Adaptive Resource Allocation for Computation Offloading: A Control-Theoretic Approach

Published in:
ACM Transactions on Internet Technology (TOIT)

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2018 ACM. This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Open Access
This research has been made openly available by Queen's academics and its Open Research team. We would love to hear how access to this research benefits you. – Share your feedback with us: http://go.qub.ac.uk/oa-feedback
Adaptive Resource Allocation for Computation Offloading: A Control-theoretic Approach

MARIOUS AVGERIS, National Technical University of Athens, Greece
DIMITRIOS DECHOUNIOTIS, National Technical University of Athens, Greece
NIKOLAOS ATHANASOPOULOS, Queen’s University Belfast, Northern Ireland, UK
SYMEON PAPAVASSILIOU, National Technical University of Athens, Greece

Although mobile devices nowadays have powerful hardware and networking capabilities, they fall short when it comes to executing compute-intensive applications. Computation Offloading, i.e. delegating resource consuming tasks to servers located at the edge of the network, contributes towards moving to a Mobile Cloud Computing paradigm. In this work, a two-level resource allocation and admission control mechanism for a cluster of edge servers, offers an alternative choice to mobile users for executing their tasks. At the lower level, the behavior of edge servers is modeled by a set of linear systems, and linear controllers are designed to meet the system’s constraints and QoS metrics, while at the upper level, an optimizer tackles the problems of load balancing and application placement towards the maximization of the number the offloaded requests. The evaluation illustrates the effectiveness of the proposed offloading mechanism regarding the performance indicators, e.g. application average response time, and the optimal utilization of the computational resources of edge servers.

CCS Concepts: • Computer systems organization → Cloud computing; • Computing methodologies → Computational control theory; • Human-centered computing → Ubiquitous and mobile computing design and evaluation methods;

Additional Key Words and Phrases: Edge Computing, Linear Modeling, Feedback Control

ACM Reference Format:

1 INTRODUCTION

Over the past decades, the processing and networking capabilities of mobile devices have grown significantly. This allowed for the development of mobile applications for a wide range of human daily activities, including healthcare and wellness, education, commerce and social media. However, the constrained computing resources and battery capacity of mobile devices still remain an obstacle for the realization of compute-intensive and high energy consuming applications. Mobile Cloud Computing (MCC) is the emerging service delivery paradigm that integrates Cloud Computing
(CC) into the mobile environment. MCC provides on-demand, low-latency and secure access to a resourceful group of servers in the spatial vicinity of mobile users. This comes complementary to the CC paradigm which suffers from latency issues due to the connection to remote servers in the cloud through public Internet. MCC includes slightly different architectures, such as Edge Computing, Mobile Edge Computing and Fog Computing [20]. The common characteristic that these architectures share is the placement of a cluster of servers at the edge of the network. For the rest of the paper, these servers are called Edge Servers independently of the architecture. Edge servers receive and execute compute-intensive tasks of mobile applications. The problem of determining what task, where and whether it should be offloaded in order to save energy and/or meet time constraints is known as Computation Offloading, [16].

Currently and regardless of the adopted MCC architecture, the computation offloading decision is coupled with the resource allocation in the edge servers. In contrast to the CC setting, a cluster of edge servers does not have abundant resources. Consequently, together with the offloading decision, a dynamic resource allocation and admission control mechanism, which we call Vertical and Horizontal Scaling, is necessary. This mechanism is responsible for the (de)activation of the edge servers, the placement of the application instances and the distribution of offloaded requests among them, which we call Horizontal Scaling. Alongside, the admission control and resource allocation for each application instance within the active servers, which we call Vertical Scaling. As it is referred in Section 2, most of the proposed studies in the literature use queuing theory to model mobile devices and edge servers, along with an optimization method for finding the optimal offloading policy. The most commonly used criteria are the energy consumption of the mobile device and the request throughput. There are two major shortcomings of these approaches that can lead to the deterioration of the system’s performance: (i) the static modeling of the servers for fluctuating workload can lead to over provisioning or under provisioning. (ii) there is no formal guarantee of satisfying the physical constraints, i.e., CPU and memory sharing, or meeting the Quality of Service (QoS) specifications, such as the average response time. Since all MCC architectures use a small cluster of servers, a fallacious resource allocation mechanism can hamper the offloading performance.

Contrary to the CC environments where dynamic modeling and control mechanisms have been extensively adopted [17], [18], little attention has been given to the optimal use of the edge servers. In this paper, we develop a two-level cooperative resource allocation mechanism for a single cluster of edge servers hosting a group of applications, that allows mobile users, within the coverage area, to offload application-specific tasks. It should be noted, however, that user mobility within the cluster’s proximity has not been considered in this work and is left for future research. The proposed mechanism can on-demand allocate the edge servers’ resources to different applications using virtual machines (VMs). At the lower level, the dynamic operation of VMs is captured by linear dynamics. The local controllers are responsible for regulating allocated CPU shares and accepted offloading requests, according to a varying, however bounded in a given interval, incoming workload. This comprises the Vertical Scaling part of our mechanism. At the upper level, a horizontal scaling process is responsible for activating the essential number of edge servers and placing the appropriate VMs into them. This comprises the Horizontal Scaling part. In particular, the incoming requests are distributed to the activated servers in order to serve the total demand. This process is orchestrated while taking the local controllers into consideration, making this mechanism cooperative. The benefit of this approach is manifold.

At the lower level:
- our modeling approach can accurately capture the dynamic behavior of the application-specific VM under different operating conditions.
- a multitude of feasible operating points can be calculated, considering different performance and utilization costs, which allows us to design different control strategies for different pairs of workload and applications.
- formal guarantees regarding resource allocation and QoS specifications are provided.

At the upper level:
- the minimum number of edge servers is activated to satisfy the overall workload of all applications, based on the set of the feasible operating points of the lower level.

The rest of the paper is organized as follows; Section 2 discusses related work. Section 3 presents the proposed modeling, alongside the vertical and horizontal scaling methodologies on the computation offloading at the edge servers. Detailed performance evaluation and comparison with an energy aware offloading technique [30] are illustrated in Section 4 while conclusions are drawn and opportunities for future research are identified in section 5.

