
A Survey of Security in Software Defined Networks

Scott-Hayward, S., Natarajan, S., & Sezer, S. (2016). A Survey of Security in Software Defined Networks. IEEE
Communications Surveys and Tutorials, 18(1), 623-654. https://doi.org/10.1109/COMST.2015.2453114

Published in:
IEEE Communications Surveys and Tutorials

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2015 IEEE.
Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Open Access
This research has been made openly available by Queen's academics and its Open Research team. We would love to hear how access to
this research benefits you. – Share your feedback with us: http://go.qub.ac.uk/oa-feedback

Download date:10. May. 2024

https://doi.org/10.1109/COMST.2015.2453114
https://pure.qub.ac.uk/en/publications/88f854cd-8b26-4b47-a8d1-4c7f28302a2a

IEEE COMMUNICATION SURVEYS & TUTORIALS 1

A Survey of Security in Software Defined Networks
Sandra Scott-Hayward, Member, IEEE, Sriram Natarajan, and Sakir Sezer Member, IEEE,

Abstract—The proposition of increased innovation in network
applications and reduced cost for network operators has won
over the networking world to the vision of Software-Defined
Networking (SDN). With the excitement of holistic visibility
across the network and the ability to program network devices,
developers have rushed to present a range of new SDN-compliant
hardware, software and services. However, amidst this frenzy of
activity, one key element has only recently entered the debate:
Network Security. In this article, security in SDN is surveyed
presenting both the research community and industry advances
in this area. The challenges to securing the network from the
persistent attacker are discussed and the holistic approach to
the security architecture that is required for SDN is described.
Future research directions that will be key to providing network
security in SDN are identified.

Index Terms—Software Defined Networking, SDN, Network
Security, OpenFlow, Secure SDN Architecture.

I. INTRODUCTION

SOFTWARE-DEFINED networking (SDN) has rocketed to
the top of the networking agenda since its emergence

about 5 years ago. A fundamental characteristic of the SDN
architecture is the physical separation of the control plane from
the forwarding plane. A logically centralized control function
maintains the state of the network and provides instructions
to the data plane. The network devices in the data plane then
forward data packets according to these control instructions.
While this architectural shift has gained significant attention
from both the academic and network industry, the concept of
separating control and data plane functionality has been around
for much longer. In the 1980s, central network control [1]
was explored followed by active networks in the 1990s [2] to
introduce programmability into the network. During this time,
the driving application for the central/programmable network
was missing. Then with the arrival of cloud computing and
virtualization in the data-center, the right application for SDN
was discovered.

One of the proposals for separation of the control and for-
warding planes, which led to SDN as it is known today specif-
ically considered the security aspects of such a framework.
The SANE architecture [3] centred on a logically centralized
controller responsible for authentication of hosts and policy
enforcement. At the time of its proposal, this was considered
to be an extreme approach that would require a radical change

Copyright c©2015 IEEE. Personal use of this material is permitted. How-
ever, permission to use this material for any other purposes must be obtained
from the IEEE by sending a request to pubs-permissions@ieee.org.

S. Scott-Hayward and S. Sezer are with the Centre for Secure Information
Technologies, Queen’s University Belfast, Northern Ireland (e-mail: s.scott-
hayward@qub.ac.uk; s.sezer@ecit.qub.ac.uk).

S. Natarajan is with Deutsche Telekom - Silicon Valley Innovation Center
(T-Labs), U.S.A. (e-mail: Sriram.Natarajan@telekom.com).

Manuscript received September 30, 2014; revised March 03, 2015 and May
19, 2015; accepted June 26, 2015.

to the networking infrastructure and end-hosts. Ethane [4]
then extended the work of SANE but with an approach that
required less alteration to the original network. It controlled
the network through a centralized controller responsible for
enforcing global policy, and Ethane switches that forwarded
packets based on rules in a flow table. This simplified network
control allowed the data and control plane to be separated
to allow for more programmability. Following these early
works on security in programmable networks, the focus in
the literature transfers to OpenFlow [5]. OpenFlow is an open
standard developed as part of Stanford University’s clean slate
project. The goal of the project was to provide a platform to
enable researchers to run experiments in operational networks.

The successful adoption of OpenFlow by both researchers
and industry has driven the SDN movement. SDN-enabled
networks have already proven to be successful in various
deployment scenarios (e.g. Google’s backbone network [6],
Microsoft’s public cloud [7], NTT’s edge gateway [8] etc.).
In addition, network virtualization software has significantly
progressed from trial evaluations to production deployments
(e.g. VMWare NSX [9], Nuage Networks VSP [10]). While
these trends are promising, one area that has received minimal
attention is that of security in SDN.

There are clear security advantages to be gained from the
SDN architecture. For example, information generated from
traffic analysis or anomaly-detection in the network can be
regularly transferred to the central controller. The central
controller can take advantage of the complete network view
supported by SDN to analyze and correlate this feedback from
the network. Based on this, new security policies to prevent
an attack can be propagated across the network. It is expected
that the increased performance and programmability of SDN
along with the network view can speed up the control and
containment of network security threats.

On the down-side, the SDN platform can bring with it
a host of additional security challenges. These include an
increased potential for Denial-of-Service (DoS) attacks due to
the centralized controller and flow-table limitation in network
devices, the issue of trust between network elements due to
the open programmability of the network, and the lack of
best practices specific to SDN functions and components. For
example, how to secure the communication channel between
the network element and the controller when operated in the
same trust domain, across multiple domains, or when the
controller component is deployed in the cloud?

In the past few years, a number of industry working groups
have been launched to discuss the security challenges and
solutions. Meanwhile, researchers have presented solutions to
some SDN security challenges. These range from controller
replication schemes through policy conflict resolution to au-
thentication mechanisms. However, when the extent of the

2 IEEE COMMUNICATION SURVEYS & TUTORIALS

Fig. 1. Overview of the SDN Security Survey

issues is compared to the degree of attention placed on them, it
is clear that without a significant increase in focus on security,
it is possible that SDN will not succeed beyond the private
datacenter or single organization deployments seen today.

The main objective of this paper is to survey the litera-
ture related to security in SDN to provide a comprehensive
reference of the attacks to which a software-defined network
is vulnerable, the means by which network security can be
enhanced using SDN and the research and industry approaches
to security issues in SDN.

The paper is structured as follows: Section II provides a
context to the work by introducing the characteristics of SDN.
In Section III recent SDN and OpenFlow security analyses
are presented followed by a categorization of the potential
attacks to which the architecture is vulnerable. Research work
presenting solutions to these attack types is then presented
in Section IV. The arrows in Figure 1 indicate the attack
categories for which solutions have been proposed and, by
extension, those areas which have not yet received research
attention. In Section V, the alternative view of SDN security
is introduced with a survey of the research work dealing
with security enhancements based on the SDN architecture.
In Section VI, the two perspectives on SDN security are
compared with improved functionality, open challenges, and
recommended best practices identified. Section VII highlights
open standards and open source industry group work on SDN
security. Future research directions are identified in Section

VIII. The paper is concluded in Section IX. For clarity, an
overview of the Security Survey structure is presented in
Figure 1.

II. CHARACTERISTICS OF SOFTWARE-DEFINED
NETWORKS

In this section, the discussion begins with understanding
the SDN characteristics in detail. These characteristics are
highlighted in Figure 2 and represent the specific features of
the SDN framework/architecture that may have an impact on
SDN security whether through introducing vulnerabilities or
enabling enhanced network security. The 6 characteristics are
marked in Figure 2 at the layer/interface/network element that
they affect. Potential attacks are introduced in the next Section.

1) Logically Centralized Control: A fundamental charac-
teristic of SDN is the logically centralized, but phys-
ically distributed controller component. The controller
maintains a global network view of the underlying
forwarding infrastructure and programs the forwarding
entries based on the policies defined by network services
running on top of it. While early controller developments
(e.g. NOX [11], Beacon [12], Floodlight [13]) were
structured around functioning as an OpenFlow [5] driver,
various new implementations (e.g. OpenDaylight [14],
OpenContrail [15]) have matured to provide the required
abstractions to the network services and to support mul-

A SURVEY OF SECURITY IN SOFTWARE DEFINED NETWORKS 3

Fig. 2. SDN Characteristics

tiple programming interfaces (e.g. NETCONF, XMPP,
BGP) to manage the forwarding devices.
Similarly, evolving from a single controller design,
several options for distributed control (controller clus-
ter) have been proposed for scalability and reliability
requirements, as shown in Figure 3. Distributed con-
trol with multiple controller instances is proposed in
Onix [16], SoftCell [17], HyperFlow [18], and Kandoo
[19]. These approaches will be discussed in Section
IV. ONOS [20] and OpenDaylight [14] implement
distributed control with multiple instances forming a
cluster as illustrated in Figure 3. In each case, each
individual controller instance is the exclusive master of
a set of switches and the controllers are clustered in
Master/Slave groups.

2) Open Programmable Interfaces: Unlike traditional net-
working equipment, SDN physically separates the con-
trol and data plane entities. The primary motivation with
this characteristic is to simplify the forwarding devices
and allow the networking software in the controller
to evolve independently. This functionality introduces
the potential for innovation and easier adoption of
novel solutions. A standardized programmable inter-
face, OpenFlow [5], was adopted by the industry in
order to program multiple flavors of forwarding devices
(i.e. ASIC, FPGA-based, Network Processors, virtual
switches) thereby abstracting the complexity of the
underlying hardware. Several interfaces are identified
in Figure 4: the Control-Data Interface (also known
as the Southbound API such as OpenFlow, OF-Config,
OVSDB, NETCONF), the Application-Control Interface
(also known as the Northbound API such as REST API)
and the East-West Interface between Controllers. The
East-West interface refers to the bidirectional and lateral
communication between SDN controllers. These con-

(a)

(b)

Fig. 3. Distributed Control Frameworks for SDN (a) Controller Clustering,
and (b) Hierarchical Control

trollers may belong to the same or different SDN control
domains. The east/westbound APIs for this interface are
discussed in [21]. It is noted that in [22], Jarschel et al.
propose a definition referring to the east interface for
communication between SDN controllers and the west
interface for communication between an SDN controller
and other, non-SDN control planes. The interoperability
between SDN and legacy control planes is, however, out
of scope of this work.

4 IEEE COMMUNICATION SURVEYS & TUTORIALS

3) Switch Management Protocol: A companion interface
to the programmable interface described above is the
switch management protocol (e.g. OF-Config, OVSDB
[23]). Such a protocol is required to standardize the
configuration and management functions of the pro-
grammable hardware. For instance, the OF-Config pro-
tocol is used to configure and manage an OpenFlow
capable switch as well as multiple logical switches that
can be instantiated on top of the device. Internally,
the protocol uses NETCONF as the transport protocol
that defines the set of operations over a messaging
layer (RPC), which exchanges the switch configuration
information between the configuration point and the
packet forwarding entity (i.e. (3) in Figure 2).

4) Third-party Network Services: SDN allows the integra-
tion of third-party network services in the architecture.
In a monolithic SDN controller implementation (e.g.
RYU, POX, NOX), these applications are compiled and
run as part of the controller module while controllers like
OpenDayLight allow the instantiation of applications
at run-time, without restarting the controller module.
This is analogous to operating systems, wherein software
modules and libraries can be downloaded and integrated
within a running environment. From a deployment stand-
point, this drives innovation, allows customization of ser-
vices, introduces flexibility in the overall architecture to
adapt to new features, and reduces the cost of proprietary
services. Depending on the controller implementation,
third-party services can communicate to a controller
module via internal APIs or open northbound APIs (e.g.
REST APIs) supported by the controller.

5) Virtualized Logical Networks: Virtualizing the SDN
components supports multi-tenancy in the infrastructure.
In a typical SDN network, multiple logical switches can
be instantiated in a shared physical substrate such that
each entity can represent individual tenants/customers.
The goal here is to containerize the SDN compo-
nents thereby guaranteeing customized performance, se-
curity, and Quality of Service (QoS) based on ten-
ant requirements. While SDN is developing in the IT
community, Network Functions Virtualization (NFV) is
being developed by the Telecommunications industry.
NFV uses IT virtualization technologies to virtualize
network functions/services previously implemented in
proprietary hardware appliances. This supports dynamic
and agile network service provision. NFV and SDN are
closely connected offering a software-based networking
paradigm.

6) Centralized Monitoring Units: Although not unique to
the SDN architecture, a centralized monitoring unit
unifies the analytical capabilities of the infrastructure
and creates a feedback control loop with the con-
troller to automate updates to the networking function.
For example, a TAP monitoring unit can feed data
traffic to Deep Packet Inspection (DPI) engines that
can assess the data traffic, identify attack patterns and
then programmatically update the forwarding table to
block attack traffic. (Note: For illustration purposes, the

monitoring units are separated from the controller in
Figure 2. It is equally possible that this functionality be
collocated with the controller.) While the SDN entities
can internally include several monitoring capabilities, a
typical network deployment would consider deploying
dedicated monitoring solutions in the infrastructure. For
example, the OpenFlow protocol provides statistical and
status information about the switch and its internal state
(e.g. the flow state maintained in the Flow Table, the
status of the ports and links, statistical information on
flows, ports, queues, and meters). These are inherent
monitoring functions that are part of the underlying
architecture components. As discussed before, a prac-
tical deployment can also deploy visibility tools and
solutions like sFlow, NetFlow, or integrate third party
visibility fabric for monitoring purposes. The monitoring
logic that is part of the feedback loop is responsible for
comprehending the collected information and updating
the controller for required updates to be provided to the
network devices.

If the features in Figure 2 are simplified to a set of layers
and interfaces as shown in Figure 4, the challenges associated
with each layer of the framework and on the interfaces between
the layers can be identified. This framework is used throughout
the survey to categorize both the challenges and the proposed
solutions for SDN security.

Fig. 4. SDN Functional Architecture illustrating the data, control and
application layers and interfaces

III. SECURITY ANALYSES AND POTENTIAL ATTACKS IN
SDN

Given the SDN characteristics detailed in Section II, existing
security analyses in SDN are discussed next and the potential
security issues in the system are then classified.

A. Analyses of SDN Security

A number of SDN/OpenFlow security analyses precede
this survey [21], [24]–[34]. The first of these references is
our initial contribution on this subject of SDN security [24].
This current document significantly expands on the original

A SURVEY OF SECURITY IN SOFTWARE DEFINED NETWORKS 5

contribution with detailed discussion of the SDN characteris-
tics and potential attacks, security issues and enhancements,
analysis of the industry work on SDN security, and inclusion
of recommended best practices and future research directions.

In the case of each analysis work [21], [24]–[34], the
authors found that the altered elements or relationship between
elements in the SDN framework introduce new vulnerabilities,
which were not present before SDN. However, the more recent
analyses [24], [30]–[34] also identify security enhancements
introduced by SDN.

OpenFlow is currently the most commonly deployed SDN
technology. As a result, a number of the security analyses
focus only on OpenFlow. In [25] an analysis of the Open-
Flow protocol using the STRIDE threat analysis methodology
is completed [35]. The work focuses on the execution of
Information Disclosure and DoS attacks, which the author
established could be successfully executed. Although a number
of mitigation techniques are proposed, such as aggregating
flow rules to reduce the flow table size, these techniques are
not proven in the work.

