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Abstract
Given their cryptic behaviour, it is often difficult to establish kinship within microchiropteran maternity colonies. This limits 
understanding of group formation within this highly social group. Following a concerted effort to comprehensively sample a 
Natterer’s bat (Myotis nattereri) maternity colony over two consecutive summers, we employed microsatellite DNA profiling 
to examine genetic relatedness among individuals. Resulting data were used to ascertain female kinship, parentage, mating 
strategies, and philopatry. Overall, despite evidence of female philopatry, relatedness was low both for adult females and 
juveniles of both sexes. The majority of individuals within the colony were found to be unrelated or distantly related. How-
ever, parentage analysis indicates the existence of a number of maternal lineages (e.g., grandmother, mother, or daughter). 
There was no evidence suggesting that males born within the colony are mating with females of the same colony. Thus, in 
this species, males appear to be the dispersive sex. In the Natterer’s bat, colony formation is likely to be based on the benefits 
of group living, rather than kin selection.

Keywords  Chiroptera · Kinship · Natal philopatry · Parentage assignment

Introduction

The formation of social groups within species is classically 
explained through the concept of kin selection and inclusive 
fitness (Hamilton 1964). Though cooperation between non-
kin in social groups has been also been observed in a number 
of species (reviewed in Clutton-Brock 2009). The latter phe-
nomena are supported by the hypothesis that mutualism can 
maintain the structure of social groups if any group based 
fitness loss is outweighed by the benefits of group mem-
bership e.g., co-operation, mutualism, and/or information 
sharing (Fletcher and Zwick 2006; Bergmüller et al. 2007; 
Rankin et al. 2007).

The formation of social groups is particularly evident 
within bat species, with all temperate species adopting simi-
lar life history patterns in response to the seasonal variations 

of the environment (Schober 1984). Thus, following a period 
of hibernation, females tend to gather into groups, com-
monly referred to as maternity roosts or maternity colonies 
(the subject of study in this paper), in which they birth, feed, 
and rear a single offspring. Maternity colony formation is 
followed by dispersal, breeding, and hibernation throughout 
the remainder of the year (Altringham 2001). Chiropteran 
social behaviour is highly variable (e.g., obligate and fac-
ultative monogamy/polygyny, harems, mating territories, 
aggregations, and leks), even within closely related species 
(Racey and Entwistle 2000). When combined with the fact 
that females spend a significant proportion of their lives 
within a group, bats make ideal study organisms for research 
on group behaviour (Bradbury and Vehrencamp 1977; 
McCracken et al. 2000). Roost and/or habitat choice for the 
formation of the colony is firstly dependent on time of year, 
with maternity and bachelor colonies usually being formed 
in the late spring/summer months. Within certain species 
large aggregations of bats exhibiting swarming behaviour 
are common in autumn, with hibernation taking place during 
the winter (Altringham 2001). Several hypotheses with asso-
ciate predictions have been proposed to explain the forma-
tion of these colony groups. These range from kin selection 
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benefits—wherein a higher degree of relatedness would be 
expected within colonies (Wilkinson 1984; Wang 2011), to 
cooperation and mutualism (potentially between non-kin) 
based on benefits such as information sharing (Kerth et al. 
2000; Burland and Worthington Wilmer 2001), thermoregu-
lation (Neuweiler 2000), and to group rearing and defence 
(Clutton-Brock 2009). An alternative hypothesis is that the 
formation of these colony groups could simply be associated 
with resource limitation, with limited numbers of appropri-
ate dwellings being available (Kunz 1982; Kunz and Fenton 
2006).

Individuals of species that form social groups often show 
fidelity to a particular location or site. This philopatric 
behaviour is common in mammals as a whole (Johnson and 
Gaines 1990) and can provide a host of benefits (reviewed 
in Clutton-Brock 2009) including, for instance: dwelling, 
habitat and foraging locations; cooperation and mutualism 
benefits (i.e., information transfer, offspring care and groom-
ing); and possible kin selection benefits, which are particu-
larly common when individuals have a temporal dispersal 
mechanism (Wilkinson 1984). Previous studies have shown 
high female natal philopatry in many bat species (Petri et al. 
1997; Petit and Mayer 1999; Kerth et al. 2000, 2002; Cas-
tella et al. 2001; Boston et al. 2012). It should be noted, how-
ever, that individuals within a colony site may cycle between 
a number of roosting sites within a given area, in a ‘roost 
network’, with philopatry possibly being to the network or 
colony rather than one specific roosting spot (Smith 2000; 
Lundy et al. 2012).

