2 [bottom]. The remaining
panels are the symmetric QD for the reduced state of two (b) nearest neighbor, (c) next-nearest neighbor, (d) next-next-nearest neighbor spins,
from a 6 spin closed ring.

small gap between the ground and first excited energy levels in
this region. For comparison, we examine the various different
two-spin reduced states, and in panel (b) we see the nearest-
neighbors behave qualitatively the same as the GQD. Interest-
ingly, for next-nearest [panel (c)] and next-next-nearest neigh-
bors [panel (d)], the large D region shows an initial increase
in D2 of the reduced state with increasing T . This unusual
behavior, rarely observed for entanglement, was also noted
in [44] where states of increasing mixedness can have increas-
ing QD. In the present situation it can be explained by the
presence of highly correlated excited states (similar to doblon-
holon states in a Bose-Mott insulator) above a near factorised
ground state in the large-D phase. A further comment is in
order, as reported in [45, 46], QD can be created by the ac-
tion of local non-unital channels. While the full thermal state
can be considered as the action of local channels, each such
channel acts at the same rate, and therefore would appear to
be incompatible with the conditions outlined in [45].

V. CONCLUSIONS

We have examined the nonclassical properties of the
symmetry protected spin-1 Heisenberg chain with uniaxial
anisotropy. Through DMRG, we were able to explore the

symmetric quantum discord (QD) of the reduced state of two
central spins in an open ended chain. By examining the be-
havior of the QD and its derivative, through finite size extrap-
olation, we were able to pinpoint the Néel-Haldane QPT in
excellent agreement with the recent literature. Interestingly,
we found the second derivative of the symmetric QD appeared
to detect the Haldane-large D transition thanks to the third or-
der character of this transition, and allowed us to connect its
scaling with universal critical exponents. While the use of
QD has been extensively applied to spin-1/2 systems, here we
have shown that for higher dimensional systems the QD is still
a valuable tool to explore quantum phenomena. Beyond con-
firming the use of bipartite QD, we further extended our anal-
ysis to global quantum discord and studied the nonclassicality
of the total state, allowing us to access finite temperatures.
Remarkably, we find instances in which quantum discord in-
creases with temperature.
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