The OpenFlow switch specification [36] describes the use
of Transport Layer Security (TLS) with mutual authentication
between the controllers and their switches. However, the
security feature is optional, and the standard of TLS is not
specified. The lack of TLS adoption by major vendors (and in
the majority of open-source controllers and switches) and the
possibility of DoS attacks leading to fraudulent rule insertion
and rule modification is discussed in [26].

In [27] a high-level analysis of the overall security of
SDN is presented with the conclusion that new responses are
required to the new threats arising from centralized control
and network programmability. Three of the seven identified
threat vectors are specific to SDN and relate to controller
software, the control-data interface, and the control-application
interface. A number of solution techniques are proposed. For
example, replication of controllers and applications to provide
alternative management/control in the case of hardware or
software faults, diversity of controllers for robustness against
software bugs and vulnerabilities in any single controller, and
secure components such as trusted computing bases (TCB)
to protect the confidentiality of sensitive security data. A
comprehensive survey of SDN [21] has also been co-produced
by the authors of [27]. The security and dependability of SDN
are reviewed with a specific focus on the security of Open-
Flow and countermeasures for security threats in OpenFlow
networks.

The vulnerability of the SDN network to attack has also
been tested [28], [29]. In [28], the research network and
testbed, ProtoGENI, has been analyzed. It was discovered
that numerous attacks between users of the testbed along
with malicious propagation and flooding attacks to the wider
internet were possible when using the ProtoGENI network.
More recently, a preliminary work considered the feasibility
of a fingerprinting attack against an SDN network [29]. In
the attack, the network is first fingerprinted to determine
whether it uses SDN/OpenFlow switches. The SDN network
is then subjected to a DoS attack on the control plane via
the data-control plane communication path and on the data

plane via the flow table of the network device. A DoS attack
refers to an attempt to make a machine or network resource
unavailable to its intended users. In the case of SDN, the
network devices require access to the control plane to receive
traffic management instructions and traffic across the network
requires access to the network device flow tables to dictate
traffic management policies. The data-control plane interface
and the network device flow table are therefore points of
vulnerability to DoS attack.

The extent to which network security management is im-
proved in SDN-based networks is discussed in [30]. The dis-
cussion is split by infrastructure, software stack, and network
protocols with the majority of the discussion focussed on
protocol security, which the authors define as confidentiality
and authentication. They conclude that security of the switch-
controller and controller-controller communication protocols
require further work. The security of switch-controller com-
munication has inspired several research works presented later
in this article and, indeed, the industry standardization bodies
security group work. Consideration of controller-controller
communication security is less well explored and an important
consideration for wide deployment of SDN.

In [31], an evaluation methodology is presented for the
security of SDN and security by SDN as compared to conven-
tional networks. To evaluate the security of SDN (i.e. security
of the reference architecture), the criteria of confidentiality,
authenticity, integrity, availability, and consistency are used.
To evaluate the security by SDN (i.e. benefits provided by
SDN), the criteria are: network management, costs, and attack
detection and mitigation. The conclusion is that the benefits
outweigh the drawbacks. Although the authors argue that many
of the threats identified in SDN also exist in conventional
networks, they do not explore the greater attack surface
exposed by the layered architecture of SDN and the impact of
this on the overall vulnerability of the architecture. As in [30],
security challenges related to inter-provider SDN deployments
are identified for future consideration.

In a combination of a security analysis and a framework
proposal in [33], the authors recommend the use of SDN
for security enhancement in wireless mobile networks. The
work includes a limited survey of SDN-based security solu-
tions categorized by target environment. Several requirements
are identified for the SDN security design; interoperability,
responsiveness, compatibility, adaptation, and simplicity. A
framework with a wireless mobile security layer above the
control plane interacting with local agents at the data plane is
proposed to meet these requirements.

The close link between SDN and NFV has been highlighted
with respect to the Virtualized Logical Network characteristic
of SDN described in Section II. In [34], the impact of SDN
on cloud security and the potential risks introduced when
SDN is deployed within and across clouds are discussed. The
opportunities and vulnerabilities are mixed in the discussion.
However, a clear observation is made; that the expansion
of SDN deployments from campus networks to wide area
networks will require increasingly complex security consid-
erations to be incorporated into SDN design. This stems
from securely exposing SDN programmability and providing

6 IEEE COMMUNICATION SURVEYS & TUTORIALS

TABLE I
COMPARISON OF SECURITY ANALYSES OF SDN AND OPENFLOW

Research Work Security Analysis OF SDN Layer/Interface
Vulnerabilities Enhancements App App-Ctl Ctl Ctl-Data Data

SDN Security Survey [24] X X X X X X X

OF Security [25], OF Vulnerability [26], ProtoGENI [28] X X X X X

Secure and Dependable SDN [27] X X X X X

Comprehensive Survey [21] X X X X X X

Attacking SDN [29] X X X X X

Vulnerability of FlowVisor [32] X X X X

SDN for Network Security [30] X X X X X X

Blessing or Curse? [31] X X X X X X

SDN Wireless Mobile [33] X X X X X X X

Cloud Computing Security [34] X X X X X

appropriate trust boundaries to secure each layer of the SDN
model. In Section VIII of this work, future research directions
will be discussed identifying approaches to optimize security
and performance of SDN.

The security analyses described in this section are compar-
atively presented in Table I in terms of their consideration of
OpenFlow and the SDN Layer/Interfaces discussed (Figure 4).
As previously mentioned, the focus of many of these analyses
is the OpenFlow protocol and a framework that supports
applications to modify the network state in the forwarding
device via OpenFlow protocol. As a result, the majority of
issues presented in this Section relate to control and data plane
security and the control-data interface. A few of these analyses
[21], [24], [27] specifically highlight the security issue of
introducing 3rd party applications to the network. In this paper,
a deeper analysis of these issues is provided (Section IV).

B. Attacks and Vulnerabilities in SDN

To elaborate the security analysis work, the SDN security
issues are categorized by type and with respect to the SDN
layer/interface affected by each issue/attack. As shown in
Table II, the issues are split into seven main categories and
provide a number of specific examples of the way in which
the security issue might arise. Only network security issues or
attacks specific to the SDN framework are detailed. Details of
the attack scenarios are provided in the following subsections
and the impacted entities in the architecture are highlighted
in Table II. The security issues identified in Table II are also
mapped to the SDN architecture in Figure 5 to highlight the
entity and interface impacted by the attack or vulnerability.
It can be noted that several of these attacks relate directly to
the characteristics identified in Section II e.g. Potential Attack
- Unauthorized Access links to Characteristic - Logically
Centralized Control. These links will be identified in the
subsequent sections.

1) Unauthorized Access: This category relates to access
control. One of the original characteristics of SDN is described
as centralized control. With the evolution of the technology,

this is more accurately described as logically centralized con-
trol, which in many implementations is distributed. In the func-
tional architecture of SDN, it is therefore possible for multiple
controllers to access the data plane of the network. Similarly,
applications from multiple sources (3rd party apps) may link
to a pool of controllers. The controller provides an abstraction
to applications so that the applications can read/write network
state, which is effectively a level of network control. If an
attacker impersonated a controller/application, it could gain
access to network resources and manipulate the network
operation.

2) Data Leakage: There are a variety of potential actions
described in the OpenFlow switch specification [36] for packet
handling. These include forward, drop and send to controller.
It is possible for an attacker to determine the action applied
to specific packet types by means of packet processing timing
analysis. For example, the time to process a packet passed
directly from input port to output port will be shorter than for
a packet to be redirected to the controller for processing. The
attacker can therefore discover the proactive/reactive configu-
ration of the switch. With a further set of crafted packets, an
attacker could infer additional information about the network
device. Having discovered the packet type that is redirected
to the controller, the attacker can then generate a volume of
fake flow requests leading to a Denial of Service (DoS) attack.
The relationship between this type of data leakage to the DoS
attack is illustrated in [29].

Another open challenge in the SDN architecture is the
secure storage of credentials (e.g. keys and certificates) for
multiple logical networks in the programmable data plane. Pre-
viously, cross-VM (virtual machine) side channel attacks have
been demonstrated in the cloud environment. In that attack, a
malicious VM identifies a vulnerable VM and extracts secure
information from the targeted resource [37]. Similar data
leakages are possible in the SDN environment. For example,
OF-Config instantiates multiple OF-Logical switches on-top
of an OpenFlow capable switch. Assume each logical entity is
assigned to a different customer. Then, if the logical networks
and their associated credentials (e.g. keys, certificates) are

A SURVEY OF SECURITY IN SOFTWARE DEFINED NETWORKS 7

Fig. 5. SDN Potential Attacks and Vulnerabilities

not securely isolated or containerized, this can lead to data
leakages that can compromise the functionality of the logical
network instance.

3) Data Modification: As previously mentioned, the con-
troller has the ability to program the network devices to control
the flow of traffic in the SDN. If an attacker is able to hijack the
controller then it would effectively have control over the entire
system. From this privileged position, the attacker can insert or
modify flow rules in the network devices, which would allow
packets to be steered through the network to the attacker’s
advantage.

Similarly, if intermediate entities are introduced between the
data and control plane components for provisioning of virtual
networks (e.g. FlowVisor [38], OpenVirtex [39], [40], FlowN
[41], Layer 2/3 agents etc.), then proper security mechanisms
should be used between every interface, component, and com-
munication channel [8]. With regards to the communication
channel, the OpenFlow switch specification [36] describes the
use of TLS with mutual authentication between the controllers
and their switches. However, the security feature is optional,
and the version of TLS is not specified. The lack of TLS
adoption by major vendors (and in the majority of open-source
controllers and switches) can allow a man-in-the-middle at-
tacker to impersonate the controller and launch various attacks;
for example, manipulate the control (e.g. OpenFlow) messages
sent by the controller or inject reset messages to tear down the
connection. In addition, the intermediate components between
the control and data plane should be secure enough to avoid
the introduction of additional security issues. A man-in-the-
middle attack occurs when the attacker has the ability to
intercept messages between two victims to monitor and alter
or inject messges into the communication channel. This is
possible when there is no authentication of the communication
endpoints. FlowVisor [38], a network hypervisor for Open-
Flow was identified to lack a proper isolation mechanism [32],
which can allow an attacker to launch data modification attacks
on the communicating entities. The issue of data modification
is a specific concern in the split-plane architecture of SDN.

4) Malicious/Compromised Applications: Given that the
controller acts as an abstraction from the data plane for the
applications and that SDN enables 3rd party applications to
be integrated into the architecture [42], a malicious application
could have as much of a detrimental effect on the network as a
compromised controller. Similarly, a poorly designed or buggy
application could unintentionally introduce vulnerabilities to
the system. For example, a known bug could be exploited by
an attacker to drive the application into an unsafe state. This
issue has been considered by a few researchers and will be
discussed in Section IV.

5) Denial of Service: One of the core security weaknesses
of SDN is introduced by the SDN architecture; the combi-
nation of the central controller and separation of the control
and data planes. Due to the communication path between the
controller and the network device, an attacker could flood
the controller with packets requiring a flow rule decision and
render it unavailable for legitimate users. A similar DoS attack
could be performed at the infrastructure level with flooding
of the flow table for which limited memory resources are
available [43]. In addition, the possibility of DoS attacks
leading to fraudulent rule insertion and rule modification is
discussed in [26]. This attack vector has received considerable
attention from the research community, as will be seen in
Sections IV and V.

6) Configuration Issues: Network security policies and pro-
tocols are continuously developed as network vulnerabilities
are detected. Many of these will apply to the layers and
interfaces of the SDN framework. However, there is little
protection from such policies if they are not implemented or
they are disabled without understanding the security implica-
tions of the deployment scenario. In an SDN-based network,
it will be important for network operators to enforce the
implementation of policies such as TLS. As highlighted in
Table II, misconfigurations or incorrect use of security features
can impact all layers in the architecture. As discussed in
Section III-B3, disabling a secure connection can adversely
impact the network functions by introducing several potential
attacks in the framework.

8 IEEE COMMUNICATION SURVEYS & TUTORIALS

TABLE II
CATEGORIZATION OF THE SECURITY ISSUES ASSOCIATED WITH THE SDN FRAMEWORK BY LAYER/INTERFACE AFFECTED

SDN Layer Affected or Targeted
Security Issue App App-Ctl Ctl Ctl-Data Data

Layer Interface Layer Interface Layer

Unauthorized Access e.g.

Unauthorized Controller Access/Controller Hijacking X X X

Unauthorized/Unauthenticated Application X X X

Data Leakage e.g.

Flow Rule Discovery (Side Channel Attack on Input Buffer) X

Credential Management (Keys, Certificates for each Logical Network) X

Forwarding Policy Discovery (Packet Processing Timing Analysis) X X X

Data Modification e.g.

Flow Rule Modification to Modify Packets (Man-in-the-Middle attack) X X X

Malicious/Compromised Applications e.g.

Fraudulent Rule Insertion X X X

Denial of Service e.g.

Controller-Switch Communication Flood X X X

Switch Flow Table Flooding X

Configuration Issues e.g.

Lack of TLS (or other Authentication Technique) Adoption X X X X X

Policy Enforcement X X X

Lack of Secure Provisioning X X X X X

System Level SDN Security e.g.

Lack of Visibility of Network State X X X

Opening the interfaces between network components has
the potential to introduce considerable vulnerabilities; not only
regarding interoperability between multiple vendor devices,
but also for data/control communication across these new
interfaces. SDNs provide us with the ability to easily program
the network and to allow for the creation of dynamic flow
policies. It is, in fact, this advantage that may also lead to
security vulnerabilities. With policies from multiple applica-
tions or installed across multiple devices, inconsistencies must
be detected to resolve policy conflicts. Several solutions have
been proposed in the literature and will be introduced in
Section IV.

7) System Level SDN Security: At a system level, there
are also a number of security concerns in SDN. A major
industry concern is satisfaction of the auditing process. It is
vital, in terms of network compliance and operation, to be
able to provide a controlled inventory of network devices. This
involves knowledge of what devices are running, how they are
bound to the network etc. For example, OpenFlow switches
can operate in either a fail-secure mode or fail standalone
mode. When the switch is disconnected from the controller, the
switch’s internal logic can choose to operate in one of these
modes. Upon re-connection, the controller takes control of
the switch and its internal network state. From an operational
perspective, it is critical for an operator to understand the mode
in which the switch operated during connection interruption,

the forwarding behavior during failures, the impacted flow
entries, and the behavior of the controller after reestablishing
the connection. For accountability and auditing, the ability to
retrospectively retrieve such operational information is critical
and should be managed in SDN.

Network security is a challenging task. In order to provide
correct access to resources, security professionals are tasked
with implementing a large range of techniques that increase
the complexity of the network and make it difficult to manage.
The basic properties of a secure communications network
are: confidentiality, integrity and availability of information.
These properties are supported by techniques of authorization,
authentication and encryption. The sum of these properties
presents a network in which the data, the network assets
(e.g. devices) and communication transactions are secure and
protected from either malicious attack or unintentional dam-
age. This section exhibits some of the open challenges and
possible vulnerabilities in a SDN-enabled network. Therefore,
it is critical to entail protection in the architecture for a secure
functioning of the network infrastructure.