While natal philopatry would be expected to lead to 
genetic substructuring at multiple levels (Di Fiore 2003; 
Dixon 2011), molecular based studies within several bat 
species suggest the opposite, with genetic structuring in 
summer roosts being quite low, though often significantly 
greater than zero (Kerth et al. 2003; Rivers et al. 2005; Fur-
mankiewicz and Altringham 2007). The low level of genetic 
population structure observed in bats is believed to be asso-
ciated with a high level of male-biased gene flow (Kerth 
et al. 2003; Rivers et al. 2005). Male-biased gene flow has 
been reported in the closely related noctule (N. noctula; Petit 
and Mayer 1999) and in Bechstein’s bat (Myotis bechstei-
nii; Kerth and Konig 1999). This male behaviour, combined 
with temporary female dispersal for mating, would lead to 
low within-colony relatedness, as females are unlikely to 
breed with relatives, thus avoiding the drawbacks associated 
with philopatry i.e., inbreeding and loss of genetic diversity 
(Chesser 1991; Radespiel et al. 2009).

Natterer’s bat (Myotis nattereri), is a typical temperate 
bat species, and as with some other species of the genus, 
exhibits swarming behaviour (Altringham 2001; Rivers et al. 
2005) in which breeding is believed to occur. Stebbings et al. 
(1991) showed that maternity colonies within the species 
can consist of up to 200 females, with few or no males, while 

bachelor colonies are often comprised of much smaller num-
bers (two up to approximately 20 or 30) of male individuals 
only (Swift 1997). Females gather into maternity colonies 
from spring, with offspring being born during the summer 
months. High female philopatry has also been exhibited in 
M. nattereri (Parsons et al. 2003; Rivers et al. 2005, 2006).

Building on current knowledge and research on chirop-
teran group behaviour, this study aims to test the hypoth-
eses that a M. nattereri maternity colony site consists of 
adult females and their offspring with few or no adult males 
present, with low overall relatedness but multiple mater-
nal lineages (with female philopatry and male dispersal). 
With this hypothesis we would expect (1) females of M. 
nattereri show natal philopatry to their maternity site, with 
individuals returning to the same grouping in consecutive 
years (though this may be to a ‘roost network’ than a single 
site); (2) overall roost relatedness is low, though consists of 
multiple maternal lineages i.e., does relatedness and assign-
ment show data consistent with grandparent–parent–off-
spring relatedness? (3) There is no evidence of local (born 
in the roost) male parentage or philopatry due to male-biased 
dispersal behaviour.

This hypothesis was addressed through the examination 
of an entire maternity roost, sampled consecutively over 
2 years, and utilising the analysis of nuclear and mitochon-
drial DNA (mtDNA) data. Using a combination of mtDNA 
and microsatellite data permits a full test of the above 
hypotheses, capitalising on the benefits of multiple charac-
ters. The combination of mtDNA and nuclear DNA analysis 
is highly informative and useful in the analysis of population 
and social patterns, particularly when those populations are 
characterised by a disparity in male and female dispersal and 
breeding mechanisms.

Materials and methods

Sampling

As part of an ongoing project mapping the distribution of 
M. nattereri in Ireland (by the Centre for Irish Bat Research 
under funding from NPWS Ireland), a colony, located in 
Glengarriff Forest, County Cork, Ireland (51°45′29′′N, 
9°34′06′′W) was selected for this study based upon its large 
number of individuals and ease of access, and the presence 
of 12 identical bat boxes in a small area (approximately 
300 m diameter) would allow us to test the ‘roost network’ 
hypothesis. Samples were collected over a 2 year period in 
two separate extensive samplings as follows: in July 2009 
members of the colony were captured and sampled from 
one of the bat boxes in the forest. The same colony was 
sampled again in July 2010 from another bat box located 
nearby (approximately 50–100 m). On both years, sampling 



Population Ecology	

1 3

was carried out late in the nursing season to allow for suf-
ficient maturation of juveniles thus minimising disturbance. 
All individuals present were sampled on both occasions, 
with this being carried out by a team of four to ensure all 
bats were placed back into their bat box within 30 m of 
removal. A total of 118 individuals were sampled, with 53 
in the first year and 65 in the second year. Individuals rep-
resenting two additional colony sites, which have also been 
comprehensively sampled in County Kilkenny (n = 26) and 
County Kerry (n = 14), were also included in the some of the 
analyses for population-based comparisons.