2 RELATED WORK

One of the initial and influential work on MCC [25] proposed a dynamic VM synthesis of a cloudlet infrastructure. The position paper [26] presented the potentials of MCC ecosystems; wearable devices, Internet of Things (IoT) applications, automotive and industrial environments alongside tactile Internet can leverage from the mobile-cloud convergence. The extended survey [24] presented a definition of MCC, the vision and the challenges, a taxonomy of heterogeneity in MCC and open issues. The survey paper [20] analyzed the challenges of Fog Computing in terms of architecture, service and security and classified the existing studies according to these criteria.

Surveys of existing computation offloading approaches are provided in [16], [2]. The authors of [10] addressed computation offloading as an admission control problem in MCC hotspots with a cloudlet, using semi-Markov decision process modeling and linear programming. The resource constraints were considered when obtaining the optimal solution. A similar dynamic offloading algorithm was proposed in [32]. Therein, the admission control problem on cloudlets was modeled and solved as a Markov decision process, aiming to minimize the computation and offloading costs. Also the mobility of the users was taken into account. Khojasteh et al. [13] presented two flexible resource allocation algorithms for computation offloading. The resource allocation process and VM provisioning were modeled by a Markovian multiserver queuing system with priority levels and a multidimensional Markov system, based on a Birth-Death queuing system with finite population, respectively. In [22] three resource allocation schemes were proposed for computation offloading. Several stochastic sub-models captured the operation of a physical machine, under the policy of each scheme. The Markov Reward Model was applied to obtain the output of the sub-models and the decision criteria consist of the request rejection probability and mean response delay. The authors in [5] proposed a hierarchical MCC architecture where users could offload their tasks, modeled by queuing models, either to local cloudlets or the remote public cloud. Computation offloading was modeled as a generalized Nash equilibrium problem and a distributed algorithm computed an equilibrium strategy for each user.

Many studies focus on energy-aware offloading. In [30] a two-tier MCC environment was adopted; mobile devices, cloudlets and the remote cloud were described by static models and an algorithm that optimized the minimum residual energy ratio was developed. Jalali et al. [11] proposed static, flow-based and time-based energy consumption models. They presented a detailed energy consumption comparison between CC and fog computing architectures while taking the network equipment into account. Their numerical results demonstrated how offloading leads to
Finally there are some interesting studies that examine other problems in the area of computation offloading. In [1], the feasibility of computation offloading and data backups in real-life scenarios was examined. Since communication is not free, the authors focused on bandwidth and power consumption of WiFi, 2G and 3G technologies. A real testbed with smartphones and Amazon EC2 nodes was used for thorough analysis. The authors of [31] focused on cloudlet placement in order to minimize the average cloudlet access delay between mobile devices and cloudlets. A heuristic scalable algorithm was proposed for the special case of homogeneous cloudlets. Jia et al. [12] used the placement of [31] and proposed a load balancing algorithm to utilize fairly a group of cloudlets. Queueing models were adopted for cloudlets and a scalable algorithm computed the optimal request redirection such that the maximum of the average response times at cloudlets was minimized. Trying a different approach, Liu et al. [19] proposed a game based distributed MEC scheme where the users competed for the cloudlet’s finite computation resources via a pricing approach, modeled as a Stackelberg game. The algorithms examined there were implemented in a distributed manner. In [28], the authors proposed two algorithms for maintaining the low end-to-end delay between the mobile devices and the cloudlets when the users move around the network topology. The key idea lies in optimally deploying the mobile device’s corresponding VMs in the available cloudlets, while adapting to the user’s movement. Dealing with the opposite data flow, i.e., offloading from the cloud to the edge, the authors of [4] presented a collaborative content caching system at the network edge. They developed a model to instruct the edge node to trigger on demand caching when popular content has been identified. SDN techniques were leveraged to manage and distribute the content among the access nodes in a coordinated manner.

A shortcoming of studies [30], [11], [1], [31] and [12] is that the modeling of the edge servers captures accurately a single operating point and not the whole operating range. On the other hand, for the various Markov process approaches [10], [32], [13] and [22], the execution time of each request derived from a fixed service rate. However, these assumptions on the static operating range and service rate apply only when the operating conditions are close to that point. Furthermore, in the above studies, a systematic analysis on satisfaction of the QoS specifications and the constraints is missing. The present study aims to address the aforementioned shortcomings. Thus, state-space modeling is used to capture the dynamic behavior of the edge server under different operating conditions. The local controller computes the system’s feasible operating (equilibrium) points while considering different competitive criteria and guarantees the stability and confinement in a specific area around them. The Horizontal Scaler takes these operating points into account and determines the appropriate placement that serves the incoming varying workload.

3 COMPUTATION OFFLOADING

Computation offloading mitigates the energy consumption of resource-constrained mobile devices by relocating the execution of the compute-intensive tasks to a group of Edge Servers that are placed in the Mobile Users’ spatial vicinity. This placement enables low-latency access to the servers, contrary to the access to the remote cloud through the public Internet, which is unpredictable when it comes to response times. Figure 1 depicts the MCC computation offloading architecture studied in this paper. Specifically, the offloaded traffic, generated from the mobile devices, is directed to the Horizontal Scaler through the local Wireless Access Point (with WiFi, 3G/4G or LTE support). There lies the upper level control process of our mechanism; this component selects an appropriate VM placement to be implemented to each Edge Server directly connected to it and consequently
distributes the incoming workload accordingly. This decision defines the number of active servers alongside the number and the operating state of the VMs to be placed in them. This upper level process is performed in an on-line and proactive manner, through the use of an internal prediction mechanism, the Workload Predictor, described in more details in subsection 3.3.2, able to estimate the incoming offloading requests in the following time window. The essential input for this estimation process is provided by the Monitoring Service component, which is responsible for collecting data regarding both the network traffic (e.g. offloading requests issued, end-to-end response times) and the servers’ resources utilization (e.g. CPU usage) at each given time. As mentioned earlier, this is the horizontal scaling part of our mechanism and the theory behind it is described thoroughly in 3.3.

