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Abstract 5 

Climate change during the last deglaciation was strongly influenced by the „bipolar seesaw‟, 6 

producing antiphase climate responses between the North and South Atlantic. However, 7 

mounting evidence demands refinements of this model, with the occurrence of abrupt events in 8 

southern low to mid latitudes occurring in-phase with North Atlantic climate. Improved 9 

constraints on the north-south phasing and spatial extent of these events are therefore critical to 10 

understanding the mechanisms that propagate abrupt events within the climate system. We 11 

present a 19,400 year multi-proxy record of climate change obtained from a rock hyrax midden 12 

in southernmost Africa. Arid anomalies in phase with the Younger Dryas and 8.2 ka events are 13 

apparent, indicating a clear shift in the influence of the bipolar seesaw, which diminished as the 14 

Earth warmed, and was succeeded after ~14.6 ka by the emergence of a dominant 15 

interhemispheric atmospheric teleconnection. 16 

Keywords: southern Africa, palaeoclimate, hyrax middens, bipolar seesaw, Atlantic 17 

Overturning Meridional Circulation 18 

  19 
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Introduction 20 

While some studies have reported interhemispheric synchrony and symmetry during extreme 21 

climate disturbances such as the Younger Dryas cold reversal (YD; 12.9-11.6 ka (Lowe et al., 22 

2008)) (Denton and Hendy, 1994; Goede et al., 1996), abrupt changes in Northern Hemisphere 23 

climates (North Greenland Ice Core Project members, 2004) have also been associated with anti-24 

phase responses in the Southern Hemisphere (Kaplan et al., 2010; Putnam et al., 2010). Such 25 

antiphase responses are hypothesised to be driven by the oceanic Atlantic Overturning 26 

Meridional Circulation (AMOC), which draws heat from the Southern Hemisphere into the 27 

North Atlantic, but which is sensitive to disruption by ice and freshwater discharges (Broecker, 28 

1998; McManus et al., 2004). Reduction and intensification of ocean heat transport during 29 

northern stadial (cold) and interstadial (warm) intervals leads to the alternating build-up and 30 

extraction of Southern Hemisphere heat; the so-called bipolar seesaw (Broecker, 1998; Stocker, 31 

1998; Stocker and Johnsen, 2003). 32 

 An increasing number of records suggest that the relative warmth of the Northern 33 

Hemisphere's Bølling-Allerød interstadial coincided with the Antarctic Cold Reversal (ACR; 34 

14.7-13.0 ka) (Pedro et al., 2011; Putnam et al., 2010), and that the marked northern cooling of 35 

the YD was a period of rising temperatures and glacial retreat in the southern high (Pedro et al., 36 

2011) to mid-latitudes (Kaplan et al., 2010). However, a lack of reliable evidence from the low 37 

southern latitudes has still prevented a full assessment of the bipolar seesaw hypothesis, 38 

including the location of its „fulcrum‟. Such information is vital to test simulations, which are 39 

currently showing no consensus on the spatial extent of past (or future) abrupt climate change 40 

events (Kageyama et al., 2010). 41 
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To address this problem, we explore the regional impact of key perturbations in the North 42 

Atlantic using a multi-proxy record from the arid SW Cape region of South Africa (Fig. 1). The 43 

region lies at the juncture between southern Africa‟s three dominant climate systems: the South 44 

Atlantic anticyclone, the tropical easterlies, and the austral westerlies (Tyson, 1986). 45 

Approximately 75% of the region‟s precipitation falls during winter, when the westerlies and 46 

their related cold fronts migrate northward, advecting moisture from the southern Atlantic to the 47 

mountains of the SW Cape (Reason et al., 2006). In the dry summer months, the westerlies and 48 

the South Atlantic Anticyclone shift southward, limiting frontal system influence and blocking 49 

tropical moisture-bearing systems from the Indian Ocean and tropical Atlantic (Reason et al., 50 

2006).  51 

Little is known about SW Africa‟s environmental history, mainly due to its aridity and 52 

marked rainfall seasonality, which allows for few wetland sediment records. Rock hyrax 53 

(Procavia capensis) middens have emerged in this setting as valuable archives of 54 

palaeoenvironmental information (Carr et al., 2010; Chase et al., 2013; Chase et al., 2015; Chase 55 

et al., 2009; Chase et al., 2011; Chase et al., 2012; Meadows et al., 2010; Quick et al., 2011; 56 

Scott and Bousman, 1990; Scott et al., 2005; Scott and Vogel, 2000; Scott and Woodborne, 57 