Wing-biopsy tissue samples were taken from all bats 
caught, under licence from the National Parks and Wildlife 
Service (Licence No. 74 C/2008) and the Northern Ireland 
Environment Agency (Licence No. TSA/12/08), within the 
Republic of Ireland and Northern Ireland. Sex, age, and 
reproductive status were recorded by examining individu-
als for characteristic identifiers, and a 3 mm biopsy of wing 
tissue taken and stored in 90% ethanol until extraction.

DNA extraction and molecular screening

DNA extraction was carried out using the Quiagen DNeasy 
Blood and Tissue Kit (Quiagen). On average, a total of 1 µg 
total DNA was obtained from each wing biopsy. DNA was 
resuspended to a final concentration of approximately 20 ng/
µl. DNA quality and concentration was checked on an eth-
idium bromide (0.3 ng/ml) stained 0.8% 0.5 × TBE agarose 
gel. All resulting DNA was found to be suitable for molecu-
lar analysis.

Microsatellite screening was based on a panel of 16 
marker loci (Table 1). This included both microsatel-
lites for closely related species and markers developed 

specifically for M. nattereri from an enriched microsatel-
lite library (Scott et al. 2013). Screening was carried out 
using the Applied Biosystems 3730×l DNA analyser, and 
genotypes were scored using GeneMapper v4.1 (Applied 
Biosystems, TM), with the methodology outlined in Scott 
et al. (2013).

All individuals were also genetically screened for an 
approximately 366 bp section of the mitochondrial D-loop 
HVII using primers L16517 (Fumagalli et al. 1996), and 
SH651 (Castella et al. 2001), starting at the 3′ end of the 
central conserved block and ending before the R2 tandem 
repeats (Fumagalli et al. 1996). PCR amplifications were 
carried out in 50 µl reaction volumes under the following 
conditions: 3 µl of template DNA (approximately 20 ng / 
µl), 2.5 mM MgCl2, 10 pM/µl of each primer 200 µM of 
each dNTP, and 1 U of Taq DNA polymerase (Invitrogen) 
with 1 × of the corresponding PCR buffer. Thermal profiles 
started with an initial denaturation stage at 95 °C for 3 min, 
followed by ten touchdown 60–50 °C cycles consisting of 
45 s at 94 °C, 45 s at 60 (− 1/cycle) °C, 1 min at 72 °C, fol-
lowed by 30 cycles at 50 °C with the same initial. Resulting 
PCR products were purified and prepared for sequencing 
using the BigDye® Terminator v3.1 Cycle Sequencing Kit, 
following manufacturer’s protocol. Sequencing was carried 
out using the ABI3730XL DNA analyser (Applied Biosys-
tems) with the raw sequence data being subsequently pro-
cessed using Sequencing Analysis Software V5.4 (Applied 
Biosystems, TM). Processed sequencing data was checked 
for consistency and ambiguities using ChromasPro 1.5 
(http://www.techn​elysi​um.com.au). Resulting checked 
sequences were then aligned using ClustalW (Thompson 
et al. 1997) within Bioedit (Hall 1999).

Table 1   Basic indices including 
number of alleles (Na), 
observed (HO) and expected 
(HE) heterozygosities, average 
non-exclusionary probability 
for the first parent (NE-1P), 
average non-exclusionary 
probability for second parent 
(NE-2P), and HWE significance 
(*significant at the 0.05% level; 
NS—not significant; ND—non 
determinable)