IV. SOLUTIONS TO SECURITY ISSUES IN SDN

Seven categories of security issue/attack type were identified
in Table II. In the process of categorizing the solutions
presented in the literature (as shown in Table III), it is found

A SURVEY OF SECURITY IN SOFTWARE DEFINED NETWORKS 9

TABLE III
COMPARISON OF RESEARCH ON SOLUTIONS TO SECURITY ISSUES IN SDN

Solution to Research Work SDN Layer/Interface
Security Issue App App-Ctl Ctl Ctl-Data Data

Unauthorized Access Securing Distributed Control [44], Byzantine-Resilient SDN [45] X X

Authentication for Resilience [46] X

PermOF [47] X X

OperationCheckpoint [48] X X X

SE-Floodlight [49], [50] X X X X

AuthFlow [51] X X X X

Data Leakage

Data Modification

Malicious Applications FortNOX [52] X X X X

ROSEMARY [53] X X

LegoSDN [54] X X X

Denial of Service AVANT-GUARD [55], CPRecovery [56] X X X

VAVE [57] X X X X

Delegating Network Security [58] X X X X X

Configuration Issues NICE [59] X X X

FlowChecker [60], Flover [61], Anteater [62], VeriFlow [63], NetPlumber [64] X X X X

Security-Enhanced Firewall [65], FlowGuard [66], [67], LPM [68] X X X X

Frenetic [69], Flow-Based Policy [70], Consistent Updates [71] X X X X

Shared Data Store [72] X X X X

Splendid Isolation [73] X X

Verificare [74], Machine-Verified SDN [75], VeriCon [76] X X X

System Level Debugger for SDN [77] X X

SDN Security OFHIP [78], Secure-SDMN [79] X

FRESCO [80] X X X X

that solutions are proposed in only 5 of the 7 categories. There
are no proposed solutions to date for Data Leakage or Data
Modification issues.

Table III presents both a categorization of the research work
by security issue (corresponding to Table II), and a comparison
of each research work identified within these categories against
the relevant SDN layer/interface. An immediate observation
from the table indicates that the categories of Unauthorized
Access and Configuration Issues have received most attention
to date. It can also be identified that the solutions impact
all layers/interfaces of the SDN infrastructure. However, the
data layer is least affected. This is due to the strong focus on
software solutions. Further detail on each solution is provided
in the subsequent sections.

A. Unauthorized Access

Two attack vectors relating to unauthorized access were
raised in Table II; unauthorized controllers and unauthorized
applications. The issue relates to the potential damage that
could be wreaked on the network by either unauthorized SDN
element reconfiguring the network.

In an attempt to remove the controller bottleneck and
improve network efficiency, the authors of [44] describe a
hybrid control model. Control is centralized under normal cir-
cumstances but in the case of heavy load, network equipment

assumes the job of flow rule installation on other network
equipment on behalf of the controller. In [44], the method to
secure the distributed control model is presented. It is assumed
that the central control element is secured by TLS. The authors
then present a signature algorithm to securely transmit flow
installation requests from network device to network device.
The system requires a centralized trust manager and intro-
duces significant overhead in message-passing and signature-
checking.

The vulnerability of the SDN controller to attack is identi-
fied in [45]. The authors present a secure SDN structure with
each network element managed by multiple controllers using
the Byzantine mechanism. The number of controllers used to
support the Byzantine fault tolerance is minimized with a cost-
efficient controller assignment algorithm.

Several distributed control designs have been proposed for
scalability and reliability, as identified in Section II [17]–
[19], [81]. Their features are highlighted here as the dis-
tributed mechanisms inherently increase the protection of the
network against the effect of unauthorized controller access.
In HyperFlow [18], a publish/subscribe mechanism is used to
synchronize the network state between a group of distributed
controllers. A HyperFlow controller publishes events that alter
the system state and the other controllers replay all published
events to reconstruct the state. The control plane response time

10 IEEE COMMUNICATION SURVEYS & TUTORIALS

is reduced by the localized decision-making. With SoftCell
[17], the authors use local software agents to cache packet
classifiers and policy tags so that the main controller load is
reduced. In Kandoo [19], local decision-making is separated
from network-wide decision-making. Certain applications can
be supported by event processing at local controllers reducing
the load on the root controller. A proposal for using building
blocks - the Logical xBar and the Logical Server in recursive
aggregation is presented in [81]. This enables local control
at the appropriate level of the hierarchy and is proposed to
extend SDN to large-scale networks. Although these designs
are not specifically security-focussed, the resilience introduced
by the ability to delegate and/or distribute control can mitigate
the vulnerability of the individual SDN controller to attack.
While several open-source controllers (e.g. ONOS [20] and
OpenDaylight [14]) implement distributed control, there are
additional measures required for a fully secure, robust, and
resilient SDN control plane, as detailed in [82].

From a deployment perspective, an additional concern to
unauthorized access stems from the lack of TLS adoption
in real-world deployments [26]. This should be an important
consideration when the applications, controllers and network
elements are deployed across trust domains (e.g. the Internet).

Both authentication and authorization of the applications
is required to ensure that only trusted applications should
connect to the network. This issue is highlighted in [46].
In order to reduce the number of points of serious failure,
an SDN setup with a hierarchical system of controllers and
switches is proposed. By dividing work across layers of
“middle management” controllers between a root controller
and the switch fabric, the potential damage of unauthorized
access can be localized. This approach assumes that the root
controller is trusted. With this architecture, it might be possible
to limit the impact of a malicious/compromised application as
the application code would run at a “middle management”
controller with appropriate protection. However, while the
authors emphasize the need for urgent research to tackle the
protection issues of SDN deployment in large heterogeneous
networks, they do not propose how this protection should be
achieved.

A fault-tolerant controller architecture is presented in [83].
In order to guarantee a smooth transition between controller
instances in the case of a failure, the data store from which the
controllers derive the network state is implemented as a fault-
tolerant replicated state machine. Communication between the
controller instances must be secured.

The issue of exposing the full privilege of OpenFlow to
every application without protection is identified in [47]. The
authors propose PermOF with a set of permissions and an iso-
lation mechanism to enforce the permissions at the Application
Programming Interface (API) entry. The solution effectively
applies minimum privilege on the applications protecting the
network from control-plane attacks.

The concept of the permissions system is extended in [48].
OperationCheckpoint is designed and implemented on the
Floodlight controller [13]. The authors define the set of per-
missions to which the application must subscribe on initializa-
tion with the controller and introduce an OperationCheckpoint,

which implements a permissions check prior to authorizing
application commands. An unauthorized operations log is
used to audit malicious activity to build a profile for SDN
application-layer attacks.

SE (Security Enhanced) Floodlight [49], [50] developed by
Stanford Research Institute is an extension to the Floodlight
OpenFlow controller. SE-Floodlight introduces a security en-
forcement kernel (SEK), which is an improvement of FortNOX
(see Section IV-B) and includes a digitally authenticated
northbound API. An administrator is required to pre-sign the
OpenFlow application’s java class, which may be digitally
verified by the SEK at runtime. Once signed and validated, the
application has permission to modify or query the network, or
traffic on the network. The distinction between SE-Floodlight
and PermOF and OperationCheckpoint is in the granularity of
the approach. PermOF and OperationCheckpoint allow a set
of actions to be granted to an application rather than validating
the complete application.

To deny access to the SDN by unauthorized hosts, Auth-
Flow, an authentication and access control mechanism based
on host credentials, is proposed in [51]. AuthFlow is imple-
mented with an OF controller, an authenticator, and a RADIUS
server. The authenticator intercepts Extensible Authentication
Protocol (EAP) messages between the requesting host and the
RADIUS authentication server and provides an authentication
response to the OF controller. The controller allows or denies
traffic based on the authentication response. Access control is
implemented by pairing host credentials with a set of host
flows. The solution presented by AuthFlow challenges the
SDN security issue of unauthorized access.

Unauthorized access to critical SDN elements is being tack-
led at all layers of the SDN architecture. With a combination
of the described solutions, a defense-in-depth approach to
securing the SDN with layers of trust could be achieved.

In Table IV, a summary of the problem/goal and the
solution proposed for each research work presented under
Unauthorized Access Issues in SDN is provided. In [44]–[46],
solutions to protect against unauthorized controller access are
proposed. With [47]–[49], the solutions are designed to protect
against unauthorized applications, and in [51], a host-level
access control solution is proposed.

B. Malicious/Compromised Applications

At a minimum, in order to avoid the deployment of mali-
cious/compromised applications, controllers and applications
should establish a trusted connection and authenticate the
identity of the entities before exchanging control messages.
Several more advanced solutions are presented in [52]–[54].

A security enforcement kernel is proposed in [52] as a
solution to the problem of malicious controller applications.
FortNOX implements role-based authentication for determin-
ing the security authorization of each OF application. The Fort-
Nox enforcement engine handles possible conflicts with flow
rule insertion whereby rule acceptance/rejection is dependent
on the author’s security authorization. A new flow rule that
conflicts with an existing flow rule will be detected by Fort-
NOX. If the new (conflicting) flow rule request was generated

A SURVEY OF SECURITY IN SOFTWARE DEFINED NETWORKS 11

TABLE IV
PROBLEM AND SOLUTION PROPOSED FOR Unauthorized Access ISSUES IN SDN

Research Work Problem/Goal Proposed Solution

Securing Distributed Control [44] Secure the distributed control model against malicious use Signature algorithm to securely transmit
flow installation rules

Byzantine-Resilient Secure SDN [45] Protect the SDN Control Plane from attack Multiple controller structure with
Byzantine-Fault Tolerant algorithm

Authentication for Resilience [46] How to structure the SDN architecture to offer more security? Hierarchical System of controllers/switches
to reduce points of serious failure

PermOF [47] Full privilege of OF exposed to every application Proposed Permission System to apply
minimum privilege to applications

OperationCheckpoint [48] Controller operations open to every application Implementation of a Permissions Check
Mechanism to secure app-control interface

SE-Floodlight [49], [50] Lack of security between OF apps/modules and Role-based authorization and security
control/data plane communication constraint enforcement for OF control layer

AuthFlow [51] Prevent access to the SDN by unauthorized hosts An authentication and access control
mechanism based on host credentials

TABLE V
PROBLEM AND SOLUTION PROPOSED FOR Malicious/Compromised Application ISSUES IN SDN

Research Work Problem/Goal Proposed Solution

FortNOX [52] Challenge of detecting and reconciling potentially Security enforcement kernel for prioritizing flow rules
conflicting flow rules from OF apps with role-based authorization

ROSEMARY [53] Protect against simple/common network app failures A controller implementing a network app containment
leading to loss of network control and resilience strategy

LegoSDN [54] Make the controller and network resilient to A controller architecture to improve availability with fault isolation
SDN application failures and network transaction management

by a higher priority author, then the existing flow rule will
be replaced. However, if the new flow rule is produced by a
lower priority author, then it will be ignored. Three flow rule
producer roles are defined; OF Operator, OF Security, and OF
Application. A limitation of this approach is the determination
of appropriate security authorization level. FortNOX does not
resolve the issue of application identification and priority
enforcement.

With ROSEMARY [53], the authors propose a robust, se-
cure and high-performance network operating system (NOS).
The central objective of ROSEMARY is to improve the
resilience of the control plane to both buggy and malicious
applications. To achieve this, the authors propose a micro-NOS
architecture. Each OF application is run within an independent
instance of ROSEMARY effectively sandboxing the applica-
tion to protect the control layer from any vulnerability or
malicious operation of the application. The solution separates
network applications from the trusted computing base of the
NOS, monitors and controls network resources consumed by
each application, monitors and controls application operations
such as privileged system calls, and implements a safe NOS
restart process to carefully restart each service. This is the
most advanced work to date in the protection against mali-
cious/compromised SDN applications.

With LegoSDN [54], the authors consider the consequence
of SDN application failures on the controller reliability. In
order to avoid the crash of an SDN application leading to a
crash of the SDN controller, the authors propose an isolation
layer between SDN-Apps, a network-wide transaction system
to support atomic updates and efficient rollbacks, and a fault-
tolerance layer to detect and overcome crash triggering events.
As with ROSEMARY, the dual concerns of security and
availability motivate LegoSDN.

One of the SDN characteristics identified in Section II
is Third-party Network Services. The potential to integrate
third-party applications into the SDN via the SDN controller
increases the concern for controller/NOS stability in the face
of buggy and malicious applications. ROSEMARY [53] and
LegoSDN [54] are valuable proposals to protect against such
threats. However, significant further research is required to
optimize these solutions for a broad spectrum of failure types
while maintaining performance requirements of wide-scale
SDN deployments.

In Table V, a summary of the problem/goal and the
solution proposed for each research work presented under
Malicious/Compromised Application Issues in SDN is pro-
vided. [52] enforces application authorization to protect the
network from malicious/compromised applications while [53]

12 IEEE COMMUNICATION SURVEYS & TUTORIALS

TABLE VI
PROBLEM AND SOLUTION PROPOSED FOR Denial of Service ISSUES IN SDN

Research Work Problem/Goal Proposed Solution

AVANT-GUARD [55] Protect against Control Plane DoS attack and detect Connection Migration Tool reducing data-control plane
and respond to changing flow dynamics interaction and Actuating Trigger to install flow rules

CPRecovery [56] Protect centralized network OS from failure CPRecovery component provides seamless
due to DoS attack primary controller backup

VAVE [57] Source Address Validation NOX controller determines validation rules
with global view

Delegating Network Security [58] Remove network administration bottleneck ident++ protocol to delegate aspects of
network security policy

and [54] isolate the applications to protect the controller and
the network.

C. Denial of Service

As described in Section III, there is a specific weakness
introduced in SDN by the separation of the control and data
plane, which can lead to a DoS attack on the controller or
on the switch flow table. A number of solutions have been
proposed to overcome this weakness [55]–[58]

AVANT-GUARD [55] proposes a solution to the control-
data plane communication bottleneck in SDN by limiting the
flow requests sent to the control plane using a connection
migration tool. In a sense, it lies somewhere between a solution
to a SDN security issue and a SDN enhancement to network
security. The solution to DoS in SDN is highlighted here while
the traffic analysis and rule update functionality is discussed
in Section V-B. Focusing on the Transport Control Protocol
(TCP) SYN flood attack, AVANT-GUARD uses a connection
migration tool to remove failed TCP sessions at the data plane
prior to any notification to the control plane. This prevents
the possibility of a saturation or DoS attack by only sending
those flow requests to the control plane that complete the TCP
handshake.

A replication component, CPRecovery, is presented in [56]
as a means to provide network resilience. In the case of an
attack from an external attacker that overwhelms the network
operating system, the CPRecovery component provides seam-
less transition from the failed primary controller to a backup
consistent with the network’s failure-free state. The solution
is limited to a centralized control implementation.

The source address validation scheme in [57] is a pre-
emptive protection against IP spoofing, which could lead to a
DoS attack. The scheme is called Virtual source Address Vali-
dation Edge (VAVE). The authors use both the traffic analysis
capability of SDN and the ability to dynamically update rules
to protect against IP spoofing. An incoming packet, which
does not match against a rule at the OpenFlow switch is sent
to the controller for source address validation. If spoofing is
detected, the NOX-based OpenFlow controller installs a rule
at the switch to stop traffic from that source address. A rule
adaptor is used to limit the number of individual flow rules e.g.
one rule can cover a flow space consisting of multiple source

addresses. This, in turn, limits the capacity for a switch flow
table flood attack.

Finally, the ident++ protocol presented in [58] could be
implemented as a protection against DoS in that it avoids the
central controller becoming a bottleneck in network manage-
ment. The protocol queries end-hosts and networks on the
path of a flow for additional information that the network
administrator might not have so that users and end-hosts can
participate in network security enforcement. This method of
appropriate delegation of control and trust supports efficient
network management.