2007). As hyraxes use discrete locations as latrines, deposits of sub-fossilised urine (hyraceum) 58 

accumulate in their shelters, much like stalagmites in a cave. These finely laminated amber-like 59 

deposits preserve a wide range of proxies, including pollen, charcoal, and stable isotopes, all of 60 

which can provide insight into past environmental conditions (Chase et al., 2011; Valsecchi et 61 

al., 2013) (see Supplementary Information). 62 

Results 63 
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The records presented here were obtained from two sections of a 53 cm thick midden collected 64 

from De Rif, in the Driehoek Valley of the Cederberg Mountains (32°26′45″S, 19°13′15″E, 1151 65 

m amsl.) (Chase et al., 2011; Valsecchi et al., 2013). Chronologies spanning the past 19,400 66 

years were established using 29 
14

C AMS dates (see Supplementary Information). Together, the 67 

De Rif midden records reveal coherent patterns of marked environmental variability since the 68 

Last Glacial Maximum (LGM; Fig. 2). Highlighted here are aspects of the records that primarily 69 

reflect changes in hydroclimate. In a region dominated by C3 plants, the hyraceum δ
13

C record 70 

primarily reflects variations in water-use efficiency (Chase et al., 2012; Ehleringer and Cooper, 71 

1988; Farquhar et al., 1989; Farquhar and Richards, 1984; Pate, 2001), although a long-term 72 

enrichment in is evident across the mid- to late Holocene. This is consistent with increased water 73 

use efficiency of C3 plants, and an increasing abundance of δ
13

C enriched drought-resistant 74 

succulent CAM plants under drier conditions (Smith, 1972; Valsecchi et al., 2013). These data 75 

are supported by the hyraceum δ
15

N record, which also reflects water-availability (Chase et al., 76 

2012; Handley et al., 1999; Handley et al., 1994; Hartman, 2011; Heaton, 1987; Murphy and 77 

Bowman, 2006, 2009; Wang et al., 2010), as well as by fossil pollen data (Valsecchi et al., 2013) 78 

and derived reconstructions of relative palaeo-aridity. Each of these proxy records expresses 79 

variability similar to that observed in regional marine core records, confirming that they are 80 

reflecting variability in a tightly coupled climate system (Fig. 3). 81 

Although De Rif lies within the core of the winter rainfall zone, our data show that 82 

changes in the duration or intensity of the summer drought season were important drivers of 83 

environmental change at this site for much of the last 19 kyr. Whereas increases in winter rainfall 84 

would result in a net increase in annual rainfall, increased precipitation in the summer drought 85 

season would have a significantly greater impact on reducing drought-stress in the region (Chase 86 
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et al., 2015). This is reflected by trends in the percentage of drought-tolerant and intolerant taxa 87 

(Valsecchi et al., 2013) and aridity index reconstructions (Fig. 2d). While a degree of variability 88 

is evident between these records as a function of their specific sensitivities, each reflects aspects 89 

of changes in drought season length and/or intensity, and corresponds well with overall changes 90 

in water availability inferred from the δ
13

C and δ
15

N records (Fig. 2). These findings are 91 

supported by the CCSM3 TraCE-21ka general circulation model (GCM) simulations, which 92 

show qualitative agreement between austral summer precipitation in the region and the proxy 93 

records from the De Rif middens (He et al., 2013). 94 

The De Rif data, particularly the higher resolution δ
15

N and δ
13

C records, highlight the 95 

impact of three major freshening events: HS1, the YD and the 8.2 ka events. We observe two 96 

primary phases in the region‟s deglacial climatic evolution: (1) a general increase in moisture 97 

availability and reduced seasonality from the terminal LGM to the end of HS1 at ~14.6 ka (Fig. 98 

2b, c), and (2) a late deglacial/early Holocene period from ~14.6 to 7 ka marked by significant, 99 

clear arid episodes synchronous with the YD and 8.2 ka event (Fig. 2b, c). 100 

Discussion 101 

The early deglacial period is defined by the abrupt decline of the AMOC during HS1 (Fig. 3b), 102 

and the slow build-up of South Atlantic heat from ~18-14.6 ka that is registered in Antarctic ice 103 

cores (Jouzel et al., 2007; Pedro et al., 2011) (Fig. 3h), SE Atlantic sea-surface temperatures 104 

(SSTs) (Farmer et al., 2005; Kim and Schneider, 2003)
 
and resulted in increased humidity at De 105 

Rif (Fig. 3d, e). While these changes likely affected the Subtropical Front (Barker et al., 2009) 106 

(Fig. 3h), resulting in a poleward shift of the moisture-bearing systems associated with the 107 

westerly storm track, we interpret that compensating factors such as increased flow of warm 108 