Locus Source Na HO HE NE-1P NE-2P HWE

A2 Jan et al. (2012) 12 0.785 0.778 0.504 0.332 NS
EF15 Jan et al. (2012) 8 0.507 0.480 0.871 0.715 NS
G2 Jan et al. (2012) 5 0.655 0.692 0.751 0.587 NS
G31 Jan et al. (2012) 11 0.723 0.750 0.645 0.468 NS
Mnatt-1 Scott et al. (2013) 8 0.792 0.717 0.601 0.423 NS
Mnatt-2 Scott et al. (2013) 13 0.764 0.745 0.764 0.575 NS
D15 Castella and Ruedi (2000) 22 0.689 0.641 0.413 0.26 NS
D9 Jan et al. (2012) 16 0.781 0.833 0.371 0.227 NS
E24 Castella and Ruedi (2000) 8 0.856 0.842 0.733 0.554 NS
F19 Jan et al. (2012) 19 0.509 0.659 0.309 0.182 ND
G30 Castella and Ruedi (2000) 10 0.815 0.848 0.655 0.469 NS
H23 Jan et al. (2012) 5 0.759 0.699 0.85 0.692 *
Mnatt-3 Scott et al. (2013) 11 0.292 0.517 0.617 0.432 *
H19 Castella and Ruedi (2000) 4 0.670 0.751 0.938 0.838 NS
H29 Castella and Ruedi (2000) 8 0.358 0.358 0.617 0.438 NS
Global – 10.67 0.664 0.687 0.000676 4.86E-06 NS

http://www.technelysium.com.au
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Data analysis

Genotypic microsatellite data was assembled into an Excel 
database, and formatted for several input formats using the 
Microsatellite toolkit add-on (Park 2001). Missing data at 
more than two loci was selected as a cut-off point for sam-
ple data inclusion. Analyses of locus information used all 
available individuals. The remaining analyses primarily used 
individuals from the focal site in Cork (both years).

GENEPOP 4.1 (Raymond and Rousset 1995) was 
employed to produce basic population genetics statistics 
including: allelic frequencies; mean number of alleles per 
locus (A); observed and unbiased expected heterozygosity 
(HO and HE respectively). SMOGD (Crawford 2010) was 
used to calculate per locus estimations of Dest (Jost 2008), 
with harmonic means being used for multilocus estimates. 
GENEPOP 4.1 was used to calculate FST values of each 
grouping and overall, using methods derived from Cocker-
ham (1973) and Weir and Cockerham (1984).

The ‘identity analysis’, implemented in GenCap 1.3 
(Wilberg and Dreher 2004) was used to identify returning 
individuals in the second year of sampling. This software 
was also used to estimate the likelihood, Sib P (ID), that two 
individuals within the population could share the same geno-
type by chance (Wilberg and Dreher 2004). The unbiased 
linkage disequilibrium approach of Waples (2006) imple-
mented in LDNe V1.7 software (Waples and Do 2008) was 
utilised to estimate effective population size (Ne), in order to 
provide support to the ‘roost network’ hypothesis, with P crit 
values ranging from 0.05 to 0.01 as suggested in Waples and 
Do (2010). Ne estimates were based on juvenile specimens 
only to avoid bias resulting from analysing individuals from 
overlapping generations.

CERVUS 3.0 (Marshall et al. 1998) was used for juve-
nile parentage assignment within the Glengarriff roost 
over the 2 years. Log likelihood ratio probabilities of 
parentage for each candidate mother were calculated, 
taking into account genotyping errors, which have been 
shown to increase successful assignment (Kalinowski et al. 
2007). Maternal assignment was carried out for each year, 
with potential mothers in the second year including adult 
females caught in 2011, as well as females (adult and juve-
nile) caught in 2010. Juveniles from 2010 were included 
as potential candidate mothers because of the short sexual 
maturation time of microchiropteran bats (Altringham 
2001; Cheng and Lee 2002). No paternal assignment was 
carried out for the 2010 samples due to the lack of adult 
males. Parentage assignment in 2011 was based upon data 
from juvenile males from 2010. Parentage assignment 
confidence was estimated using log likelihood ratio prob-
abilities of parentage for each candidate mother, taking 
into account genotyping errors and the presence of other 
potential mothers, following Kalinowski et al. (2007). To 

validate individual assignments results, 100,000 simula-
tions were carried out to assess the significance of the dif-
ference between the most likely mother and the next most 
likely mother, with confidence intervals of 80% (relaxed) 
and 95% (strict) based on a default error rate of 1% per 
locus.