The DoS solutions presented here point towards the use of
SDN characteristics to overcome SDN attacks. With dynamic
flow table management and distributed control, the threat of
the SDN-specific DoS attack can actually be reduced. The
potential to protect against any (traditional/SDN) network DoS
attack using SDN will be discussed in Section V.

In Table VI, a summary of the problem/goal and the solution
proposed for each research work presented under Denial of
Service Issues in SDN is provided. [55], [56], [58] present
different solutions to the problem of the controller bottleneck
while [57] aims to protect against the data layer DoS attack.

D. Configuration Issues

Several solutions to the issue of network policy conflict aris-
ing from multiple applications in the SDN have been proposed
in the literature [59]–[76], [84]–[86]. Different approaches
have been taken but can be loosely grouped as those modelling
network behaviour and using a custom algorithm to derive
whether the network contains errors [59]–[62], real-time policy
checking [63]–[67], [84], language-based approaches to deal
with overlapping flow rules from different applications [69],
[70] and a series of formal verification methods [73]–[76].

These solutions are discussed, by category, in the follow-
ing sub-sections: Detecting Network Errors, Real-Time Policy
Checking, Language-Based Resolution, Consistent Abstrac-
tions/Network View, and Formal Verification Methods.

1) Detecting Network Errors: NICE [59] combines model
checking with symbolic execution to test OpenFlow appli-
cations for correctness. This solution enables the detection
of when a network reaches an inconsistent network state.
FlowChecker [60] uses binary decision diagrams to test for

A SURVEY OF SECURITY IN SOFTWARE DEFINED NETWORKS 13

intra-switch misconfigurations within a single flow table.
Flover [61] uses assertion sets and modulo theories to verify
flow policies. As each flow rule request is verified against the
non-bypass properties enforced in the network, Flover supports
a batch mode to improve the controller response time. Anteater
[62] offers a static analysis approach to diagnose network
configuration problems.

These solutions offer data plane verification. In general, they
take between several seconds and a few hours to run and, as a
result, may find problems after they occur rather than detecting
issues in real-time to prevent potential damage to the network.

2) Real-Time Policy Checking: VeriFlow [63] studies the
verification of invariants in real-time by intercepting flow rules
before they reach the network. VeriFlow models the network as
a graph to detect loops in the routing tables, unavailable paths
etc. The objective is real-time network invariant detection
and the results provided indicate performance in the order
of hundreds of microseconds. NetPlumber [64] is also a
real-time policy checking tool that incrementally checks for
compliance of state changes. NetPlumber is an improvement
on the author’s previous Header Space Analysis (HSA) [84]
work as it performs incremental computation based on the
dependency subgraph so that it is fast enough to validate
every update in real time. In [65], the authors apply HSA
to develop a conflict detection and resolution algorithm for
application in a SDN firewall. It is possible to bypass an SDN
firewall by re-writing flow entries in switches. This solution
creates and maintains a shifted flow graph based on checking
the flow space and firewall authorization space for conflicting
flow rules. The conflicting part of a flow path can then be
blocked by inserting deny rules or by refusing a new flow rule.
The implementation of the solution in the Floodlight firewall
application provides a practical example of a policy conflict
resolution mechanism, in contrast to many of the theoretical
models. The limitation of the solution is that it only considers
flow re-write actions related to firewall bypass threats.

Most recently, FlowGuard [66], [67] presents a solution
to check network flow path spaces to detect firewall policy
violations when network states are updated. FlowGuard also
supports automatic and real-time violation resolution with a
more refined approach than simply blocking/rejecting the pol-
icy update, as in some earlier solutions. This is achieved based
on five different violation resolution strategies; flow rejecting,
dependency breaking, update rejecting, flow removing and
packet blocking. The strategy selected depends on the extent
of the violation.

The focus on real-time operation of these solutions illus-
trates the evolution in policy conflict resolution techniques
towards deployment in production networks. Further experi-
mental deployments can be expected to bridge the gap between
the theoretical models and the characteristics of live networks.

3) Language-Based Resolution: Frenetic [69] is a specific
northbound API designed to resolve policy conflict. It is used
for programming a collection of network switches controlled
by a centralized controller. The run-time system converts
flow rules into non-overlapping policies before instructing the
controller to install the flow rules in the switches. In [70],
the flow-based policy enforcement is implemented as a NOX

application. Along with network isolation, it also allows the
integration of external authentication sources to provide access
control.

In contrast to the previous solutions, [69] and [70] introduce
verification at the controller level presenting a policy conflict
resolution mechanism that sits between the application layer
and the control layer. By abstracting from the details of
the low-level data plane rule implementation, this approach
can simplify network programming to avoid policy conflicts.
However, the current solutions require extension to operate in
a distributed controller environment with the associated issues
of distributed network state and multiple application resilience.

4) Consistent Abstractions/Network View: In [71], [85], the
authors discuss abstractions for per-packet and per-flow con-
sistency to overcome the instability of configuration changes in
SDN. The per-packet consistency ensures that every packet in
an update operation uses either the old policy or the new policy
and not a combination of the two. The per-flow consistency is
a generalization of per-packet consistency.

In [68], the authors propose a layered policy management
solution. Intra- and inter-module flow rule dependencies are re-
solved at the application layer, inter-application dependencies
at the control layer, and intra-table dependencies at the data
layer. By tackling the overlapping flow rule issue at multiple
layers, a wider set of dependencies can be resolved.

A concern with each of these proposed policy conflict
resolution approaches is their scalability for large applications
or large networks with regular flow rule additions/updates. In
each case, the controller or a delegated control function at the
switch performs extensive processing in order to detect po-
tential network state misconfigurations. A potential alternative
that does not sacrifice performance for the consistent network
view is proposed in [72]. Rather than implementing a policy
conflict resolution technique, the authors design a shared data
store architecture. By maintaining a strongly consistent data
store, the network state consistency is maintained.

5) Formal Verification Methods: Some formal approaches
have also been proposed to determine if the SDN control-plane
logic is safe, correct and secure overcoming errors in controller
logic, conflicting application policies or incorrect assumptions
about the operating environment [73]–[76].

Splendid Isolation [73] has been proposed as a means
of verifying the isolation of program traffic across network
slices. It is a formally proven programming abstraction for
defining slices. FlowVisor [38], as previously introduced, is a
hypervisor that acts as a transparent proxy between controllers
and switches and enables an administrator to identify slices
of the flowspace. However, it lacks the formal semantics
and proof of correctness and security provided by Splendid
Isolation. As described in [32], FlowVisor does not implement
action isolation rendering the isolation mechanism vulnerable.
For example, by altering the VLAN ID of a packet, a malicious
controller could steal or inject packets into another network
slice. Solutions such as [41], [73] are designed to overcome
this issue.

Verificare [74] is a formal verification tool. Verificare incor-
porates specification modeling and verification of OpenFlow
network correctness, convergence and mobility-related proper-

14 IEEE COMMUNICATION SURVEYS & TUTORIALS

ties. In [75] the authors develop a detailed operational model of
OpenFlow that they then formalize in the Coq proof assistant.
Based on this model, they develop a verified compiler and run-
time system and implement this as the first machine-verified
SDN controller. VeriCon [76] verifies the safety of infinite
state SDN programs.

It is clear from the range of contributions presented in this
section that the issue of verifiable, consistent network state
is a topic of research interest. The development of real-time
network invariant detection tools and formal verification tools
is valuable. However, the design of these tools for broad SDN
deployments rather than OF-specific implementation is future
research.

It should be noted that it is not just applications, but multiple
entities that have write access to program the switch flow
table, as shown in Figure 2. For example, as per the Open-
Flow switch specification [36], the configuration points can
determine which set of flows to program when bootstrapping
the switch. If any application overrides or misconfigures these
related flows without co-ordination, it could compromise the
switch functionality. Similar problems can arise when network
operators are given secure shell (ssh) access with write access
to the switch flow table.

Configuration issues, such as this bootstrapping example,
extend to the life-cycle of SDN networks and components,
and directly impact on security. As the network changes over
time with new applications, new devices, new users etc.,
security policies and technical methods must be implemented
and maintained to ensure the protection of the network and
its data. This is arguably more challenging for SDN than a
traditional network as the open innovation model of SDN is
likely to introduce more frequent network updates.

In Table VII, a summary of the problem/goal and the
solution proposed for each research work presented under
Configuration Issues in SDN is provided. The research work
is split according to the five categories of solution identified
in this Section. In general, Detecting Network Errors and
Language-Based Resolution are early works in the field. Real-
Time Policy Checking and Consistent Abstractions/Network
View present further advances in policy conflict resolution,
and Formal Verification Methods are some of the more recent
contributions to this topic.

E. System Level SDN Security

In terms of securely implementing the SDN, a number of
solutions have been presented.

In [77], a prototype network debugger is proposed to allow
SDN developers to reconstruct the chain of events which lead
to a bug and identify its root cause. This can support both
network debugging and, for example, the auditing requirement
highlighted in Section III for which the chain of events could
provide useful network state information.

In [78], the authors present OFHIP, which is an integration
of Host Identity Protocol (HIP) [87] and OpenFlow and uses
IPSec encapsulating security payload (ESP). The objective
of OFHIP is to enable secure mobility with OpenFlow by
avoiding the problems that would be encountered with the

current architecture given a change of IP address e.g. disrupted
flow processing, active SSL/TLS session teardown, and mutual
authentication issues. OFHIP proposes global identities as
per HIP [87] introducing a cryptographic name space that is
identical to the IPv6 address space, globally unique and does
not change with mobility events. As a result, OFHIP enables
OpenFlow switches to change their IP addresses securely
supporting mobility within and between networks.

In [79], the authors extend the OFHIP work to consider
security threats, issues and attacks in the Software-Defined
Mobile Network control channel. A secure control channel
architecture is presented and the protection of the architecture
against a series of IP based attacks is analyzed. Results for pro-
tection against DoS, Replay, IP spoofing, and eavesdropping
attacks demonstrate the potential for a secure software-defined
mobile network implementation with the secure control chan-
nel design.

FRESCO [80] is one notable contribution, which presents
an OpenFlow Security Application Development Framework
incorporating FortNOX [52]; a security enforcement kernel
described in Section IV-B. The idea behind FRESCO is to
allow the rapid design and development of security specific
modules, which can be incorporated as OpenFlow applications.
A library of reusable modules for the detection and mitigation
of network threats are provided.

The solutions presented for system level SDN security
issues identify some of the diverse and dynamic environments
in which SDN will be deployed e.g. cloud, data center, mobile.
In order to provide secure visibility of network state across
multiple, dynamic networks, novel security designs will be
required.

In Table VIII, a summary of the problem/goal and the
solution proposed for each research work presented under
System Level Security Issues in SDN is provided. A broad
range of solutions from network debugging to secure mobility
can be identified.

V. NETWORK SECURITY ENHANCEMENT USING THE SDN
FRAMEWORK

As previously noted, there are clear benefits to be gained
from the SDN architecture in terms of innovation in net-
work usage. Six categories have been identified to capture
the potential network security improvements based on the
deployment of SDN. These categories are identified in Table
IX and the individual solutions are discussed by category
in the subsequent sections. The solutions described here
take advantage of one or more of the SDN characteristics
highlighted in Section II and Figure 2 to deliver improved
network security. The clear observation from Table IX is the
distinct lack of focus on the application-control interface in
the research presented, while the other SDN layers/interfaces
are quite evenly represented. It is most likely that this is due
to the lack of a standardized protocol on this interface. In
contrast, solutions can be proven and demonstrated using the
OpenFlow protocol on the control-data interface. As a result,
development of a secure application-control interface has been
identified as a future research direction.

A SURVEY OF SECURITY IN SOFTWARE DEFINED NETWORKS 15

TABLE VII
PROBLEM AND SOLUTION PROPOSED FOR Configuration Issues IN SDN

Research Work Problem/Goal Proposed Solution

Detecting Network Errors

NICE [59] Test OF applications for correctness Automated OF application testing to remove bugs
in controllers

FlowChecker [60] Avoid misconfiguration issues in OF due to Use binary decision diagrams (BDDs) to test for
conflicting flow rules intra-switch misconfigurations

Flover [61] Verify that dynamically inserted flow policies Use Satisfiability Modulo Theories (SMT) solver to detect
do not violate the underlying if the aggregate of flow policies violates

network security policy network security policy

Anteater [62] Diagnose problems in the network data plane Static analysis tool for checking invariants

Real-Time Policy Checking

VeriFlow [63] Real-time network invariant detection Slice the OF network to check for invariant property violations

NetPlumber [64] Verify network correctness in real time Incremental computation to validate policy updates
in real time

Security-Enhanced Firewall [65] Detect and resolve firewall bypass Track flows using a shifted flow graph (HSA) and
threats in OF networks block conflicting flow path

FlowGuard [66], [67] Detect and resolve firewall policy violations Track network flow paths and check rule dependencies
in dynamic OF network for automatic, real-time violation resolution

Language-Based Resolution

Frenetic [69] Resolve policy conflicts Run-time system to convert flow rules into
non-overlapping policies

Flow-Based Policy [70] Simplify implementation of network security Flow-based network security policy language
mechanisms in SDN and framework

Consistent Abstractions/Network View

Consistent Updates [71] Overcome instability of configuration Per-packet and per-flow consistency abstractions
changes in SDN for configuration updates

LPM [68] Manage complex network dynamics in SDN Layered policy management framework (resolve inter-module,
inter-application and intra-table dependencies)

Shared Data Store [72] Maintain network performance while Distributed, highly-available, strongly consistent
supporting a strongly consistent controller for SDN based on

network view in SDN fault-tolerant data store

Formal Verification Methods

Splendid Isolation [73] How to program shared networks in a Introduce slice-based network programming
secure and reliable manner? to isolate program traffic

Verificare [74] A means to guarantee that SDN systems Methodology and Tools for formally verifiable
are safe, correct, or secure distributed system design

Machine-verified SDN [75] Automatic checking of network-wide properties Machine-verified SDN controller

VeriCon [76] Formal method to prove the correctness Verification Tool for infinite-state SDN programs
of an SDN

A. Collect, Detect, Protect

A process of harvesting intelligence from existing Intrusion
Detection Systems (IDS) and Intrusion Prevention Systems
(IPS), followed by analysis and centralized reprogramming of
the network, can render the SDN more robust to malicious at-
tacks than traditional networks. This process is well illustrated
in [88]. The authors combine OpenFlow and sFlow [123] for
anomaly detection and mitigation. Specifically, three modules
are described in the solution architecture: (a) the Collector,
in which flow statistics are gathered as is possible with the

OpenFlow and sFlow protocols, (b) the Anomaly Detection,
at which point analysis is carried out on the statistics and
anomalies identified, and (c) the Anomaly Mitigation at which
point flow-entries can be inserted in order to neutralize the
identified attack. The combination of modules essentially acts
as a feedback-control loop of network security. Successful
detection of DDoS attacks, worm propagation and port scan
attacks are demonstrated. Both the network-wide view and
the dynamic programmability of the SDN are employed to
successfully implement the solution in [88].