At the lower level, each edge server is equipped with a Local Controller, able to create, run, scale and stop application-specific VMs, thus assisting the realization of the selected VM placement for the given time window. Additionally, the lower level control process is implemented in this component, as it moderately scales the VMs vertically based on data coming from the Monitoring Service. In this way, it ensures that the VMs remain within the selected operating state, thus guaranteeing minimum and stable application response times. The theoretical design behind this control process is described in more detail in subsection 3.2.

Figure 2 illustrates the workflow of the proposed MCC computation offloading mechanism. In the proposed approach, the operation of the VMs is modeled by a group of Linear Time Invariant (LTI) systems that are subject to additive exogenous disturbances. The parameters a, b of the LTI systems in (1) are identified by experimental data. At first, for each LTI system, a feasible equilibrium of the nominal disturbance-free model of the VM, (x_e, u_e), is computed. Each equilibrium point corresponds to an operating state of the VM without assuming disturbances. For example, an operating point might correspond to 3 requests per second, utilizing 20% of CPU allocation and resulting in an average response time of 3 sec. For each equilibrium point a linear state feedback controller, meaning the control gain k, is designed by taking the disturbed system into account, within the Local Controller component. Specifically, by regulating the assigned CPU allocation and the number of admitted requests, we design a controller such that the closed loop system (i) is stable, (ii) satisfies the constraints and the QoS specifications at all times and for any initial condition, starting from within the constraint set, and (iii) behaves optimally in steady state. Since the proposed resource management mechanism offers guaranteed response time to mobiles users,
the offloading decision breaks down to a simple comparison between the estimated execution time on the mobile device and the guaranteed response time provided by the edge servers.

At the upper level, for each application the Horizontal Scaler receives an estimation of the forthcoming requests $\hat{\Lambda}$, made by the Workload Predictor component, and the set of the feasible operating points (x_e, u_e), computed by the feedback controller, as input. Then, based on this information, it decides the minimum number of active edge servers and the VM placement to be implemented in them, towards the satisfaction of the total demand for each application. This cooperation of the two control levels ensures that the selected operating point of each VM from the Horizontal Scaler will be realized by the feedback controller of the VM. The following table sums up the main symbols used in the next subsections, alongside their description:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>Time instant</td>
</tr>
<tr>
<td>λ</td>
<td>Incoming Request Rate per second (RR)</td>
</tr>
<tr>
<td>x</td>
<td>Average Response Time (sec.)</td>
</tr>
<tr>
<td>u</td>
<td>Input $u(t) = [u_1(t) \ u_2(t)]^T$; u_1 is the allocated VM CPU; u_2 is the RR admitted at the VM</td>
</tr>
<tr>
<td>(x_e, u_e)</td>
<td>Feasible Operating Point</td>
</tr>
<tr>
<td>r_e</td>
<td>Statically allocated VM memory</td>
</tr>
<tr>
<td>w</td>
<td>Communication disturbances</td>
</tr>
<tr>
<td>a, b</td>
<td>LTI system parameters</td>
</tr>
<tr>
<td>k</td>
<td>Control gain</td>
</tr>
<tr>
<td>\mathcal{X}, \mathcal{U}</td>
<td>State and Input Constraints</td>
</tr>
<tr>
<td>S</td>
<td>Invariant set</td>
</tr>
<tr>
<td>\mathcal{P}</td>
<td>The Set of Feasible VM placements</td>
</tr>
<tr>
<td>E</td>
<td>Number of edge servers</td>
</tr>
<tr>
<td>$\hat{\Lambda}$</td>
<td>Predicted Incoming RR</td>
</tr>
</tbody>
</table>

3.1 System Modeling

In our setting, a number of $N \geq 1$ different applications are hosted in isolated VMs in an edge server. For each application and for a range of incoming request rates, a scalar discrete LTI system is identified. To this purpose, let $\lambda(t) \in [\Lambda_m, \Lambda_M]$ denote the incoming Request Rate (RR) per second at time instant t, which is varying in an interval $[\Lambda_m, \Lambda_M]$. The range of incoming RR is divided in L subintervals of the form $[\Lambda_{i,m}, \Lambda_{i,M}] \subset$
\[\Lambda_m, \Lambda_M \]. Consequently, for each application and each request rate subinterval a linear system with additive disturbances is identified of the form

\[x(t + 1) = \max \{ ax(t) + bu(t) + w(t), 0 \}. \tag{1} \]

In the above equation, \(x(t) \) is the average response time, \(u(t) = [u_1(t) \ u_2(t)]^T \in \mathbb{R}^2 \) is the input vector and \(w(t) \in [w_m, w_M] \), \(w_m < 0 < w_M \), is an unknown, however bounded, signal, which accounts for the disturbances induced by the communication between the edge server and the mobile users and the modeling error of the identified model. In our case, we focus on CPU intensive applications, thus, VM memory is statically assigned and not included in the linear systems. However, the Horizontal Scaler takes memory constraints in the VM placement problem into account, as it described in subsection 3.3.1. To simplify notation, we do not indicate in our that the exposition is done for system \(i \), since this is arbitrary chosen.

The input \(u_i \in [u_{1i}, u_{1M}] \) corresponds to the allocated CPU share of the VM whereas \(u_2 \in [\Lambda_{i,m}, \Lambda_{i,M}] \) is RR the controller admits. The parameter \(a \geq 0 \) is a known scalar while \(b \in \mathbb{R}^{1 \times 2} \) is a row vector. Both \(a, b \) can be estimated using the Recursive Least Square (RLS) algorithm [29]. The maximum operator in (1) ensures that there are no negative average response times in the model.

The state and input variables \(x \) and \(u \) are inherently constrained due to the finite resources and the control specifications. In specific,

\[\mathcal{X} := \{ x : 0 \leq x(t) \leq X_M \}, \tag{2} \]
\[\mathcal{U} := \{ u : u_m \leq u(t) \leq u_M \} \tag{3} \]

for all \(t \geq 0 \), where \(u_m = [u_{i,m}, \Lambda_{i,m}]^T, u_M = [u_{iM}, \Lambda_{i,M}]^T \).