Relatedness between individuals was calculated using 
GenALEx 6.4 (Peakall and Smouse 2006), following 
Queller and Goodnight’s (1989) pairwise relatedness 
estimator due to small sample sizes (as recommended in 
Wang 2002), and utilising 1000 permutations to gauge 
confidence intervals, and using whole sample library to 
calibrate. Relatedness was calculated using the 15 micro-
satellite loci for adults and juveniles at three levels: (1) 
combined years, (2), year 1 (2010), and (3) year 2 (2011).

To investigate population substructuring within the 
data, the non-spatial Bayesian clustering method imple-
mented within STRU​CTU​RE (Pritchard et al. 2000a) was 
used. The Glengarriff samples were analysed using a burn-
in of 5 × 105 followed by 106 iterations over 20 replicated 
runs. Outputs from independent replicate runs were sub-
sequently joined and relabelled using CLUMPP (Jakobs-
son and Rosenberg 2007), Using the LargeKGreedy algo-
rithm and G statistic with 1,000,000 random input orders 
over ten runs. The ‘ad hoc’ method described in Evanno 
et al. (2005) was used to attempt to identify the minimum 
number of genetic clusters (k) explaining the genetic data. 
Visual examinations of resultant STRU​CTU​RE plots were 
also carried out, in order to identify any subtle trends and 
aid in determination of k.

Mitochondrial DNA data was matched to the sites uti-
lised in the microsatellite analysis, to allow for direct com-
parison between the nuclear and mitochondrial data. Two 
nearby sites were used for comparison (in Co. Kilkenny, 
and Co. Kerry—GPS available on request). Basic analyses 
and counts of haplotypes were calculated for each of the 
maternity sites involved in the study.

Results

The study consisted of 158 unique samples (i.e., excluding 
recaptures) across three locations (as detailed in Table 2). 
The two Cork locations were within 100 m of each other, 
with 53 in year one (30 adults, 23 juveniles—12 males, 
11 females) and 65 (41 adults, 24 juveniles—11 males, 13 
females) in year two. All adults present within the Glengar-
riff maternity colony over the 2 years were females, while 
only one and two adult males were observed in Kerry and 
Kilkenny respectively. The recapture of six females was 
noted through scarring on the wings and subsequent genetic 
comparison.
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Roost structure

Microsatellite genotypic data was obtained for over 95% of 
the loci screened; i.e., 158 (96%) samples (including samples 
from the two comparison sites in Kilkenny and Kerry). All 
loci were found to be polymorphic with four to 22 alleles 
segregating per locus/sample (Table 1). Combined (across 
all loci), samples were found to conform to Hardy–Wein-
berg equilibrium (HWE). Over all samples per loci, however, 
(i.e., assuming a panmictic population), two of the 15 loci 
were shown to deviate from HWE (P < 0.05). Mean observed 
heterozygosity ranged from 0.36 to 0.84 (avg. 0.69). Overall, 
there were no major differences observed between observed 
and expected heterozygosities.

On average, 90% of all specimens were successfully 
sequenced for the approximately 366 bp (bp) region of the 
mitochondrial HVII segment of the D-Loop. Analysis of 
resulting sequencing data identified three individual mtDNA 
haplotypes.

The combined non-exclusionary probability of success-
ful assignment of a juvenile parent, based on all loci, cal-
culated by maternity simulation assignments was 0.9997 
(2.76 × 10−4) for the first parent, increasing to 0.9999 
(3.21 × 10−6) for the second parent, when the first was 
known. These represent the average probability of not 
excluding a single randomly chosen unrelated individual 
from parentage at one or more loci, assuming no typing 
errors (Marshall et al. 1998).

Mean number of alleles were in a similar range of 8–8.79, 
with the exception of Kerry (5.79; Table 2). No variation 
was noted between temporal samples (Glengarriff). Genetic 
diversity, as measured by heterozygosity (HE), was found to 
be highly consistent across all samples. No deviations from 
HWE were observed within samples. In contrast, all mater-
nity colonies were found to be fixed for a single mtDNA 
haplotype. For all site groupings, effective population size 
could not be distinguished from infinity; i.e., there was no 
evidence for any disequilibrium caused by genetic drift due 
to a finite number of parents.