16 IEEE COMMUNICATION SURVEYS & TUTORIALS

TABLE VIII
PROBLEM AND SOLUTION PROPOSED FOR System Level Security ISSUES IN SDN

Research Work Problem/Goal Proposed Solution

Debugger for SDN [77] Simplify SDN debugging Prototype network debugger for SDN

OFHIP [78] Introduce Secure Mobility into OF switches and improve Global ID-based architecture enables OF switches
resilience against known TCP attacks to securely change IP address during mobility

Secure-SDMN [79] Protect the Control Channel of Software-Defined Secure Control Channel Architecture based on
Mobile Networks IPSec tunnels and security gateways

FRESCO [80] Simplify the development and deployment of Application Development Framework for Security
complex security services for OF networks Services Composition

TABLE IX
COMPARISON OF NETWORK SECURITY ENHANCEMENTS IN SDN

Security Enhancement Research Work SDN Layer/Interface
App App-Ctl Ctl Ctl-Data Data

Collect, Detect, Protect Combining OpenFlow/sFlow [88], Active Security [89] X X X X

Learning-IDS (L-IDS) [90], NetFuse [91], OrchSec [92] X X X X

Cognition [93] X X X

Traffic Analysis Resonance [94] X X X X

& Rule Updating AVANT-GUARD [55], Pedigree [95], OF-RHM [96] X X X

SDN-MTD [97] X X X X

NICE:NIDS [98], SnortFlow [99], SDNIPS [100], ScalableIDS [101] X X X

Revisiting Anomaly Detection [102] X X X

Fuzzy Logic SDN IDS [103] X X X X

DoS/DDoS Protection Lightweight DDoS [104] X X X

CONA [105], DDoS Defender [106], DDoS Blocker [107] X X X X

Security Middleboxes Slick [108], FlowTags [109] X X X X X

- Architectures and Services SIMPLE-fying Middlebox [110] X X X

OSTMA [111] X X X

Covert Channel Protection [112] X X X X

OpenSAFE [113], CloudWatcher [114] X X X X

Secure-TAS [115] X X

Secure Forensics [116] X X X

AAA AAA SDN [117] X X X

C-BAS [118] X X X X X

Secure, Scalable Multi-Tenancy vCNSMS [119], OpenvNMS [120], Tualatin [121] X X X X

NetSecCloud [122] X X

An illustration of this with respect to the SDN network
diagram is provided in Figure 6. As previously noted, the
statistics collection may be embedded in the controller or
deployed as a separate function, as appropriate to the specific
network.

Another complete feedback control loop methodology (col-
lect, detect, protect) is that of active security introduced in
[89]. An example illustrating intrusion detection, memory
content capture and analysis, and network reconfiguration
highlights the core capabilities of active security. These are
defined as protect, sense, adjust, collect and counter. Once
again, programmatic, centralized control enables this method-
ology.

In [90] a learning Intrusion Detection System (L-IDS) is

proposed, which utilizes the SDN architecture to detect and
respond to network attacks in embedded mobile devices.
A learning switch controller is proposed to support routing
correctness of mobile end-hosts. L-IDS takes advantage of
the OpenFlow SDN architecture with IDS logic running in
the controller and traffic measurement and anomaly detection
processes built into the OpenFlow network devices. This
supports efficient intrusion detection and dynamic network
reconfiguration to mitigate attacks.

NetFuse [91] is a mechanism to protect against traffic over-
load in OpenFlow (OF)-based data center networks. NetFuse
is an OF proxy device that monitors OF control messages
and uses OF read state messages to build a picture of active
network flows and resource utilization. A flow aggregation

A SURVEY OF SECURITY IN SOFTWARE DEFINED NETWORKS 17

Fig. 6. SDN Security Feedback Control - Step 1: Collect network statistics,
Step 2: Detect anomalies or intrusions in the network, Step 3: Insert flow
rules to protect the network.

algorithm is then applied to identify the flows with overloading
behaviour. A set of aggregation conditions are defined. For
example, a volume of flows to a specific destination port may
indicate an attack against specific services. The final step to
limit the effect of a suspicious flow is adaptive rate-limiting
based on a toxin-antitoxin mechanism; essentially the rate-
limiting is adjusted based on the response of the overloading
flow to the rate-limiting.

With OrchSec [92], an orchestrator-based architecture utiliz-
ing network monitoring and SDN control functions to develop
security applications is proposed. The authors identify some
of the deficiencies of other SDN-based security applications
such as the performance impact of the overhead introduced
at the SDN controller and the single point of failure when
using only a single SDN controller. The OrchSec solution
makes use of multiple diverse controller instances, uses sFlow
for packet-level network monitoring, and develops applications
that communicate via the northbound API (application-control
interface) rather than being embedded in a controller. The
functionality of OrchSec is demonstrated by detection and
mitigation against a DNS amplification attack.

The concept of the feedback-control loop is extended in
Cognition [93] with the proposal to apply cognitive functions
at the SDN application plane. The features already available in
open-source controllers to support enhanced network security
such as global network view, switch statistics etc. (i.e. those
features exploited in the work described earlier in this Sec-
tion) are described as non-cognitive functions. The authors of
Cognition propose to enhance the security level achieved with
the non-cognitive functions through dynamic multi-objective
optimization. The factors in the optimization problem would
include environmental changes (e.g. intrusion/attack), network
configuration changes, traffic changes and user changes. The
idea is that the cognitive module uses learning-based ap-
proaches to anticipate a potential security threat and triggers
the network to react appropriately to defend against the threat.

The proposal is theoretical with experimental implementation
identified as future work. This is a promising direction for
future research.

A number of OpenFlow-based traffic monitoring solutions
have been proposed that would support the initial Collect,
Detect phases of the feedback control loop methodology
[124]–[127]. OpenWatch [124] presents a prediction-based
algorithm with which the granularity of flow measurement can
be dynamically adjusted. FleXam [125] introduces a flexible
sampling extension for OpenFlow so that specific packet-level
information can be selected by the controller (or application).
OpenSketch [126] is a software-defined traffic measurement
architecture using sketches (compact data structures storing
summary information about the state of packets) for cus-
tomized and dynamic measurement data collection. In [127],
the authors design and evaluate a hierarchical heavy hitters
algorithm that identifies large traffic aggregates. Some of
these solutions specifically identify their suitability for security
applications although they can also be used in a wider context.

The solutions presented in this section demonstrate the great
benefit to be gained from SDN for implementing reactive net-
work security. Exciting further development can be expected
along the lines of Cognition where the SDN flowspace is used
for predictive functions and proactive network protection.

In Table X, a summary of the problem/goal and the solution
proposed for each research work presented under Collect,
Detect, Protect Network Security Enhancements in SDN is
provided. A similar approach of statistics collection, analysis,
and network reconfiguration is presented as a solution to
three slightly different problems in [88]–[90]. In [91], rate-
limiting is applied rather than network reconfiguration. [92]
and [93] apply similar features to develop more secure SDN
applications.

B. Attack Detection (Traffic Analysis) & Prevention (Rule
Updating)

A separate category of SDN security enhancements are
identified by their focus on a specific attack detection and,
in some cases, prevention.

Resonance [94] was one of the first security-related SDN so-
lutions. Resonance provides dynamic access control enforced
by network devices based on higher-level security policies.
Specifically, the high-level security policies are developed
based on distributed network monitoring (traffic analysis),
and enforced by programmable switches (rule updating). The
system is proposed for securing enterprise networks.

AVANT-GUARD [55] proposes a solution to the control-
data plane communication bottleneck in SDN by limiting the
flow requests sent to the control plane using a connection
migration tool. This was described in Section IV-C. In addition
to the connection migration tool, an actuating trigger is also
presented in [55]. This tool checks a defined traffic statistic
condition against locally collected packet and flow statistics
to determine an appropriate action. Two action options are
presented, either to notify the control plane that the condition
has been met or to proactively install a flow rule in a specified
flow table. In the security context, the traffic statistic could be

18 IEEE COMMUNICATION SURVEYS & TUTORIALS

TABLE X
PROBLEM AND SOLUTION PROPOSED FOR Collect, Detect, Protect NETWORK SECURITY ENHANCEMENTS IN SDN

Research Work Problem/Goal Proposed Solution

Combining OpenFlow/sFlow [88] Avoid control plane overload (DoS) during SDN IDS/IPS based on Statistics Collection,
OF statistics collection Anomaly Detection and Anomaly Mitigation Modules

Active Security [89] Dynamic and Programmable Security Infrastructure Network Feedback Control providing integrated security

L-IDS [90] Intrusion detection for embedded mobile devices Use OF SDN to detect traffic anomalies and
reconfigure network

NetFuse [91] Prevent data center network overloading problems OF proxy device to detect overload behaviour
based on flow aggregation

OrchSec [92] Overcome limitations of existing network security Orchestrator-based SDN architecture to develop
applications security applications

Cognition [93] Enhance the security level of SDNs by applying A cognitive module implemented in the app plane
cognitive functions at the app plane (via dynamic multi-objective optimization)

the flow rate from individual hosts, the trigger could be a
flow rate exceeding a defined threshold, and the action could
be to install a flow rule to drop traffic from the identified
host. AVANT-GUARD is shown to provide protection against
network saturation attacks, network scanning attacks, and net-
work intrusion attacks. However, only TCP flows are currently
considered in the work.

The switch-controller communication of SDN is also ex-
ploited in [95] in a system called Pedigree. Tagstreams, which
precede every connection, are sent to the controller. The
controller checks the tag for an identifier corresponding to
malware or to secret data. If such an identifier is detected, the
controller installs a flow-rule at the switch to block the flow
associated with this tagstream. Pedigree presents an interesting
solution to stemming the spread of malware (including poly-
morphic worms) and preventing privilege escalation attacks.
However, it is not clear that this solution with each tagstream
sent to the controller is truly scalable.

Attackers use various scanning techniques to discover vul-
nerable targets in the network. Identifying the IP addresses
in a target network is the first step in many attacks. In
[96] the authors propose a solution called OpenFlow Random
Host Mutation (OF-RHM) to prevent address discovery. An
OpenFlow controller is used to manage a pool of virtual IP
addresses, which are assigned to hosts within the network,
hiding the real IP addresses from the outside world and
presenting moving target defense. The real IP address remains
unchanged internally while the externally-visible virtual IP
addresses are randomly changed at regular intervals. The flow
table size required to support OF-RHM increases with increas-
ing network session establishment rate and session duration,
which could be challenging for deployment of OF-RHM in
a large network. DCPortals [128] provides traffic isolation
for virtual networks in a virtualized data center by packet
header rewriting to hide real traffic source and destination
information. This guarantees that one tenant’s traffic will never
reach VMs of other tenants.

In SDN-MTD [97], the authors explore the use of SDN
to provide network-based moving target defense (MTD) pro-

tection. There are a number of initial steps in an attack or
an exploit including network mapping and reconnaissance,
service discovery and operating system identification, and
vulnerability detection. In SDN-MTD, the SDN framework
enables attack surface obfuscation to delay and confuse the
attacker. For example, to protect against network mapping,
extra open and closed ports are revealed, and obfuscated port
traffic is generated. This increases the cost of the attack to
an attacker by requiring further investigation. The increased
attack cost is measured for an Nmap [129] scan with the
SDN-MTD protection implemented in Cisco’s One Platform
Kit (onePK) [130]. With SDN-MTD, the attack takes longer
and more packets are transmitted. However, the network
overhead to perform the filtering at the onePK controller is
not considered.

NICE:NIDS [98] is an intrusion detection framework for
virtual network systems. The use of virtual machines (VMs)
in a cloud environment can introduce a range of vulnerabil-
ities related to shared computing and storage resources and
the potential for cloud users to install vulnerable software.
NICE:NIDS uses an OF-based network intrusion detection
agent to monitor and analyze network traffic. If a vulnerability
is detected, the suspicious VMs can be quarantined and
inspected, and ultimately protected based on a set of possible
countermeasures such as traffic isolation, port blocking etc.
The SDN characteristics support the NICE:NIDS dynamic, re-
configurable IDS, which could not be achieved in a traditional
network.

With SnortFlow [99], the authors combine the intrusion
detection capability of Snort [131] and the flexible network
reconfiguration capability of OpenFlow. In the solution, the
SnortFlow server component gathers data from Snort agents,
performs the network security evaluation and generates the
actions to be pushed to the controller based on which the
controller reconfigures the network. The SnortFlow IPS is
implemented in a Xen-based cloud environment. However,
the results only illustrate the integration of Snort intrusion
detection with the OF-based SDN and not an IPS. In a sub-
sequent work, SDNIPS [100], the authors present evaluation

A SURVEY OF SECURITY IN SOFTWARE DEFINED NETWORKS 19

TABLE XI
PROBLEM AND SOLUTION PROPOSED FOR Attack Detection (Traffic Analysis) & Prevention (Rule Updating) NETWORK SECURITY ENHANCEMENTS IN

SDN

Research Work Problem/Goal Proposed Solution

Resonance [94] Improve enterprise network attack response capability Dynamic access control system for securing
enterprise networks

AVANT-GUARD [55] Protect against Control Plane DoS attack and detect Connection Migration Tool reducing data-control plane
and respond to changing flow dynamics interaction and Actuating Trigger to install flow rules

Pedigree [95] Defend enterprise networks against malware spread Traffic tainting (tagging) for flow tracking
and data exfiltration and filtering

OF-RHM [96] Frequently change host IP addresses for moving Random Host Mutation using virtual-to-real
target defense IP translation

SDN-MTD [97] Protect against network reconnaissance, SDN-based Moving Target Defense network
service discovery and OS fingerprinting protection application

NICE:NIDS [98] Prevent vulnerable virtual machines in the cloud Network intrusion detection, measurement,
from being compromised and countermeasure selection mechanism

SnortFlow [99] Overcome the latency, accuracy and flexibility OpenFlow-based IPS
issues of current IPS

SDNIPS [100] A comprehensive IPS solution to reconfigure An SDN-based IPS solution
cloud networking on-the-fly

ScalableIDS [101] Construct a scalable IDS to cope with increasing Scalable IDS architecture with sampling rate
volume of network traffic adjustment algorithm

Revisiting Anomaly Detection [102] Use SDN to detect and contain home/home office Anomaly Detection Algorithms deployed in
network security problems NOX controller

Fuzzy Logic Sec. Mgmt. [103] Use SDN to detect and protect the network from A fuzzy logic-based information security
malicious attack management system for SDN

results to demonstrate the increased attack detection rate of
SDNIPS as compared to a traditional IPS implementation. This
is based on the location of the detection engine in SDNIPS at
Dom0 with direct access to monitor all tenant-based networks
reducing processing time. Network reconfiguration (IPS) is
also demonstrated with options to drop packets or redirect
packets to a security appliance.

A similar proposal to integrate an open-source IDS with
SDN is proposed in [101]. Suricata IDS [132] is used in
this implementation with a simple sampling rate adjustment
algorithm proposed to increase the scalability of the IDS
architecture.

The value of using SDN to provide intrusion detection in
a Home Office / Small Office environment is proposed in
[102]. The implementation of four traffic anomaly detection
algorithms in an SDN using OpenFlow and NOX (C++
based OpenFlow Controller [11]) is illustrated. The benefits
in terms of efficient performance of the anomaly detection
algorithms, and the ability to co-exist with other home network
applications, such as Quality of Service (QoS) and Access
Control, are identified. This solution exploits the standardized
programmability of SDN to offer a more efficient anomaly
detection service to the end-user than is provided by the
traditional network deployment of anomaly detection in the
network core.

A fuzzy-logic based IDS/IPS for SDN is presented in [103].
As in [102], the SDN characteristics enable efficient imple-

mentation of the popular anomaly detection algorithms. The
use of fuzzy logic in decision-making reduces the computation
requirements.