By having a set of models (1) corresponding to different RR intervals, we provide better level of accuracy than a single LTI model for the whole range of RR. Additionally, the number of models scales linearly with respect to \(L \), since we consider the co-hosted applications are decoupled and depend only on the number of subintervals of the RR.

At the lower level, the local controllers focus on the joint resource allocation and admission control of edge servers in order to perform guaranteed response time under the varying workload of the consolidated applications. For the lower control leve (vertical scaling), our goals are summarized as follows.

P1. Consider system (1) subject to the constraints (2), (3) that corresponds to a certain incoming request rate. Given a desired response time, find a feasible operating region for the system (1) which is optimal with respect to a well defined cost.

P2. For each operating condition calculated in **P1**, compute an admissible control strategy which steers the closed loop system to it and respects the constraints at all times.

3.2 Vertical Scaling

In this section, we discuss how our approach tackles the problems **P1, P2 simultaneously**. In specific, an optimization problem is formulated whose solution retrieves both the operating condition and the control strategy. This approach is less conservative than the multi-step approaches in the literature [7], [8].

Let us consider an admissible equilibrium pair \((x_e, u_e)\) for the disturbance-free system (1), i.e., when \(w(t) = 0 \), for all \(t \geq 0 \). Clearly, \(x_e \) and \(u_e \) satisfy the equation

\[x_e = ax_e + bu_e \]

and satisfy the constraints (2), (3). An affine state feedback control laws of the form is considered

\[u(t) = k(x(t) - x_e) + u_e, \quad t \geq 0, \tag{4} \]
where $k \in \mathbb{R}^2$ is the control gain and $u_e \in \mathbb{R}^2$ is a constant vector. A state and input coordinate transformation is applied by introducing $z(t), v(t)$, defined by

$$z(t) = x(t) - x_e,$$

$$v(t) = u(t) - u_e.$$

Consequently, the closed-loop form of the system (1) with the control strategy (4) becomes

$$z(t + 1) = \max\{(a + bk)z(t) + w(t), -x_e\}. \tag{5}$$

Contrary to the nominal, disturbance-free case, for the actual system (5) each operating condition refers inevitably to a set of average response times x rather than a singleton due to the presence of additive disturbances. This set is known in the control literature as the minimal robust positively invariant set or the 0-reachable set [23], [3]. It represents the set of states that can be reached from the equilibrium point under a bounded disturbance.

Definition 1. Consider system (5). An interval $S = [s_m, s_M]$ is called an invariant set\(^1\) for system (5) if $z(0) \in S$ implies $z(t) \in S$, for all $t \geq 0$ and any $w(t) \in [w_m, w_M]$. If, additionally, $|a + bk| < 1$, an interval S_{min} is called the minimal invariant set with respect to (5) if it is invariant and it is included in any other invariant interval. Last, consider the constraints $z(t) \in \mathbb{Z} = [z_m, z_M]$. The interval $S_{\text{max}} \subseteq \mathbb{Z}$ is called the maximal admissible invariant set with respect to (5) if it is invariant and includes any other invariant interval.

Computing the minimal invariant set exactly is difficult, since in the general case it is the limit of a set sequence which converges only asymptotically. Nevertheless, in our case since we opted to utilize scalar systems, it has an analytical description. This fact allows the simultaneous characterization of a stabilizing control gain and the minimal invariant set.

Theorem 1. Let $x_e \in \mathbb{R}, u_e \in \mathbb{R}^2$ and $k \in \mathbb{R}^2$ satisfy (6)–(11)

$$\begin{align*}
(1 - a)x_e &= bu_e, \tag{6} \\
0 &\leq x_e \leq x_M, \tag{7} \\
u_m &\leq u_e \leq u_M, \tag{8} \\
\frac{w_M}{1 - a - bk} &\leq x_M - x_e, \tag{9} \\
0 &\leq a + bk < 1, \tag{10} \\
\max\left\{\frac{u_m - u_e}{x_M - x_e}, \frac{u_M - u_e}{-x_e}\right\} &\leq k \leq \min\left\{\frac{u_M - u_e}{x_M - x_e}, \frac{u_m - u_e}{-x_e}\right\}. \tag{11}
\end{align*}$$

The following hold.

(i) The set

$$S_{\text{min}} = \left[\max\{x_e + \frac{w_m}{1 - a - bk}, 0\}, x_e + \frac{w_M}{1 - a - bk}\right] \tag{12}$$

is the minimal robust positively invariant set with respect to the system (1) under state feedback (4).

(ii) The set $S_{\text{max}} = \mathbb{X}$ is the maximal robustly invariant set with respect to the system (1) under state feedback (4).

(iii) For any initial condition $x(0) \in S_{\text{max}}$ and any positive number ϵ, there is a time $T > 0$ such that

$$\max_{y \in S_{\text{min}}} |x(T) - y| \leq \epsilon. \tag{13}$$

\(^1\)By invariance we mean robust positive invariance, or D-invariance, see, e.g., [3],[15].
Proof. (i) From (6)–(8), \(x_e \) is an admissible equilibrium point for the nominal system (1) with control input \(u_e \). By (10) and [15, Theorem 4.1], the minimal invariant set with respect to (5) is given by the limit of the forward reachable sets sequence. In our case, this sequence is defined by the iteration\(^2\)

\[
\mathcal{R}_0 = \{0\}, \\
\mathcal{R}_{i+1} = ((a + bk)\mathcal{R}_i \oplus [w_m, w_M]) \cap [-x_e, \infty).
\]

Since we are dealing with intervals, it is straightforward to see that for any \(i \geq 0 \)

\[
\mathcal{R}_i = \left[\max \left\{ \sum_{k=0}^{i-1} (a + bk)^t w_m, -x_e \right\}, \sum_{k=0}^{i-1} (a + bk)^t w_M \right],
\]

and consequently, the minimal invariant set for the system (1) is directly given by (12). (ii) Setting \(z = x - x_e \), we show that \(S_{\text{max}} = S_1 \cap S_2 \), where \(S_1 := \{ z : u_m - u_e \leq kz \leq u_M - u_e \} \) and \(S_2 := \{ z : -x_e \leq z \leq x_M - x_e \} \). Specifically, we show that \(S_2 \) is invariant and also \(S_2 \subseteq S_1 \). Since \(S_2 \) is the translation of the state constraints \(\mathcal{X} \) in \(z \), the claim will be proved.