Parentage

Initial identity analysis identified three individuals in the 
second year which displayed identical microsatellite multi-
locus genotypes. Parentage assignment of juveniles caught 
in Glengarriff in 2010 and 2011 is displayed in Table 3. For 
2010, maternity assignment was carried out for 53 bats com-
prising 23 offspring (i.e., juveniles) and 30 putative mothers 
(i.e., adults). Overall maternity was assigned for nine juve-
niles (39%); seven of these juveniles were assigned with a 
high probability (95% confidence) and the remaining two 
with 80% confidence, matching high relatedness estimates 
for these individuals. No paternal assignments were made 
due to absence of available potential fathers in this cohort.

For 2011, two approaches were used for maternity analy-
sis. In the first case only individual adult females observed 

Table 2   Summary of statistics and measures of differentiation for 
each population, consisting of number of specimens (n), observed 
(HO) and expected (HE) heterozygosities, mean number of alleles (A), 

significance of HWE deviation (HWE) and the measures of differen-
tiation Dest and FST

Site n HE HO A HWE Dest/FST

Glengarriff (Cork) 2010 53 0.68 0.61 8.79 NS − 0.005/− 0.005
Glengarriff (Cork) 2011 65 0.68 0.59 8.79 NS 0.000/− 0.001
Kilkenny 26 0.73 0.70 8.00 NS 0.000/− 0.004
Kerry 14 0.66 0.65 5.79 NS − 0.001/− 0.015
Global 158 0.69 0.62 8.12 NS 0.026/0.012

Table 3   Summary of results 
from parentage assignment 
analysis using samples caught in 
Glengarriff in 2010 and 2011

Number/percentage of assignments at strict (95%) and relaxed (80%) confidence (based on log-likelihood 
analysis) shown per year for maternal and paternal assignments. Inclusion of 2010 potential parents shown 
by (Inc.). Probabilities of identity Sib P(ID) and HW P(ID) are also displayed

2010 2011
Maternity Paternity Maternity Maternity (Inc.) Paternity (Inc.)

Offspring assigned 23 – 24 24 24
Candidate parents 30 – 41 64 12
Assignment 95% 7 (30%) – 16 (67%) 18 (75%) 0 (0%)
Assignment 80% 9 (39%) – 17 (71%) 21 (88%) 1 (4%)

Sib P (ID) 6.06 × 10−06 HW P(ID) 5.96 × 10−15
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in 2011 were considered as potential mothers of 2011 juve-
niles. In the second approach, all female individuals (i.e., 
adults and juveniles) observed in 2010 were added to the 
2011 putative mothers. Thus, the potential number of moth-
ers in 2011 ranged from 41 (excluding 2010 females) to 64 
(inclusive) respectively. Maternity was assigned to 17 (71%) 
and 21 (88%) juveniles for each of the two approaches. The 
confidence of the assignment in each case varied from 16 
(67%) and 18 (75%) at the 95% confidence level with the 
remainder at 80% confidence level.

Paternity analysis of 24 offspring in 2011 with 12 can-
didate males (i.e., 2010 male juveniles) yielded no assign-
ments at the 95% level, and one assignment at 80% level.

Relatedness

The overall pairwise relatedness was consistently low 
(< 0.05) among all groups of Glengarriff individuals 
(Table 4). This suggests that members were either unrelated 
or distantly related. Pairwise relatedness values above 0.5 
(that expected of a parent/full sibling) were rare (n = 17, 
0.7%), though most individuals displayed pairwise related-
ness values around or above 0.025; i.e., half-sibling/grand-
parent level (Fig. 1).

Overall, relatedness estimates for adults were higher 
(− 0.003 95% CI [− 0.01, 0.003]) than juveniles (− 0.020 
95% CI [− 0.03 to − 0.011]), though still at levels indi-
cating low relatedness. Although confidence intervals 
just overlap, relatedness appeared to show a decrease in 
adults in the second year, with mean R values of 0.016 and 
− 0.007 for 2010 and 2011 respectively.

Structuring

Each of the three nearby sites involved in this study were 
characterised by complete make-up of a single, unique 
(i.e., distinct), mtDNA haplotype at each of the three geo-
graphical locations, with no within-region variation. This 
includes all 117 samples in Cork (Glengarriff) taken over 
the 2 years. Cluster analysis in TESS yielded no clear evi-
dence of any genetic substructuring within the Glengarriff 
site, which is unsurprising considering the low level of 
differentiation, though higher levels of k yielded higher 
DIC (deviance information criterion) values (k = 8+), 
which could be indicative of the presence of many separate 
(maternal) lineages within the roost.