Agulhas Current waters into the SE Atlantic and reduced northward heat transport in the AMOC 109 
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favoured warming SSTs and increasing advection influence of tropical easterlies in the 110 

southwestern Cape(Reason et al., 2006). This would have resulted in an increase in summer rain 111 

and a shorter/less intense drought season (Chase et al., 2015; He et al., 2013). 112 

At ~14.6 ka, the rapid increase of AMOC created an immediate cooling response in the 113 

South Atlantic, as the Subtropical Front shifted equatorward at least as far as ~41°S (Barker et 114 

al., 2009). In SW Africa, however, the impact was more muted (Fig. 3). In the northern (Kim et 115 

al., 2002) and central (Farmer et al., 2005) Benguela system, this period marked the end of the 116 

warming trend that began at ~19 ka, but the subsequent cooling was relatively slow, similar to 117 

southern (Pedro et al., 2011) and northern(North Greenland Ice Core Project members, 2004) 118 

polar records during the Bølling-Allerød interstadial ~14.7-12.9 ka (Lowe et al., 2008). In the 119 

SW Cape, the response to these changes was a clear reduction in humidity (Fig. 3f, g). This 120 

aridification, however, was short-lived, lasting only through the Bølling interstadial (14.7-14.1 121 

ka (Lowe et al., 2008)), whereas the Allerød interstadial (14.1-12.9 ka (Lowe et al., 2008)) saw 122 

increased water availability at De Rif. Compared to the regionally coherent HS1 signal, the 123 

spatial heterogeneity of responses during this time suggests a restructuring of Earth‟s climate 124 

system, with the increasing influence of the South Atlantic Anticyclone in the southern 125 

subtropics across the last deglaciation. 126 

This restructuring is underscored by the regional response to the subsequent YD. While 127 

the Northern Hemisphere cooling coincides with a distinct decrease in AMOC, the SE Atlantic 128 

and SW African response is in sharp contrast to the HS1 signal, with an abrupt drop in SSTs 129 

(Farmer et al., 2005; Kim et al., 2002) and marked aridity at De Rif. In contrast with the slow 130 

build-up of heat during HS1 the immediate response during the YD implies a dominant 131 

atmospheric interhemispheric teleconnection (cf. Moreno et al., 2001), inconsistent with the 132 
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oceanic controls related to the bipolar seesaw. The De Rif records further reveals an significant 133 

(cf. Morrill and Jacobsen, 2005) and abrupt drying signal relating to the 8.2 ka event (Barber et 134 

al., 1999), indicating that even relatively small fresh water pulses in the North Atlantic (Clarke et 135 

al., 2004) produced immediate responses in SW Africa, resulting in significant aridification 136 

events in the region (Fig. 3g, h). 137 

This dramatic contrast in response to perturbations in the North Atlantic (more humid at 138 

De Rif during the AMOC slow-down of HS1 and more arid during the slow-downs of the YD 139 

and 8.2 ka events) challenges any systematic application of the bipolar-seesaw model of north-140 

south phasing during abrupt climate perturbations and raises questions on the relative roles of 141 

oceanic and atmospheric teleconnections in driving SE Atlantic and SW African climate. Of 142 

particular importance here is the influence of the South Atlantic Anticyclone, which dominates 143 

atmospheric circulation in the SE Atlantic basin and has a significant impact on oceanographic 144 

conditions through its regulation of upwelling intensity (Farmer et al., 2005; Kim and Schneider, 145 

2003; Kim et al., 2003). 146 

Either alternatively or in concert with the potential influence of a bipolar seesaw, a 147 

weakening South Atlantic Anticyclone during HS1 would have reduced upwelling intensity and 148 

raised SSTs in the Benguela system. After ~14 ka, however, the impact of the bipolar seesaw as 149 

a driver of climatic variability was apparently not expressed in the SE Atlantic. The rapidity and 150 

direction of the SW African responses to the changes in the North Atlantic that induced the YD 151 

and 8.2 ka events (Barber et al., 1999; Murton et al., 2010) strongly implicate an atmospheric 152 

rather than oceanic interhemispheric teleconnection, and the acute sensitivity of this relationship 153 

is illustrated by the influence of the relatively minor freshwater outburst that triggered the 154 

cooling of the 8.2 ka event (Barber et al., 1999). This implies that an early dominance of the 155 
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bipolar seesaw was replaced - perhaps as a result of diminishing high latitude ice sheets and a 156 

related reduction in the intensity and impact of declines in AMOC (McManus et al., 2004; Ritz et 157 

al., 2013) - in favour of more immediate atmospheric teleconnections, (Fig. 3b). This effectively 158 

displaced the boundary between positive and negative SST anomalies related to perturbations in 159 

the North Atlantic by at least 24°, shifting the „fulcrum‟ of the bipolar seesaw poleward of the 160 