To this purpose, for \(S_2 \), we first assume that \(w = w_M \); then from (9) we get \(w \leq (1-a-bk)(x_M-x_e) \). Considering the maximum value of \(S_2 z_0 = x_M - x_e \), then \(z_1 = x_M - x_e \), \(z_1 \in S_2 \). Accordingly, considering the minimum value of \(S_2 z_0 = -x_e \), then \(z_1 = (1-a-bk)x_M - x_e \) and by applying (10) we still get that \(z_1 \in S_2 \). Next, let us assume that \(w = w_m \); as it stands, \(w_m < w_M \) so the aforementioned paradigm let us conclude that \(z_1 \in S_2 \). Thus, by induction, we conclude that \(-x_e \leq z_{t+1} \leq x_M - x_e \) while \(z_t \in S_{\text{max}} \) for all \(t \geq 0 \) and any \(w(t) \in [w_m, w_M] \).

To show \(S_1 \supseteq S_2 \), it suffices to show that \(-x_e \in S_1 \) and \(x_M - x_e \in S_1 \). Indeed, for \(z_1 = x_M - x_e \) it holds that

\[
\frac{u_m - u_e}{x_M - x_e} \leq k \leq \frac{u_M - u_e}{x_M - x_e},
\]

while for \(z_1 = -x_e \) we have that

\[
\frac{u_M - u_e}{-x_e} \leq k \leq \frac{u_M - u_e}{-x_e}
\]

Both sets of the inequalities are satisfied due to the hypothesis (11). Consequently, \(S_1 \supseteq S_2 \) and since \(S_2 \) invariant, \(S_{\text{max}} \) is invariant and admissible as well. Maximality of \(S_{\text{max}} \) follows directly by observing that any \(x_0 \notin S_{\text{max}} \) violates the state constraints (2).

(iii) We show that any trajectory beginning from \(S_{\text{max}} \) is driven asymptotically (in fact exponentially) to \(S_{\text{min}} \). To this purpose, for any \(z_0 \in S_{\text{max}} \) then after \(i \) time intervals it holds that,

\[
z_i = (a + bk)^i z_0 + \sum_{j=0}^{i-1} (a + bk)^j w_j,
\]

where \(w_j \in [w_m, w_M], j = 0, ..., i - 1 \). By (10), the first term in (14) converges to zero exponentially, while the second term, as shown in (i), is bounded in \(S_{\text{min}} \). Thus, given any \(\epsilon > 0 \) and setting \(a + bk = l < 1 \), from (14) we have that since \(z_0 \in S_{\text{max}} \), then necessarily \(z_i \in l^i S_{\text{max}} \oplus S_{\text{min}} \). Consequently \(z_i \in S_{\text{min}} \).

Since \(S_{\text{max}} \) and \(S_{\text{min}} \) are intervals containing zero, we can always find a positive scalar \(d \) such that \(S_{\text{max}} = dS_{\text{min}} \) thus \(z_{i+1} = (l^i d + 1)S_{\text{min}} \). Thus, (13) can be satisfied for any \(T \) such that \((l^T d + 1)S_{\text{min}} \leq (1 + \epsilon) S_{\text{min}} \), or, \(T \geq \log_l \frac{\epsilon}{d} \).

\[\square\]

\(^2\)For two sets \(\mathcal{X}, \mathcal{Y} \), we have \(\mathcal{X} \oplus \mathcal{Y} = \{ x + y : x \in \mathcal{X}, y \in \mathcal{Y} \} \).
Remark 1. It is worth underlining that any choice of the control gain k that satisfies the relations (2) and (3), will render the whole constraint set as invariant.

Theorem 1 characterizes simultaneously the minimal invariant set and the gain of the associated control law. More importantly, it provides a tractable method of retrieving S_{min} and k. Specifically, for each model of (1) and given the equilibrium x_e, a feasible equilibrium pair (x_e, u_e), close to the pair of the desired values (x_e^\star, u_e^\star), and a state feedback control law of (4), which steers the closed loop system inside the minimal invariant set, can be calculated by solving the following linear programming problem,

$$\min_{u_e,k} \|u_e - u_e^\star\|_\infty$$ (15a)

subject to

$$(1 - a)x_e = bu_e$$ (15b)

$$u_m \leq u_e \leq u_M$$ (15c)

$$bk \leq 1 - a - \frac{w_M}{x_M - x_e}$$ (15d)

$$- u_e - (x_M - x_e)k \leq u_m$$ (15e)

$$u_e + x_e k \leq u_M$$ (15f)

$$u_m \leq u_e + (x_M - x_e)k \leq u_M$$ (15g)

$$0 \leq a + bk < 1$$ (15i)

where constraint (15b) ensures that (x_e, u_e) is an equilibrium pair, (15c) means that the input constraints are satisfied. The constraint (15d), identically to (9), indicates that (x_e, u_e) belongs to S_{min}, while the constraints (15e)-(15h) are an analytical description of (11) ensuring that (x_e, u_e) belongs to S_{max}. Finally, the constraint (15i) is identical to (10).

Apart from the guarantee of the QoS metrics, the computed feasible operating points are used by the upper control level to determine the operating state of the activated VMs. The Horizontal Scaler, as it is described in section 3.3.1, selects the operating area of each activated VM from the set of feasible operating point. Complementary to this, the local controller ensures that the chosen VM operating state will be realized by the described vertical scaling approach.

3.3 Horizontal Scaling

As discussed earlier, the upper control level consists of two essential components; the Horizontal Scaler and the Workload Predictor. The former aims to implement the appropriate VM placement on the minimum number of active edge servers, in order to satisfy the total workload of the co-hosted applications. The latter estimates the workload for the following time window, based on the previous actual value measured. This control level considers a cluster of edge servers located in a single place. Load balancing between geographically dispersed edge server clusters is not goal of this paper, but is part of our future work.