Table 4   Overall relatedness at multiple levels including all adults and all juveniles per year, and over both years, using Queller and Goodnight’s 
(1989) estimator

UV and Lv indicate the upper and lower 95% confidence intervals calculated by bootstrap resampling

Adults Juveniles Adults 2010 Adults 2011 Juveniles 2010 Juveniles 2011

Mean R − 0.003 − 0.020 0.016 − 0.007 − 0.019 − 0.008
Uv 0.003 − 0.011 0.031 0.005 0.004 0.010
Lv − 0.010 − 0.030 0.002 − 0.017 − 0.039 − 0.031

Fig. 1   Relative frequency (per-
centage) of pairwise relatedness 
values between all adults, and 
all juveniles. Relatedness values 
based on the Queller and Good-
night (1989) estimator
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Discussion

Roost structure

The absence of males is consistent with other studies of 
maternity colony makeup, including M. nattereri (Park 
et al. 1998) and other species e.g., Leisler’s bat (Nyctalus 
leisleri; Boston et al. 2015). The focal study site in Glen-
garriff consisted of 53 and 65 individuals in 2010 and 2011 
respectively. These numbers are high for a roost box, with 
Park et al. (1998) finding a maximum group size of 37 for 
M. nattereri in a similar study. Despite this, the number 
of individuals in colonies are likely to be much larger than 
those present within any particular roosting site. A number 
of studies have suggested that individuals within a colony 
make use of a ‘network’ of roosts. Lundy et al. (2012), 
using radio tracking of M. nattereri, has shown that one 
particular individual relocated to a nearby (1.2 km) roost 
during the course of the study. This behaviour has also 
been reported in other bat species including Serotine bats 
(Eptesicus serotinus; Catto et al. 1996), M. bechsteinii 
(Kerth and König 1999), and the whiskered bat (M. mys-
tacinus; Buckley et al. 2013). Movement between different 
roosts may be more pronounced post-nursing, as maternity 
roost sites are likely a compromise between favourable 
maternity colony habitat, and favourable foraging habitat 
(Lundy et al. 2012). Though linkage disequilibrium based 
estimates to calculate population size failed to produce 
sub-infinity estimates (likely due to a maternity site not 
representing a distinct Mendelian population), simple esti-
mates based on the assignment percentage and number 
of females present in the roost produce an estimate of 61 
adults for 2010 and 100 adults in 2011. The ease of access 
to multiple appropriate candidate dwellings (bat boxes) 
may also have an impact on the formation of these wider 
networks.

Although the data is insufficient to provide a high 
degree of support, the movement of the colony among 
nearby boxes supports previous evidence that individuals 
in a single M. nattereri natal population may utilise a net-
work of nearby roosts, with the return of a small number 
of individuals and lack of differentiation confirming that it 
was members of the same grouping recaptured in the sec-
ond year. This low recapture rate may suggest the grouping 
is much larger than those bats present in the roost box, and 
provides further evidence in favour of the ‘roost network’ 
or potentially a fission–fusion hypothesis (though further 
study will be required to support this).

Parentage

Maternal assignment within years was quite low, with only 
30% of juvenile parents assigned in the first year at 95% 
confidence. One explanation for this could be the time of 
sampling, with catches being carried out late in the nursing 
season (to minimise colony disturbance) when numbers 
tend to decline as dispersal to autumn breeding or swarm-
ing locations occurs (Dietz and Pir 2009). The unassigned 
juveniles present in the roost are likely weaned, with their 
maternal parent possibly having dispersed to breeding 
grounds (Neuweiler 2000). Parents could also be in a 
nearby roost within a ‘roost network’, particularly when 
offspring become less dependent, with other roosts pos-
sibly providing better access to optimum foraging grounds 
than those chosen to favour rearing of offspring (Lundy 
et al. 2012). As total assignment using all possible female 
parents in the second year led to 75% assignment, both 
these scenarios are strongly supported (either separately or 
a combination of both). Interestingly, one of the 2010 cap-
tures assigned as a parent to a 2011 juvenile was recorded 
as a juvenile when caught initially, confirming that M. nat-
tereri can reach sexual maturity within their first year. This 
is similar to the findings of Boston et al. (2015) with the 
Leisler’s bat (Nyctalus leisleri) and Cheng and Lee (2002) 
with the leaf nosed bat (Hipposideros terasensis) though 
the latter found this only in male individuals.