African continent, where at 41°S, and contrary to conditions in the SE Atlantic, warmer SSTs 161 

occurred during the YD (Barker et al., 2009). These findings pose an exciting challenge as they 162 

call for closer consideration of the spatiotemporal influence of the bipolar seesaw, and identify 163 

areas for refinement of Earth System Models, which may lead to a more complete understanding 164 

of global climate dynamics. 165 
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Figure captions 295 

Fig. 1. Map of study region indicating generalised atmospheric (white arrows) and oceanic (blues arrows) 296 

circulation systems and the seasonal distribution of rainfall as indicated by the percent of the total mean 297 

annual rainfall received during the austral winter months of April-September. The convergence zones of 298 

the Congo Air Boundary (CAB) and the Intertropical Convergence Zone (ITCZ) are shown in the austral 299 

summer positions. Key sites discussed in the manuscript are indicated by number: 1) GeoB1023-5 (Kim 300 

and Schneider, 2003; Kim et al., 2003); 2) ODP1084b (Farmer et al., 2005); 3) the De Rif rock hyrax 301 

midden; and 4) TNO57-21 (Barker et al., 2009). 302 

 303 

Fig. 2. Comparison of proxy records from the De Rif rock hyrax midden and general circulation model 304 

(GCM) simulation data for the region. Radiocarbon ages shown as triangles along x-axis (DR2010 section 305 

in red, DR-2 section in blue). Heinrich stadial 1 (HS1), the Younger Dryas cold reversal (YD) and 8.2 ka 306 

event are highlighted by blue shading, and the Bølling (B) and Allerød (A) interstadials are shaded in red. 307 

Stable nitrogen (b) and carbon (c) records from the middens primarily reflect water-availability in the 308 

environment and water-use efficiency of plants respectively. These data are confirmed by pollen analysis 309 

of the De Rif midden (Valsecchi et al., 2013) and an aridity index reconstruction using a pdf-based 310 

modelling technique (Chevalier et al., 2014) applied to the De Rif pollen assemblage (d; shading indicates 311 

20% and 50% errors), which indicate the importance of drought season intensity and length in 312 

determining environmental change in the region. First-order similarities between results from the CCSM3 313 

TraCE-21ka transient GCM simulation (He et al., 2013) of austral summer (DJF) (a), and the proxy 314 

records support these conclusions, but the lack of a significant Younger Dryas signal in the simulation 315 

suggests that the model may not be capturing certain important elements of the global deglacial climate 316 

system. 317 

 318 

 319 
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Fig. 3. Comparison of proxy records from the De Rif rock hyrax midden with independent regional and 320 

extra-regional records reflecting changes in a series of related climate systems during the last 20,000 321 

years. Radiocarbon ages shown as triangles along x-axis (DR2010 section in red, DR-2 section in blue). 322 

Heinrich stadial 1 (HS1), the Younger Dryas cold reversal (YD) and 8.2 ka event are highlighted by blue 323 

shading, and the Bølling (B) and Allerød (A) interstadials are shaded in red. Climatic perturbations in the 324 

North Atlantic basin are recorded in the NGRIP ice core record from Greenland (a) (North Greenland Ice 325 

Core Project members, 2004) and have been observed to have a significant impact on the Atlantic 326 

Meridional Overturning Circulation (AMOC) and the northward oceanic transport of heat (b) (McManus 327 

et al., 2004), resulting in an antiphase relationship between northern (a) and southern (i) hemisphere 328 

temperatures (Broecker, 1998; Stocker, 1998). This is indicated by records from the South Atlantic (g, h)  329 

(Barker et al., 2009) and the southern polar regions (i) (Jouzel et al., 2007; Pedro et al., 2011). While from 330 

~18-14.6 ka this trend may have been expressed in SE Atlantic (c, d) (Farmer et al., 2005; Kim and 331 

Schneider, 2003; Kim et al., 2003) and SW Africa (e, f), variability in the intensity of the South Atlantic 332 

Anticyclone (c, d) (Farmer et al., 2005; Kim and Schneider, 2003; Kim et al., 2002; Kim et al., 2003) 333 

provide a coherent complimentary (Kim et al., 2002) mechanism, and highlight the increasing importance 334 

of atmospheric teleconnections with the North Atlantic in driving SW African climate change across the 335 

deglacial period.  336 

 337 
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