3.3.1 Horizontal Scaler. The Horizontal Scaler aims to compromise the mutually exclusive goals of performance and resource utilization. In particular, since the edge servers’ resources are not abundant, unregulated performance demands for a single application would require the high allocation of computational resources on all servers, leaving the co-hosted applications in resource starvation. This is not desirable if the QoS requirements are met with less resources. The Horizontal
Scaler component is responsible for optimizing the VMs’ instantiation and for distributing the total requests of the implemented applications among them. The optimization objective of our approach is to minimize the number of the active edge servers, with the constraint of meeting the total workload demands. This indirectly results in reducing the consumed energy and optimally allocating the resources in the server side. The proposed Horizontal Scaler component leverages the fact that the size of a cluster of edge servers is small compared to a cloud datacenter, thus a heuristic solution can be reached with small computation effort. In our approach, we make the assumption that each edge server hosts at most one VM per application. Taking this into consideration, the Horizontal Scaler’s functionality breaks down in two steps; at the first off-line step, it computes all the feasible VM placements within a single server, based on the set of the VMs’ feasible operating points. These feasible placements are the ones where the total CPUs and memory required from the co-hosted VMs’ operating points do not exceed a predefined threshold. Since we do not consider memory as a control variable, a static portion of memory is assigned to every feasible operating point. For example, assume two applications \(App^x \) and \(App^y \); a VM running \(App^x \) and instantiated at an operating point which requires 25% allocated CPU and 4GB of RAM, alongside a VM running \(App^y \) and instantiated at an operating point, which requires 55% allocated CPU and 8GB of RAM, is a feasible VM placement for a single edge server, as the total allocated CPU and memory do not exceed the threshold \(C_E \), set at the 90% of the server’s total CPU capacity and \(R_E \) set 32 GB of RAM respectively. More formally, the set of all feasible VM placements is defined as,

\[
P := \{ p_i = \left((u^1_{1e}, r^1_e), \ldots , (u^N_{1e}, r^N_e) \right), i = 1, \ldots , N : \sum_{i=1}^{N} u^j_{1e} \leq C_E, \sum_{i=1}^{N} r^j_e \leq R_E \}
\]

Then, assuming this set \(P \), this set’s cardinality \(|P|\) and the total number of the edge servers \(E \), it determines the number of servers to be activated \(E_A \), by solving the following mixed integer linear program in an on-line fashion,

\[
\begin{align*}
\min_{f_i, E_A} \{ E_A \} \\
\text{subject to} \quad f_i \geq 0, \ i = 1, \ldots , |P| \\
E_A = \sum_{i=1}^{|P|} f_i \\
0 \leq E_A \leq E \\
\sum_{i=1}^{|P|} f_i u^j_{2e} \geq \Lambda^j, \ j = 1, \ldots , N
\end{align*}
\] (16a)

(16b)

(16c)

(16d)

(16e)

where the positive integer variables \(f_i \) denotes how many servers with the \(p_i \) VM placement of set \(P \) need to be activated. As the constraint (16c) denotes, the sum of these variables is equal to \(E_A \). The constraint (16d) simply restricts these activated servers to the total number of the edge servers. Finally, the last \(N \) constraints of (16e) denote that the estimated total workload for each application \(\Lambda^j \), as it is computed in the following subsection, is satisfied by the selected VM placements. It is important to point out that the Horizontal Scaler component is triggered only if a significant variation in any of the application’s workload occurs. This intends to avoid the frequent server
activation/deactivation, which leads to oscillation of resource allocation and degradation of VM’s performance.

3.3.2 Workload Predictor. For each application, the total incoming RR is estimated by the Holt linear exponential smoothing filter [21] that captures the linear trend of time series. For any time interval \(i \), the one-step prediction \(\hat{\Lambda}(i) \) of the incoming request rate \(\Lambda(i) \) is:

\[
\hat{\Lambda}(i) = \hat{\Lambda}(i) + c(i),
\]
\[
\hat{\Lambda}(i) = \alpha \Lambda(i) + (1 - \alpha)(\hat{\Lambda}(i - 1) + c(i - 1)),
\]
\[
c(i) = \beta(\hat{\Lambda}(i) - \hat{\Lambda}(i - 1)) + (1 - \beta)c(i - 1).
\]

where \(\alpha, \beta \) are smoothing constants, \(\hat{\Lambda}(i) \) is the smoothed value and \(c(i) \) denotes the linear trend in the measurement series. For the initialization, a random value of \(\hat{\Lambda}(0) \) is used within the range of the incoming RR and \(c(0) = 0.5 \).

4 EVALUATION

In this section, we present an experimentation on the proposed computation offloading mechanism and the respective results. These results illustrate the success of our approach in guaranteeing the stability of application response times within an acceptable margin. We highlight the optimization of the resource allocation in terms of edge servers activated to serve the incoming workload. Moreover, an experimental comparison between the vertical scaling part of our mechanism and [30] is demonstrated. The benchmarking is performed using CloudSim Plus [27], a simulation environment suitable for cloud computing and MCC experimentation, on a dual-core, macOS powered system with 8GB of available memory.

4.1 Horizontal Scaler’s Complexity

Before proceeding with the detailed presentation of the experimental setup used throughout our detailed evaluation study and the presentation of the corresponding performance of the proposed computation offloading mechanism, we present some initial numerical results regarding the complexity of the Horizontal Scaler. As expected, the problem we are solving is a combinatorial one expressed as a mixed integer linear program in (16). For treating the mixed integer problem of the Horizontal Scaler the GLPK solver [9] is used. The problem under consideration is generally NP-Hard and the lower bound of the computational complexity of the Branch-and-Cut algorithm used to find a solution is exponential [6]. Specifically, in the following, we analyze the performance of the Horizontal Scaler considering the dominant parameters of the optimization problem: the number of mobile applications, the total number of the feasible operating points of all applications and the number of available edge servers.