A range of IDS/IPS solutions are presented in this sec-
tion to cope with different network attacks. Global network
monitoring and programmability are key to delivering these
solutions. However, in the majority of cases, further inves-
tigation/optimization of the solutions is required to deliver
the performance and scalability necessary in full-scale SDN
deployments.

In Table XI, a summary of the problem/goal and the solution
proposed for each research work presented under Attack Detec-
tion (Traffic Analysis) & Prevention (Rule Updating) Network
Security Enhancements in SDN is provided. The solutions
range from dynamic access control to traffic tagging and
filtering, and IPS to resolve both home office and enterprise
network security problems.

C. DoS/DDoS Protection

The Denial-of-Service attack was identified in Section III as
a weakness of SDN. However, a number of solutions exploit
the combination of traffic analysis via the controller’s network
view, and the data plane programmability to produce efficient
DoS/DDoS protection.

In [104], a Distributed DoS (DDoS) detection method is
presented. The system monitors OpenFlow switches registered
to a NOX controller at regular intervals to retrieve traffic data

20 IEEE COMMUNICATION SURVEYS & TUTORIALS

TABLE XII
PROBLEM AND SOLUTION PROPOSED FOR DoS/DDoS Protection NETWORK SECURITY ENHANCEMENTS IN SDN

Research Work Problem/Goal Proposed Solution

Lightweight DDoS [104] DDoS attack detection Statistical information with self-organizing maps to classify traffic
as normal or malicious

CONA [105] DDoS attack detection and response Rate and pattern of content requests are analysed to detect DDoS attack
in content-oriented network

DDoS Defender [106] DDoS attack detection and response Use OF and LISP to detect and drop DDoS traffic based on traffic volume

DDoS Blocker [107] Overcome difficulty of detecting and blocking DDoS blocking scheme for SDN-managed network
DDoS attack by botnet

such as average packets per flow, average bytes per flow etc.
Self Organizing Maps, an artificial neural network, is then
used to classify traffic as normal or malicious thus identifying
abnormal flows.

A content-oriented networking architecture (CONA) is pre-
sented in [105]. An OpenFlow agent is used as an intermediary
between content requests from a host to a content server in the
network. The OpenFlow agent communicates with an Open-
Flow controller. Content request messages are intercepted,
analysed and filtered, as appropriate, in order to mitigate
against DDoS attacks. A DDoS attack is identified when the
rate of requests to a given content server exceeds a specified
value. The controller is notified of the attack and sends rate
limiting messages to each relevant CONA agent to limit attack
propagation. It is not clear from the results provided how long
it takes for the rate-limiting to be implemented and the attack
to be halted.

A simple DDoS Defender is demonstrated in [106]. The
authors use Locator/ID separation protocol (LISP) [133] to
identify authorized and malicious sources. LISP separates the
locator and identifier of the host so that only the locator
changes as the node moves and the identifier remains un-
changed. The DDoS attack is then detected based on traffic
analysis. If the volume of traffic exceeds a set threshold, then
the controller detects it and drops the packets.

Sophisticated DDoS attacks target specific services and with
a large number of bots (compromised hosts) sending small
volumes of legitimate-looking traffic, they can break through
existing DDoS defenses. A DDoS Blocking application (DBA)
is presented in [107] to overcome this type of botnet-based at-
tack. DBA runs in the SDN controller monitoring flow metrics.
If a DDoS attack is detected, legitimate traffic is redirected to
a new server IP address while bots are blocked. The blocking
mechanism relies on the inability of the bots to understand
the redirect directive from the server so a computationally
expensive machine-decoding format is required. The reliance
of the DBA on the controller seeing each new flow may limit
the wide deployment of this solution given that flow rules are
commonly proactively installed rather than reactively.

As previously noted, the characteristics of SDN are well-
suited to network DoS protection. There is also potential for
application-level DoS defense. Future research to develop L4-
7 security defenses with SDN is anticipated.

In Table XII, a summary of the problem/goal and the
solution proposed for each research work presented under
DoS/DDoS Protection Network Security Enhancements in
SDN is provided. In each case, traffic statistics are used
to detect the DDoS attack with the specific implementation
dependent on the network environment.

D. Security Middleboxes - Architectures and Services

Middleboxes have long been associated with providing
network security. Not surprisingly, hand-in-hand with the IDS
work described in the previous sections is the integration
of security middleboxes into SDN exploiting the benefit of
programmability to redirect selected network traffic through
the middlebox. Middleboxes serve both in analysing traffic for
anomaly detection and in determining the appropriate action
to mitigate against an identified attack. The advantage of IPS
deployment based on SDN with unified scheduling of security
applications across the whole network and load balancing
among IPSs is highlighted in [134]. Solutions to the placement
and integration of SDN middleboxes are considered in [108]–
[112] while novel network security services deployed via SDN
middleboxes are described in [113]–[116].

With the Slick architecture [108], the authors propose a
centralized controller responsible for installing and migrating
functions onto custom middleboxes. Applications direct the
Slick controller to install functions for routing particular flows
based on security needs. The benefit of this architecture is
that new functions can be dynamically loaded to the Slick
middleboxes providing flexibility. The Slick controller deter-
mines the placement of functions in the middleboxes and
establishes the correct paths for specific traffic to pass through
those functions removing the requirement to manually plan
middlebox placement.

A similar architecture to Slick (augmented SDN controller
and middlebox) is presented in [109]. However, a focus of
the FlowTags architecture is a new Application Programming
Interface (API) between the controller and FlowTags-enhanced
middleboxes. The objective of FlowTags is to ensure consistent
network policy enforcement as packet headers and contents
may be dynamically modified by middleboxes. To ensure
that the correct network policy chain can be applied to a
flow (e.g. Firewall − > IDS − > Proxy), FlowTags are

A SURVEY OF SECURITY IN SOFTWARE DEFINED NETWORKS 21

embedded in packet headers to provide flow tracking and
enable controlled routing of tagged packets. A low overhead
is achieved with proactive installation of tagging rules in the
switch flow tables. However, higher overhead is expected with
reactive rule installation, which would be required in some
real-world deployments.

In contrast to [108], [109], the SIMPLE policy enforcement
layer [110] requires no modifications to SDN capabilities or
middlebox functionality making it suitable for legacy systems.
SIMPLE identifies the issue of ambiguity in forwarding deci-
sions when using flow-based rules traditionally employed for
L2/L3 functions (i.e. IP 5-tuple). The issue is illustrated in
Fig. 7. To overcome this problem, SIMPLE attaches tags to
packet headers to identify the processing state (i.e. location
in the chain of switches and middleboxes along a policy
chain) and tunnels packets between switches. In addition,
load-balancing is performed across middleboxes. A tag-based
packet classification architecture is also proposed in [135] to
reduce filtering and flow management overhead. The additional
processing time saved by the tag-based rather than hash-based
classification is used for deep packet inspection.

In [111], an optimized security traversal with middlebox
addition (OSTMA) mechanism is presented. The security
traversal refers to the ordered sequence of passing through
security devices/middleboxes and the objective is to meet the
QoS guarantees of the network. The cost function is based
on congestion in the network and a delay function based on
middlebox occupancy/loading. OpenFlow SDN is employed
to dynamically monitor and reconfigure the security traversal
path. The more regularly the delay is measured by the OF
controller, the fewer QoS violations that occur. However, the
computation cost at the controller and the network reconfig-
uration communication cost must be considered to determine
an appropriate optimization interval for a given network.

S1

S2

S3

S4

S5

S6

FW1 Proxy1

IDS1

Fig. 7. Example of data plane ambiguity to implement a policy chain:
Firewall-IDS-Proxy. S5 sees the same packet three times and must choose
between three actions: (1) Forward to IDS1, (2) Forward back to S2 for
Proxy1, and (3) Send to the destination. [110]

In [112], the authors present a method of protection against

covert channels. Covert channels are used for the secret trans-
fer of information using means of communication not normally
intended to be used for communication [136]. The solution
in [112] uses the overview of the SDN controller along
with SDN programmability to enable dynamic redirection of
flows. Each node in the network has a set level of security
clearance. The OpenFlow rules are set such that traffic is
only authorized when the receiver security level is higher
than the sender security level. If the receiver security level
is lower than the sender security level then the data is passed
through a filter (middlebox) in order to verify the security
of the communication. The filter comprises a content check
module and a time delay module. The content check module
can operate at a range of levels; the higher the level, the greater
the overhead. The most basic level involves checking TCP
flag fields to discard illegitimate packets while the highest
level looks for packet retransmission during the flow duration
to identify a covert channel setup. The time delay module
restricts covert timing channels by delaying the packet before
forwarding it. The complete architecture is implemented using
OpenFlow.

In terms of monitoring systems and access control methods
deployed via SDN middleboxes, a number of solutions have
been proposed. OpenSAFE [113] (Open Security Auditing
and Flow Examination) uses its ALARMS policy language
(A Language for Arbitrary Route Management for Security)
to manage the routing of traffic through network monitoring
devices. ALARMS describes paths between network elements
and uses OpenFlow to interface to those network elements.
For ALARMS constructions that are not natively understood
by OpenFlow, the flow must be sent to the controller for
processing. The authors identify this performance limitation
of the solution. CloudWatcher [114] is an SDN application
that controls network flows to guarantee that all necessary
network packets are inspected by some security devices. It
is designed for implementation in large and dynamic cloud
networks where CloudWatcher uses the SDN characteristics of
logically centralized control and programmability to automati-
cally detour network packets to pre-installed network security
devices. The example use-case is the ability of CloudWatcher
to provide continuous security monitoring in the case of VM
migration in a cloud environment.

A secure traffic analysis system (Secure-TAS) is presented
in [115] to trace malicious activities on internal networks.
SDN enables traffic redirection to/from suspicious hosts to
the Secure-TAS. The system design consists of a transparent
proxy, a threat analyser, a VM dispatcher, a victim host and
an internet emulator to handle a wide range of attacks and
to investigate malicious activities without the attacker being
aware of the surveillance. The solution illustrates the potential
for SDN to support advanced attack detection and prevention
methods.

In [116], the authors explore the new opportunities for
network forensics introduced by the SDN architecture. Specif-
ically, two issues with forensic tools in traditional networks
are identified; the inability to observe covert communication
between compromised nodes, and the inability to detect at-
tempts to exfiltrate sensitive data. It is proposed that these

22 IEEE COMMUNICATION SURVEYS & TUTORIALS

TABLE XIII
PROBLEM AND SOLUTION PROPOSED FOR Security Middlebox NETWORK SECURITY ENHANCEMENTS IN SDN

Research Work Problem/Goal Proposed Solution

Slick [108] Provide richer match/action set for improved Slick Controller and Middleboxes dynamically place network
network traffic management functions and direct traffic to those functions

FlowTags [109] Ensure consistent network policy enforcement Middleboxes add tags to outgoing packets to
in the presence of middleboxes provide correct context

SIMPLE-fying Middlebox [110] Efficient middlebox-specific traffic steering Tag and tunnel packets between middleboxes

OSTMA [111] Overcome the problem of QoS guarantee Dynamic security traversal scheme with middlebox
in security traversal addition for OF networks

Covert Channel Protection [112] Restrict covert channels Multi-level security network switch
using OF filter

OpenSAFE [113] Line-rate network traffic direction through Use OF to implement ALARMS policy for
security monitoring applications specifying and managing paths

CloudWatcher [114] Provide monitoring services for cloud networks SDN Application to control and direct
network flows through security services

Secure-TAS [115] Use SDN to protect the internal network Secure traffic analysis system to trace malicious activities
from attack on internal networks

Secure Forensics [116] SDN-based forensic system to investigate faults Lightweight middleboxes (Provenance Verification Points)
including data exfiltration and to monitor and track network activity

collusion between compromised nodes

issues can be overcome by using the network itself as an
observation point. The solution is deployed with a set of SDN
middleboxes called Provenance Verification Points (PVPs) that
monitor network activity, authenticate message transmission,
and provide a record of network transactions. The verification
provided by the PVPs ensure the tracking necessary to detect
the presence of network attacks.

While not related to middlebox implementation, two ad-
ditional security policy enforcement solutions are worth men-
tioning [137], [138]. The SDN-based implementation of Ama-
zon’s EC2 Elastic IP and Security Groups [137] uses OF to
provide flexibility to the provider and ease of configuration
of policy preferences. This is achieved by bundling groups of
EC2 instances (VMs) for security purposes e.g. a user could
apply firewall rules to a group. LiveSec [138] is a security
management architecture based on OF to apply fine-grained
control on the end-to-end flows of network tenants or users.
Once again, centralized control and network programmability
enable the network configuration such that the appropriate
security services are applied to the appropriate network flows.

The middlebox architecture and services research discussed
in this section presents real novelty in network security provi-
sion. The ability to dynamically configure an attack protection
based on real-time network behaviour is a first step. The
potential to combine defenses and detect an attack without
the awareness of the attacker(s) has great promise.

In Table XIII, a summary of the problem/goal and the solu-
tion proposed for each research work presented under Security
Middlebox Network Security Enhancements in SDN is pro-
vided. The solutions presented in [108]–[112] are appliance-
oriented architectures considering packet tagging and tunnel-
ing to apply security and network functions to traffic in the

correct order. [113]–[116] introduce novel security services via
SDN middleboxes.

E. Authentication, Authorization and Accounting

In Section IV, an authentication and access control mecha-
nism was proposed as a solution to the issue of unauthorized
access in SDN [51]. The ability of an OF-based SDN to sup-
port fine-grained access control to match services to identities
was not highlighted in that work but could be considered as
an SDN enhancement to network security.

An SDN-driven authentication, authorization, and account-
ing (AAA) system is presented in [117] to strengthen network
security. The access control system is implemented by modi-
fying the Floodlight [13] controller to register and authenticate
switches, authenticate hosts and bind them to switches, to
authenticate users, and to manage flows and user/host mobility.
Authentication is supported by a RADIUS server. The advan-
tage of this OF controller based access control system over
a Kerberos [139] or Lightweight Directory Access Protocol
(LDAP) [140] based system is not clearly defined. However,
the fine-grained access control supported by SDN extends the
AAA functionality.

The importance of efficient AAA management mechanisms
for adoption of SDN experimentation facilities (EFs) is iden-
tified in [118]. The concern is raised based on the varying
level of sophistication of AAA architectures in existing SDN
EFs such as GENI [141] and OFELIA [142]. The authors
propose a transferrable certificate-based AAA that can be
implemented in any facility. The C-BAS architecture supports
user identification via certificates, policing of user actions via
credentials (role-based privileges), and full accountability. The

A SURVEY OF SECURITY IN SOFTWARE DEFINED NETWORKS 23

TABLE XIV
PROBLEM AND SOLUTION PROPOSED FOR Authentication, Authorization, and Accounting (AAA) NETWORK SECURITY ENHANCEMENTS IN SDN

Research Work Problem/Goal Proposed Solution

AAA-SDN [117] Strengthen network security by SDN-driven access control OF controller with authentication module

C-BAS [118] Provide a robust, efficient AAA management mechanism for A certificate-based AAA architecture for SDN EFs
SDN experimental facilities (EFs)

solution presents an advance on existing AAA mechanisms
specifically for SDN.

These two solutions illustrate the potential to increase
AAA functionality and effectiveness by building on the SDN
infrastructure. It is a clear example of using the network to
protect the network. Further research on this topic is expected.