No males were assigned as parents at the 95% assignment 
level, though one was assigned at the 80%. Close exami-
nation of the microsatellite multi-locus genotypes of the 
two individuals indicate that they possessed very common 
genotypes. Thus, it is likely that these observed matches 
do not reflect true parentage, but a chance event/close rela-
tion (Marshall et al. 1998). Therefore, it is unlikely that any 
males born in the roost in 2010 fathered offspring in 2011 
with any of the females present therein. Also, if males were 
breeding with females present in the roost, a high overall 
relatedness would be expected; this provides good support 
for our prediction of male dispersal prediction. Male disper-
sal is common in mammals (Greenwood 1980), and these 
results are in concordance with earlier findings within this 
species (Kerth et al. 2003; Rivers et al. 2005; Furmankie-
wicz and Altringham 2007) and other bats; e.g., the noctule 
(N. noctula; Petit and Mayer 1999) and M. bechsteinii (Kerth 
and König 1999).

Philopatry and relatedness

High levels of geographical structure are evident from the 
mtDNA data (i.e., presence of a single unique haplotype in 
each colony). This supports female philopatry, one of our 
initial hypotheses, and corroborates what has been found 
in this (Park et al. 1998; Rivers et al. 2006) and many other 
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bat species (Petri et al. 1997; Petit and Mayer 1999; Kerth 
et al. 2000, 2002; Castella et al. 2001; Boston et al. 2012). 
Philopatric behaviour is common in mammals (Johnson and 
Gaines 1990) and is likely utilised by M. nattereri for ben-
efits including: knowledge of known suitable roosts, habitat, 
and food availability (Greenwood 1980). Although recap-
ture rates were low, identity analysis also supports female 
philopatry, as do the females caught in year 1 assigned to 
juveniles in year 2. The low number of individuals resam-
pled does not necessarily indicate a low level of philopatry. 
Rather, it is believed to be a consequence of there being a 
roost network, with overall philopatry being to the network 
or local area rather than a specific roosting spot.

Overall levels of relatedness in maternity sites were con-
sistently low. This is similar to findings in other bat species; 
e.g., the brown long-eared bat (Plecotus auritus; Burland 
and Worthington Wilmer 2001) and N. leisleri (Boston et al. 
2012), though high relatedness within colonies has been dis-
played in M. bechsteinii (Kerth et al. 2000). The underlying 
reason for group formation, therefore, is believed to be due 
to the benefits derived through mutualism or reciprocity, 
such as thermoregulation, information transfer and group 
rearing (as reviewed in Clutton-Brock 2009). This is con-
sistent with findings of Wilkinson (1984, 1988), wherein 
familiarity, rather than relatedness to an individual, is the 
primary promoter of mutualism and reciprocity. Lower relat-
edness within juveniles suggests that males born in this roost 
or nearby do not father offspring with females in the same 
colony or area, and supports the lack of significant male 
assignment in supporting male biased dispersal. The low 
differentiation, therefore, must be caused by high male gene-
flow, with the significant difference from zero due to the 
fact that high gene flow cannot completely counteract high 
female philopatry (Kerth et al. 2002; Rivers et al. 2005).

Though overall relatedness is low, the fact that pairwise 
relatedness estimators showed that most individuals had 
several individuals at grandparent or half-sibling level of 
relatedness shows that the roost contains maternal lineages 
and multiple generations and/or maternal-siblings. This 
is supported by the large number of clusters being sug-
gested based on Bayesian assignment and supports our ini-
tial hypotheses of both female philopatry and within-roost 
maternal lineages.

Conclusions

The evidence indicates that maternity colonies do not repre-
sent a true Mendelian population, but a grouping of mostly 
unrelated, female individuals and their offspring. Colo-
nies are believed to be made up of a number of different 
roosts, between which individuals or groups of individu-
als may cycle. Therefore, group stability is thought to be 

due to the mutual and reciprocal benefits of group living, 
and the additional benefits of philopatry. Male dispersal is 
likely a necessary compromise, allowing for all the benefits 
of philopatry, yet escaping the problems associated with it, 
such as inbreeding, drift, and the consequent loss of diversity 
(and therefore population/species health and adaptability).
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