Figure 3 illustrates the effect of the above parameters. The left graph demonstrates the effect of the number of the feasible operating points. Three applications are co-hosted in a cluster of servers and the number of available operating points per application varies from 3 to 6, which produces a set \(P \) with a cardinality of 27 to 116 respectively. Subsequently, the computational time of (16a) increases accordingly. The middle graph of Figure 3 shows that the computational time also increases as the consolidated applications grow in numbers. More applications lead to more operating points, and consequently to the exponential increase of the computational time. Finally, at the right side of Figure 3, the effect of the number of the available edge servers is illustrated. As observed by the corresponding results, this parameter substantially affects the computational time only when the number of active edge servers is high. However, it should be noted that mobile edge computing, contrary to the traditional cloud environment, is usually based on small/medium data centers that typically are expected to host few applications.
4.2 Experiment Setup

In our simulation, which spans around 4h and 10min, or 15000sec, we assume three physical machines with 32GB of RAM which are utilized as edge servers; as mentioned earlier, each of them is manually restricted to hosting at most two isolated VMs, each of which realizes one of the two supposed applications, ($N = 2$), named App^1 and App^2; the edge servers are also restricted to hosting no more than one VM per application. More specifically, we follow this notation: VM_{ij} corresponds to the VM running on the ith server and implementing the jth application. The mobile traffic is simulated with a Poisson distribution of requests arriving at the Horizontal Scaler component, while the length of each request follows an Exponential distribution. For both applications, the incoming offload RR varies between 1 and 25req/sec. However, for each of the application-specific VMs, the distributed RR range is divided in the following four subintervals: $[0, 0.35]$, $[0.35, 0.55]$, $[0.55, 0.75]$ and $[0.75, 1]$. A model of (1) is identified and an equilibrium point and a control law are computed by solving (15a) - (15i) for every subinterval. Thus, in total we identify off-line eight systems and their respective controllers. The worst acceptable response time for the offloaded requests is set to 6sec and 7.5sec for App^1 and App^2 respectively. The desired average response time of the equilibrium points of the applications are set to the half of these values, $x^1_e = 3$ and $x^2_e = 3.75$. Indicatively, Table 2 depicts the operating points computed for both applications ($x^1_e, u^1_e, u^2_e, r^1_e$). The first operating point, with zero input and average response time, corresponds to an inactive VM. Table 2, also, justifies our assumption of hosting only one VM per application per server. For example, co-locating two VMs of App^1, namely running on the second operating point of Table 2 would result in cumulatively serving less offloaded requests on average than deploying a single

<table>
<thead>
<tr>
<th>VMs of App^1</th>
<th>VMs of App^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(0, 0, 0, 0)$</td>
<td>$(0, 0, 0, 0)$</td>
</tr>
<tr>
<td>$(3, 25, 2.95, 4)$</td>
<td>$(3.75, 25, 3.23, 4)$</td>
</tr>
<tr>
<td>$(3, 35, 4.63, 6)$</td>
<td>$(3.75, 35, 5.29, 6)$</td>
</tr>
<tr>
<td>$(3, 45, 6.18, 6)$</td>
<td>$(3.75, 45, 7.38, 6)$</td>
</tr>
<tr>
<td>$(3, 55, 8.02, 8)$</td>
<td>$(3.75, 55, 9.58, 8)$</td>
</tr>
</tbody>
</table>

- **Table 2. VM Operating Points (x_e, u_{1e}, u_{2e}, r_e).**
VM running on the fourth operating point, though the latter choice would result in allocating less CPU. This is a consequence of the related operating overhead of each separate VM deployment.

As described earlier, at the end of the time window, i.e., every 30 sec, the Workload Predictor estimates the incoming RR for the next window. When the previously predicted RR and the currently predicted RR, have an absolute difference greater than a predefined threshold, specific to the nature of this application, the Horizontal Scaler is triggered and selects the appropriate VM placement to be instantiated at the edge servers. For the particular applications, this threshold is set at 3req/sec. The duration of this time window is selected after considering the maximum time it would take for an in-range user to take the decision to offload, connect, offload and receive the results. During this window the request rate remains relatively stable. Much larger time window would fail to adapt to the changes in the request rates, while much shorter time window would probably result in unnecessary invocations. Furthermore, the control interval of 30sec appears to be adequate for the computation of the VM placement by the Horizontal Scaler, as it is later shown in Section 4.3. However, for other types of applications, this control time interval may be selected differently, in order on one hand to be larger than the computational time of mixed integer problem that needs to be solved, and on the other hand efficient enough to properly follow the variation of the incoming requests.

4.3 Numerical Results

The results depicted in Figures 4 to 8 are used to evaluate the efficiency of our proposed mechanism in the above-mentioned scenario. Figure 4 depicts the fluctuations in the actual (red line) and the predicted (blue line) RR per application during the experiment. For both applications, the actual incoming RR is altered every 50 min, or 3000 sec. Figures 5 - 7 illustrate the measured average response time and the inputs per VM in each server respectively; the left graph of each figure depicts the actual application response time (red line) together with the boundaries of the positive invariant sets, S_{\min} (blue line) and S_{\max} (black line). The middle shows the actual RR served by the respective VM on the edge server (red line), together with the RR rejected by the particular VM and sent back to the mobile device for execution (black line). The nominal RR value of the selected VM’s operating point is also shown (blue line). In the right graph, the actual CPU share allocated to the VM is shown (red line), alongside the operating point’s nominal value (blue line), for each given moment.