In Table XIV, a summary of the problem/goal and the
solution proposed for each research work presented under AAA
Network Security Enhancements in SDN is provided.

F. Secure, Scalable Multi-Tenancy

One of the characteristics of SDN identified in Section
II is virtualized logical networks and the fact that SDN
supports multi-tenancy. Several solutions have been proposed
that exploit the characteristics of SDN to provide multi-tenant
network security [119]–[122].

Some of the challenges encountered in multi-tenant virtu-
alized networks include blurred network boundaries between
virtual rather than physical systems, the correct placement of
security devices to protect virtual logical boundaries, different
security requirements for different tenants, and the dynamic
nature of security policy based on VM migration. In [119], a
collaborative network security prototype system (vCNSMS)
for a multiple tenant datacenter network is described to
overcome these challenges. SDN enables the network security
system through efficient flow table management and the SDN
controller network view that supports dynamic migration and
reconfiguration to solve security policy inconsistencies.

Open virtual Network Management and Security (Open
vNMS) [120] is proposed to support multi-tenancy while
resolving network and Virtual Tenant Network (VTN) scal-
ability issues. The flexible SDN architecture enables data
link layer isolation overcoming the bottleneck of Virtual
Local Area Network (VLAN), Multi-Protocol Label Switching
(MPLS), and Generic Routing Encapsulation (GRE) encapsu-
lation mechanisms that are limited by the number of available
segments and the configuration complexity. Open vNMS is
an OpenFlow v1.3 application taking advantage of multi-table
pipeline processing. Tenant packets are processed by specific
tables based on a slice ID. In the example implementation,
an Open vNMS slice is a set of allocated and shared virtual
OpenvSwitch resources (e.g. ports, tables, group tables). By
this means, each tenant has control of its own isolated space.

Tualatin [121] also considers the requirement for network
security protection in multi-tenant datacenters. Using SDN
and OpenFlow, Tualatin offers fine-grained security protection
for dynamically changing network topologies. The ability to

implement fine-grained traffic classification with OpenFlow
and apply individual security processing to selected traffic
streams means that the system resource utilization can be
optimized.

An example of SDN simplifying security in a cloud environ-
ment is presented in [122]. The dynamic requirements of cloud
environments and the variety of software and operating sys-
tems under different individual and group control can present
a challenge to the correct application of security policies.
In [122], a security policy is based on data from system
assessment, vulnerability assessment and live detection. This
data is then used to generate a security score, a trust factor and
a security requirement. An automated engine then implements
this policy. This system is possible in SDN with a logically
centralized database to provide up-to-date security information
about each system or service hosted by the cloud provider.
An evaluation environment is described in [122]. However,
no results are provided and one concern would be system
churn i.e. at what maximum frequency could this detection
and reconfiguration engine be operated to avoid ping-pong
re-configuration in the network? Is that maximum frequency
reasonable with respect to normal cloud system operation?

The close relationship between SDN and NFV was identi-
fied in Section II. In [143], Zhang proposes a vision for cloud
security that is underpinned by SDN. If individual Internet
users can be provided with a “purer data” service (less spam,
more secure), Zhang suggests that not only will there be an
economic gain for society but there will also be less discontent.
In his vision for cloud security, Internet users are provided
secure Internet access by central dynamic provisioning of
security services. SDN is the means to implement a software-
defined nervous system for the network and a software-defined
security system built into the network structure.

The solutions presented in this Section exploit the logically
centralized control and programmability of the SDN architec-
ture to provide secure, scalable multi-tenancy in both datacen-
ter and cloud network environments. Specifically, fine-grained
traffic classification enabled by OpenFlow and dynamic net-
work reconfiguration provide the potential for service-targeted
network security. The concept of Network Security as a
Service is discussed in Section VIII.

In Table XV, a summary of the problem/goal and the solu-
tion proposed for each research work presented under Secure,
Scalable Multi-Tenancy Network Security Enhancements in
SDN is provided.

Based on the work presented in this section, it is clear
that some of the SDN characteristics introduced in Section

24 IEEE COMMUNICATION SURVEYS & TUTORIALS

TABLE XV
PROBLEM AND SOLUTION PROPOSED FOR Secure, Scalable Multi-Tenancy NETWORK SECURITY ENHANCEMENTS IN SDN

Research Work Problem/Goal Proposed Solution

vCNSMS [119] Address network security in multiple tenant A collaborative network security system with
datacenter networks smart packet inspection using SDN

OpenvNMS [120] Support multi-tenancy while resolving scalability issues Autonomic SDN architecture supporting multi-tenancy and
elastic isolation between tenant networks

Tualatin [121] Provide network security services for tenant Security Workload System for fine-grained dynamic
cloud infrastructures network security protection

NetSecCloud [122] Provide system/service-specific network security in Logically centralized database to provide latest
cloud environments system/service security information

II inherently simplify and improve the way network security
is handled. Furthermore, the work illustrates the way in which
novel solutions can change the security landscape of our
infrastructure. The potential for simplified implementation of
essential network security features offers a clear benefit to
implementers deploying SDN-based networks.

VI. DISCUSSION: MORE OR LESS NETWORK SECURITY?

In the previous sections, Tables I, III and IX have been
used to present a categorization of the research work to date
on security in SDN.

Table I detailed the security analyses, which predominantly
consider OpenFlow and vulnerabilities related to the imple-
mentation of an OF-based SDN. As a result, apart from
[24], [27], the issues raised relate to the control and data
plane layers. In addition, the question whether SDN introduces
security vulnerabilities or enables improved network security
was also discussed in several of the analyses. In order to
address this discussion, the research work has been presented
in terms of both solutions to security issues (Section IV and
Table III) and security enhancements (Section V and Table
IX). The wide range of research work suggests that SDN
brings both improved functionality and open challenges, as
summarized in this Section. It can also be noted from Tables
III and IX that all layers and interfaces of SDN are strongly
represented in the research solutions.

A. Improved Functionality

With respect to the SDN interfaces, the majority of the work
surveyed references OpenFlow as the control-data interface.
This is understandable given that OpenFlow has been a driving
force for SDN and the benefit of demonstrating a solution
using a standard protocol. In fact, starting from OpenFlow
1.3, the specification recommends several measures that can
be used to mitigate the security threats of SDN. For example,
rate-limiting to limit DoS attacks on the control plane, flow ag-
gregation to encompass multiple flows under a single flow rule
and thus prevent information disclosure, and shorter timeouts
to reduce the impact of an attack that diverts traffic. These
improvements to OpenFlow derive from lessons learned in
early studies. Although any alternative to OpenFlow will likely
be very similar in nature, it should be noted that OpenFlow

may not be the only/definitive control-data interface protocol
in SDNs.

Not surprisingly, without a standardized application-control
interface (northbound API), the security enhancements dis-
cussed in Section V rarely refer to the means of communi-
cation between the application and controller. For the most
part, if an application is proposed in the research work, it
is written as a module of an existing controller. In contrast,
a promising number of solutions discussed in Section IV
consider the security requirements of the application-control
interface. This interface presents a vulnerability to various
attack vectors identified in Section III (e.g. Unauthorized Ac-
cess, Malicious/Compromised Applications, and Configuration
Issues). For this reason, further research is encouraged in
this area in order to define solutions suitable for real-world
deployment. The opportunity should also be taken at this early
stage to build security into the design of a standard northbound
API (or, indeed, any defined application-control interface).

B. Open Challenges

At face value, it would appear that an equal emphasis
is being placed on the security enhancements and security
issues in SDN. However, as previously noted, two of the
security issues identified in Section II (Data Leakage and Data
Modification) have not been considered in the literature. Of
the issues that have been tackled, there is a concentration
of focus around a number of key themes - unauthorized
controller/application access, protection against DDoS attack,
and resolution of network policy conflict arising from multi-
ple applications programming the network. The independent
contributions of the surveyed work are not yet mature enough
for production deployment.

While it is positive to note the contribution to solutions
to SDN security issues presented here, it remains a limited
contribution as compared to the range of security issues
identified in Table II. To achieve the full potential of SDN with
multi-vendor interoperability, 3rd party network applications,
and integration of network function virtualization, increased
effort to tackle the challenges to network security introduced
by the SDN framework is required.

In addition, from a deployment perspective, it is unclear
how SDN can improve the operational security functions (e.g.

A SURVEY OF SECURITY IN SOFTWARE DEFINED NETWORKS 25

Fig. 8. SDN Security Recommended Best Practices

system reliability, non-stop forwarding, secure recovery from
failures, audits etc.) in the production environment. There
is minimal understanding as to how SDN-based solutions
can replace traditional functions. To improve current security
practices, a detailed assessment of how security is built,
deployed and managed in real-world environments is required.
Based on such an assessment, novel algorithms and effective
functional solutions can be designed that can fundamentally
change the dynamics of security in network infrastructures. In
this regard, some potential future research directions in Section
VIII are discussed.

C. Recommended Best Practices

In Figure 8, the recommended best practices that should
be considered in an SDN deployment today are highlighted.
The list reflects the SDN security solutions presented in this
survey and lessons learned from existing SDN deployments.

• Policy Conflict Resolution/Network Invariant Detection:
As exhibited by several conflict detection and resolution
schemes, when application modules manipulate the net-
work state, the controller should identify misconfigura-
tions, unauthorized access, and irregularities to ensure
correct functioning of the entities. Therefore, it is rec-
ommended that all controller solutions inherently include
a policy conflict resolution subsystem to avoid network
logic manipulation issues.

• Mutual Authentication: SDN components should support
mutual authentication between all communicating enti-
ties. Authentication solutions should be enabled both
within and across trust domains to avoid the introduction
of insecure access to network resources. This prevents
data manipulation attacks, impersonation of components
and ensures secure identification of network entities

• Control Plane Isolation via Slicing: Unlike network vir-
tualization, slicing the network resources will partition
the resource allocated for tenants/users sharing the in-
frastructure. From a security standpoint, this provides an

isolated environment that can be securely instantiated and
protected from unauthorized access, data manipulations,
and preventing data leakages. Isolation of resources can
also guarantee dedicated resource allocation for individ-
ual tenants/users in the infrastructure.

• Containerized Applications: Assessing the different con-
troller implementations, network applications are either
statically compiled with the controller code, instantiated
as a dynamic module with the controller software (e.g.
in OpenDayLight the application bundles are dynamically
loaded with the controller to exchange information and
control the forwarding devices), or integrated as a third-
party software with remote access to the controller.
To prevent or restrict the impact of malicious applica-
tion behavior, it is recommended to support application
containerization, which can authenticate the application
during setup, control the application’s access rights on
the infrastructure, and limit, account for and isolate the
resource usage for each application. This can facilitate
the secure introduction of third-party applications to the
infrastructure and avoid any malicious behavior discussed
in the previous sections.

• Rate-Limiting, Flow Aggregation, Short Timeouts: This
recommended best practice highlights the correct use of
inherent security features in a SDN framework. Specif-
ically focusing on the data plane, the security of the
forwarding element is dependent on both the correct use
of configuration and control features and the security
capabilities supported by the device. In OpenFlow pro-
tocol, the correct use of flow and switch attributes (e.g.
flags, timeouts, mode of operation) as well as the inherent
security features (e.g. metering to rate-limit the data flow
to the control plane) can ensure correct packet forwarding
behavior (i.e. avoid overlaps, notify flow deletes, operate
securely when connection is lost with the controller etc.).

• Logging/Forensics for IDS/IPS: Network services and
applications with monitoring capabilities require logging
critical information and positively benefit from the logged

26 IEEE COMMUNICATION SURVEYS & TUTORIALS

information when troubleshooting and debugging the
infrastructure. As discussed in Section V, logging the
network events can be valuable to network operations and
can improve the security and reliability of the infrastruc-
ture.

VII. SDN SECURITY IN INDUSTRY: OPEN STANDARDS
AND OPEN SOURCE

While the research work presented here has been generated
over the past 5 years, this interest has only been matched by
industry working groups in the last 2 years. As SDN devices
enter production and deployment, both the standardization in-
dustry and industry research groups have recognized the need
to consider security in the SDN platform. The main groups
considering standardization of networking related to SDN are
are identified and their focus on security is highlighted.

A. ONF Security Discussion Group

The ONF Security Discussion Group [144] was launched
in April 2013 and is currently working on defining essential
and desired security functions for each element of the SDN
platform. It became a full ONF Working Group in September
2014. The objectives of the Security group include: (1) the
assessment of security considerations and related contribution
to various ONF specifications (e.g. SDN Architecture 1.0,
OpenFlow Table Type Patterns etc.) and standards (e.g. Open-
Flow, OF-CONFIG etc.) [23], (2) to draft security standard
documents (e.g. ONF Security Principles) with the objective of
identifying and assessing the potential security risks associated
with a reference SDN architecture, and (3) to encourage
development of SDN applications that deliver network/data
security.

It should be noted that the ONF Architecture document
[145] also includes a section on security, which targets security
of the control plane and the physical (or logical) devices, and
security of the data traversing the network. The document
describes the use of existing, proven, security models.

B. ETSI ISG NFV Security Expert Group

The ETSI Industry Specification Group (ISG) for Network
Functions Virtualization (NFV) [146] takes a different ap-
proach to security. Rather than establishing a specific security
working group, a set of security “experts” work across the
NFV working groups.

The two stated goals of the NFV Security Expert Group are
to design security into NFV from the beginning and to ensure
security accreditation bodies address NFV. They have also
clearly identified that they will not handle existing security
issues, which are not altered by NFV.

Two group specifications have been issued [147], [148]. The
security problem statement [147] identifies 10 key security
issues. Each issue is assigned to a specific working group
and proposed actions involve documentation of the existing
solutions/recommended practice and subsequent research, if
necessary. The security and trust guidance document [148]
provides guidance for security considerations that are unique
to NFV development, architecture and operation.

C. ITU-T Standardization of SDN

In December 2012 at the World Telecommunication Stan-
dardization Assembly (WTSA), a new resolution to expand
and accelerate the ITU-T SDN standardization activity was
agreed [149].

Two study groups (SGs) are tasked with the work, which
was launched in June 2013. SG11 (Signalling requirements,
protocols and test specifications) is tasked with developing
the signalling requirements and protocols on SDN while
SG13 (Future networks including cloud computing, mobile
and NGN) is tasked with targeting the functional requirements
and architectures of SDN [150]. The main output from the
groups will be recommendations in each of these areas. A
Joint Coordination Activity on SDN will coordinate the work.

The SG17 Security Group is considering SDN security
under Q6/17. Regarding security of SDN (i.e. how to make
SDN secure), they will link with SG13. Regarding security
by SDN (i.e. how to provide security services using SDN
principles), a new work item is being considered.

Two questions (Q7/13 and Q8/13) under study in SG13 refer
to security in evolving networks and SDN; specifically Deep
Packet Inspection (DPI), and security and identity manage-
ment.