We can observe, in the left graph of subfigures 5a, 6a and 7a, that the average application response time for App^1 remains between the given constraints, despite the workload fluctuation. The similar
results are observed in the left graph of subfigures 5b, 6b and 7b for App². This means that the theoretical guarantees of Theorem 1 (i) are translated in the response times not exceeding the boundaries of the minimal invariant set, S_{min} and S_{max}. The middle graphs of Figures 5 - 7 depicts how the Horizontal Scaler adapts to these fluctuations and selects the appropriate placement, in terms of number of active edge servers, VMs and their operating points, in order to meet the demanded RR. As shown in Figure 8, it activates one edge server between $0 - 3000\text{sec}$, $6000 - 9000\text{sec}$ and $12000 - 15000\text{sec}$; two edge servers between $9000 - 12000\text{sec}$ and three between $3000 - 6000\text{sec}$. Of these incoming workload fluctuations, the rapid ones, e.g. around the 3000sec area, allow us to also demonstrate the Local Controllers’ functionality; in such situations, the Workload Predictor component requires a time window to adapt, due to the fact that the estimated RR value is based on the previous actual incoming RR value. This results in the Horizontal Scaler failing to select the appropriate VM placement for the specific time window. However, each VM’s Local Controller proves to be en garde by rejecting the excessive offloading requests and redirecting them back to the mobile device for execution, in order to guarantee the stability of the response time. This guarantee is also provided by the Local Controller in the form of vertically scaling the VM; the Workload Predictor’s minor inaccuracies are handled by moderately regulating the CPU resources.
and the accepted RR within limits of the operating point’s area. This procedure is illustrated in the middle graph of each subfigure of Figures 5 - 7; when the RR accepted in the VM has reached the value calculated from the Local Controller for the selected operating point, the excessive, rejected RR, which as a consequence is relocated to the mobile devices for execution, is increased. Also at the third graph of each subfigure, where some minor fluctuations are observed in the actual CPU share from the respective nominal values of the operating point. It is important to remark that for every VM and for the most part of the experiment, the actual and the nominal values of the CPU share overlap, making only the blue line observable. Furthermore, some short sudden changes in the selected operating points of the VMs, depicted in the second and third graphs of the subfigures, occur due to certain spikes in the incoming RR; these spikes are so acute that the Horizontal Scaler’s trigger condition is satisfied. Consequently the appropriate VM placement is recalculated with the updated operating points. We can see that it is this combination of horizontal and vertical scaling that results in the overwhelming majority of offloading requests being successfully served; 95.18% of the total requests for App1 and 98.74% for App2 respectively.

Another interesting remark is that the Horizontal Scaler selects a VM placement, which minimizes the number of active servers but not necessarily the total allocated CPU share. This happens
due to the structure of the optimization problem’s objective function in (16a). One approach to additionally include this optimization objective in our framework would be to revert to multi-objective optimization, either by using preemptive optimization or a multi-objective cost. However, this would significantly increase the time complexity of the decision-making part without envisioning substantial benefits.

4.4 Comparative Results

A second experiment better demonstrates the performance of the proposed vertical scaling mechanism alone and compares it with [30]. This is an energy-aware offloading approach, which uses
edge server VMs with fixed CPU shares allocated. The offload decision depends on an SLA threshold for the response time of the offloaded requests, named T_d. At the end of each time window, i.e., every 30 sec, an estimation of the incoming RR for each application is computed by (17) and the input vector is updated according to (4), regarding the following window. The upper left graph of Figure 9 depicts the actual response time and the boundaries of S_{min} and S_{max} for App1. After the initial interval, the response time steers from S_{max}, which we remind is equal to X, to S_{min} and remains within. This proves the validity of Theorem 1 (iii). In particular, by computing the control law solving the linear program (15a) - (15i), we see the convergence to the minimal invariant set. The upper right graph shows the average response time for allocated CPU = 25%, 45%, and $T_d = 6$ of the approach [30]. In the first quarter of this graph, the SLA is violated for the under provisioned VM with CPU = 25%. The second row of Figure 9 again illustrates the request rates served by the edge server and the mobile devices. On the left side, our approach seems to adapt well against the various incoming RR. Once again, the observed rapid fluctuation of the served requests exist due to false predictions of the incoming RR. As expected, this does not affect the response time. On the right side, it seems that the use of T_d restricts the amount of requests directed to the edge server. This explains the better response times of the upper right graph. For our proposed offloading mechanism, the requests served at the edge server approach 95.54% of the whole workload, while for [30] this percentage is limited to approximately 76%, for both CPU shares. It is clear that our proposed approach performs better against the varying workload because of the vertical scaling of the VMs.

5 CONCLUSIONS AND FUTURE WORK

In this study, a cooperative, two-level computation offloading mechanism for mobile applications is presented. The VM operation is modeled by a group of LTI models and for each model an equilibrium operating point, a proper controller and the minimal and maximal positive invariant sets are computed. At the upper level a horizontal scaling procedure takes place; an optimizer determines the number of active edge servers and the operating points of the VMs to be implemented in them,
in order to serve the total workload for each application. This decision takes into consideration the calculated equilibrium points for each underlying VM, thus guaranteeing the scalability of our mechanism towards major workload fluctuations. At the local level, a controller handles the minor workload fluctuations by scaling the VMs vertically, ensuring that the average response time is stabilized and restricted in a specific range of values. The experimental evaluation shows that the proposed mechanism achieves high percentage of requests admitted in the edge servers while the performance constraints are met, outperforming a well established energy aware offloading method.

Future work will focus on further investigating improvements on the modeling and control of the application-specific VMs and leveraging different combinatorial optimization criteria to improve the Horizontal Scaler’s decision making mechanisms. Specifically, it should be noted that, as mentioned before, in this work we mainly aim at minimizing the number of active servers with the constraint of meeting the total workload demands. By offloading as many tasks as possible while keeping the number of active servers low, implicitly energy efficiency on the mobile nodes and the edge servers is targeted as well. However, dealing with explicitly optimizing energy cost in the mobile nodes (e.g. maximize the offloaded requests) or the edge servers (e.g. minimize number of allocated CPUs) is also an interesting and challenging problem and part of our current and future work. Additionally, minimizing functional costs like data transmission costs (e.g. how the requests are distributed among the servers), or maximizing revenue/income for the infrastructure providers (e.g. how many different VM-applications can run per server) can be used as additional or alternative objectives for the Horizontal Scaler component of our framework.

Furthermore, as mentioned in the beginning, user mobility has not been considered in this work. Nevertheless this is a very challenging and important point, and we currently investigate the consideration and impact of user movement within an area covered by several wireless access points connected to an edge server cluster. In the same direction, the potential use of the proposed architecture and placement in the context of multiple proximate edge clouds, in order to accommodate workload balancing between edge servers located in remote areas, or between edge servers and the cloud, is an issue of high practical and research importance. Finally, we intend to test the proposed approach under real-life use cases, such as IoT or 5G enabled applications, in heterogeneous Future Internet testbeds/infrastructures.

REFERENCES

Received December 2017