Other groups, which relate to the concept of SDN in
terms of separation of forwarding and control planes, network
configuration or routing are: IETF FORCES (Forwarding and
Control Element Separation) [151], PCE (Path Computation
Element) [152], ALTO (Application-Layer Traffic Optimiza-
tion) [153], Netmod (NETCONF Data Modeling Language)
[154], NETCONF (Network Configuration) [155], NVO3
(Network Virtualization Overlays) [156], LISP (Locator/ID
Separation Protocol) [133] and I2RS (Interface to the Routing
System) [157]. To the best of our knowledge, only I2RS
makes specific reference to security requirements. The charter
identifies the requirement to consider security in the high-level
architecture and to react to network-based attacks. However,
it can be noted that NetConf is required to run over a secure
interface (secure socket shell (ssh) or TLS). In addition,
the scope of NVO3 is such that security is inherent in its
mandate; it requires traffic isolation, address independence
and placement and migration of virtual machines. Finally,
two IETF Internet-Draft documents were published in October
2012 entitled “Security Requirements in the Software Defined
Networking Model” and “Security Analysis of the Open Net-
working Foundation (ONF) OpenFlow Switch Specification”.
However, neither document has been adopted by a working
group to date.

The Software-Defined Networking Research Group (SD-
NRG) [158] of the Internet Research Task Force (IRTF) was
chartered in January 2013. The group investigates SDN from
a range of perspectives and aims to identify both near-term
solutions and methods for SDN deployment, and longer-term
research challenges [159]. One of the goals of SDNRG is to
input to standards producing organizations such as the Internet
Engineering Task Force (IETF), the European Telecommuni-
cations Standards Institute (ETSI) and the Open Networking
Foundation (ONF). Security is a defined area of interest for

A SURVEY OF SECURITY IN SOFTWARE DEFINED NETWORKS 27

TABLE XVI
INDUSTRY FOCUS ON SECURITY IN SDN

Forum Group Name Launch Objective Proposed Output Ref.
Date

ONF Security Apr. 2013 Define security requirements for SDN Security Standards Documents [144]
Working Group OpenFlow SDN architecture Threat Model/Analysis Document

ETSI NFV Security Mar. 2013 Design Security into NFV from the Document existing solutions/ [146]
Experts Group start and ensure security accreditation recommended practices and identify

bodies address NFV subsequent research requirements

ITU-T Study Group Jun. 2013 Contribute to Standardization of SDN Recommendations [149], [150]
SG11/SG13 (SG17)

the group.
A summary of the industry standardization and research

group’s work regarding security in SDN is provided in Table
XVI.

D. Open Source Activities

Many of the SDN developments are driven by open source
implementations from academics and code contributors from
industry. While there are several open source SDN solutions,
those contributions related to security are highlighted here.

OpenFlowSec [160], a consortium of researchers from SRI
International and Texas A&M University have built a SDN Se-
curity suite. Similar to a security enhanced Linux (SELinux),
their suite extended the Floodlight controller to introduce
SEFloodlight [50], which is an extension to their security
enforcement kernel project (FortNOX [52]). In addition, the
software suite includes a Security Actuator and OpenFlow
Bothunter to invoke advanced security logic and to perform
passive security analysis, respectively.

OpenDayLight provides AAA [161], a security module to
authenticate identities, authorize administrative access to pro-
cesses and applications, and provide accounting information
to log accesses to resources. In addition, the project includes
Defense4All [162] security project, which provides a system
for detecting attack traffic and re-directing them based on
OpenDayLight’s monitoring and control capabilities. Open-
DayLight also includes SNBI [163] a project used for securely
bootstrapping the network infrastructure by automating the
setup process for required devices and its credentials. For the
SDN community to securely move forward, it is vital to build
such solutions to improve the robustness of the software suite
and enhance the introduction of novel security features.

Some of the security contributions to the open source
activities derive from commercial security products developed
to exploit the potential for enhanced and simplified security in
SDNs. For example, RadWare DefenseFlow is the commercial
product related to ODL Defense4All. Other SDN security
products include Lancope StealthWatch System and HP Sen-
tinel. Several of the offerings in the HP SDN App store [42]
are also security-related providing DoS or Firewall protection.

VIII. FUTURE RESEARCH DIRECTIONS

A. Application-Network Transaction Security

A number of challenges are identified in Table II that
affect the application layer and the application-control inter-
face. Assuming that TLS is implemented and that mutual
authentication takes place between the controller and network
devices, a similar level of trust must be established between the
applications and the network controller. Some initial solutions
have been identified in Section IV. However, further extension
of these solutions is possible.

For example, one of the means to advance resource sharing
and customizability of the network is NFV [164]. The char-
acteristics of SDN support NFV. Some examples of this have
been described in Section V-F. SDN supports the provision
of “X”-as-a-service (XaaS). This future service architecture
will be driven by applications defining their required compute,
storage and connection resources and requesting these from the
network. This transaction must be secured. The key steps in
such an exchange are illustrated in Fig. 9. First, the application
sends a connection request to the controller from which the
controller verifies the application identity and sends a connec-
tion response to the application. Next, the application verifies
the controller identity and submits its requirement request (e.g.
bandwidth, latency, counters to monitor etc.). At this point, the
controller verifies the requirements, checking and resolving
any potential policy conflicts arising from the request. Finally,
the controller generates the necessary flow rules to implement
the application service, updates neighbouring controllers of the
changed network policy, and sends an acknowledgment to the
application.

While some research solutions to provide secure
application-network transactions have been proposed (as
described in Section IV-B), the problem is far from resolved.
It is important for both SDN Controller designers and NBI
protocol developers to firmly consider security in their
designs. A secure application-network transaction process
would complement a potential secure control-data plane
transaction (with mutual authentication) and secure control-
control transactions to present a complete cross-layer secure
SDN.

28 IEEE COMMUNICATION SURVEYS & TUTORIALS

Fig. 9. Steps in the Secure Application-Network Transaction

B. Secure Network Map

As identified in Section III, the auditing process is a key
concern in the wide area implementation of SDN particularly
with the virtual to physical mappings of network elements and
functions. It is important to be able to determine network state
at any given time and to be able to track back to identify the
network state at a previous point in time. SDN exists alongside
virtualization and specifically NFV. This means that virtual
networks are mapped onto physical networks for individual
tenants. Network applications then draw on details of the
underlying network in order to implement a given function
e.g. load-balancing, energy management etc. The separation of
sections of the network information base (NIB) may be possi-
ble to support multi-tenant isolation. However, the question of
how to distribute or segment the NIB while providing the full
network state information required by individual applications
requires further study. The secure network map applies to the
control and data layers and the control-data interface.

C. Exploiting SDN for Moving Target Defense

There is also great potential to exploit the adaptive and
dynamic capabilities of the SDN framework in order to
combat the types of attacker behavior presented by advanced
persistent threats. The concept of security service insertion to
dynamically detect and/or prevent suspicious traffic during live
network operation has been discussed in Section V. Taking a
step beyond that, there are opportunities for moving target
defense to be applied in SDN, as in [96]. A clear candidate
for moving target defense could be the controller. Rather than
a single, central control element or distributed control across
a series of elements, the control function could be shifted
between a series of elements presenting a challenge to the
attacker interested in targeting the control function. Derivation
of potential algorithms to provide the shifting control function
is another research topic. Study of moving target defense
systems predominantly applies to the control layer.

D. Security Assessment Framework

SDN adopters (e.g. Service Providers, Enterprises etc.)
are keen on deploying open-source solutions (e.g. Open-
Stack [165], OpenContrail [15], 3rd party network services
etc.) to address their customer pain points. As this trend
matures, it is evident that more open-source based network
services/applications will be prominent in the market (e.g. HP
App Store [42]). While network testbeds like Mininet [166],
ProtoGENI [167] etc. can be used to test these components
and assess their feature set and performance, an assessment
framework to evaluate the component risks and vulnerabilities
is still missing. Quagga SDN Module (QuaSM) has been
proposed in [168] to support experimentation and testing of
BGP functions within SDN with a view to support security
researchers. It is proposed that information learned by BGP
can be integrated with the rest of the SDN network state
to provide increased network security. One potential research
direction could involve building a framework to define security
models and templates, known threat patterns etc. that could
then be used to assess and verify the security of individual
components. This would help adopters to understand the
vulnerabilities prior to a potentially costly deployment. The
development of a security assessment framework requires
input at all layers and interfaces of the SDN.

E. Network Security as a Service (NSaaS)

Enterprises often lack the security expertise to protect their
business functions. As a result they are dependent on external
managed security service providers (MSSP) to secure their
overall operations. Current MSSP solutions offer analytical
capabilities, continuous resource monitoring, security device
management, compliance evaluation etc. to prevent and detect
vulnerabilities in the system. Most solutions involve manual
assessment of resources and usage of sophisticated toolsets,
which incurs high management costs for the enterprise. With
the emergence of machine learning techniques (e.g. data
correlation, feature extraction, graph mining etc.) and the
capability to program the network with SDN, these MSSP
functionalities can be automated and can reside closer to
the enforcement point thereby offering an efficient alterna-
tive for enterprises. One potential research direction could
involve building security-focused machine learning features,
novel data-processing algorithms for security, and building
SDN components to realize these functions in an automated
manner. These features can be realized as virtualized network
functions which are provisioned and managed by a SDN-based
infrastructure. NSaaS involves all layers and interfaces of the
SDN with specific focus on the application layer to provide
novel security services.

F. Removing Middleboxes from the Network

In Section V, several proposals were discussed regarding
the integration of network middleboxes. In each case, some
improvement in middlebox management, functionality or flow
tracking is suggested by use of the SDN characteristics. How-
ever, the requirement for the (potentially expensive) middlebox

A SURVEY OF SECURITY IN SOFTWARE DEFINED NETWORKS 29

itself is not questioned. In [169], the authors propose FAST
(Flow-level State Transitions) as a new switch primitive. The
concept of FAST is that a controller can proactively program
state transitions that allow switches to run dynamic actions
based on local information. For example, the implementation
of a stateful firewall to filter unsolicited inbound TCP con-
nections without any outbound flow would involve a TCP
state machine to track the connection state and establish or
close the connection dependent on the TCP state. In contrast,
the reactive approach would require the switch to send TCP
signals to the controller for TCP state tracking and subsequent
flow rule installation with the associated latency overhead. By
using the FAST process, an appropriate state machine can be
built for any application with the potential for current switches
to replace the variety of network functions generally supported
by middleboxes. A potential research direction could be the
development of this security state machine approach toward
dynamic solutions suitable to protect against continuously
evolving advanced persistent threats. The ability to call the
state machine rather than deploy a new middlebox/middlebox
software could provide the required speed of response. The
removal of middleboxes from the network will focus on ad-
vances at the SDN data layer within network devices (physical
and virtual).

IX. CONCLUSION

To respond to the question “Is SDN Secure?” at this stage,
the response is most likely “Not really.” It may be possible
to have a secure SDN deployment if the SDN is deployed
with equipment from a single provider, with no communication
beyond the defined trust boundary, and in accordance with the
strictest security principles. However, this deployment would
only reflect a subset of the SDN characteristics and, as such,
would be limited as compared to the full SDN potential.

In this survey, the evidence for the two sides of the SDN
security coin has been presented; that it is possible to improve
network security using the characteristics of the SDN architec-
ture, and that the SDN architecture introduces security issues.
The conclusion is that the work on enhancements to network
security via SDN is more mature. This is evidenced by the
commercially available applications.

However, research solutions have been presented to address
some of the security issues introduced by SDN e.g. how
to limit the potential damage from a malicious/compromised
application. Work on these issues is developing encouraged by
the increasing security focus of industry-sponsored standard-
ization and research groups.

Having surveyed the research on security in SDN, a set of
topics for future research have been identified. A strong theme
amongst these topics is projection of potential security issues
and automated response for quick reaction to network threats.

By implementing proven security techniques from our cur-
rent network deployments, resolving known security issues in
SDN, and further exploiting the dynamic, programmable, and
open characteristics of SDN, software-defined networks may
well be more secure than traditional networks. There is much
work to do before this vision is realized.

REFERENCES

[1] S. Horing, J. Menard, and R. Staehler, “Stored Program Controlled
Network,” Bell System Technical Journal, vol. 61, no. 7, 1982.

[2] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Wetherall,
and G. J. Minden, “A survey of active network research,” IEEE
Communications Magazine, vol. 35, no. 1, pp. 80–86, 1997.

[3] M. Casado, T. Garfinkel, A. Akella, M. J. Freedman, D. Boneh,
N. McKeown, and S. Shenker, “SANE: A protection architecture for
enterprise networks,” in USENIX Security Symposium, 2006.

[4] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and
S. Shenker, “Ethane: Taking control of the enterprise,” in ACM SIG-
COMM Computer Communication Review, vol. 37, no. 4. ACM, 2007,
pp. 1–12.

[5] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation
in campus networks,” ACM SIGCOMM Computer Communication
Review, vol. 38, no. 2, pp. 69–74, 2008.

[6] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, and M. Zhu, “B4: Experience with a
globally-deployed software defined wan,” in Proceedings of the ACM
SIGCOMM 2013 conference. ACM, 2013, pp. 3–14.

[7] P. Patel, D. Bansal, L. Yuan, A. Murthy, A. Greenberg, D. A. Maltz,
R. Kern, H. Kumar, M. Zikos, H. Wu, C. Kim, and N. Karri, “Ananta:
Cloud Scale Load Balancing,” in Proceedings of the ACM SIGCOMM
2013 Conference on SIGCOMM. ACM, 2013, pp. 207–218.

[8] S. Natarajan, A. Ramaiah, and M. Mathen, “A Software defined Cloud-
Gateway automation system using OpenFlow,” in 2013 IEEE 2nd
International Conference on Cloud Networking (CloudNet), Nov 2013,
pp. 219–226.

[9] VMware NSX Customer Story: Colt Decreases Data Center
Networking Complexity, VMware, Inc., 2014, http://blogs.vmware.
com/networkvirtualization/2014/08/vmware-nsx-customer-story-colt-
decreases-data-center-networking-complexity.html.

[10] Software Defined Networking: Gaining Momentum, Nuage Networks,
2014, http://www.nuagenetworks.net/momentum/.

[11] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown,
and S. Shenker, “NOX: towards an operating system for networks,”
ACM SIGCOMM Computer Communication Review, vol. 38, no. 3,
pp. 105–110, 2008.

[12] D. Erickson, “The beacon openflow controller,” in Proceedings of the
second ACM SIGCOMM workshop on Hot topics in software defined
networking. ACM, 2013, pp. 13–18.

[13] “Floodlight Controller, Floodlight Documentation, For Developers,
Architecture.” [Online]. Available: http://www.projectfloodlight.org/
floodlight/

[14] “OpenDaylight: A Linux Foundation Collaborative Project,” 2014.
[Online]. Available: http://www.opendaylight.org

[15] “OpenContrail.” [Online]. Available: http://opencontrail.org/
[16] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,

R. Ramanathan, Y. Iwata, H. Inoue, T. Hama et al., “Onix: A Dis-
tributed Control Platform for Large-scale Production Networks.” in
OSDI, vol. 10, 2010, pp. 1–6.

[17] X. Jin, L. E. Li, L. Vanbever, and J. Rexford, “Softcell: Scalable
and flexible cellular core network architecture,” in Proceedings of
the ninth ACM conference on Emerging networking experiments and
technologies. ACM, 2013, pp. 163–174.

[18] A. Tootoonchian and Y. Ganjali, “HyperFlow: A distributed control
plane for OpenFlow,” in Proceedings of the 2010 internet network man-
agement conference on Research on enterprise networking. USENIX
Association, 2010, pp. 3–3.

[19] S. H. Yeganeh and Y. Ganjali, “Kandoo: a framework for efficient and
scalable offloading of control applications,” in Proceedings of the first
workshop on Hot topics in software defined networks. ACM, 2012,
pp. 19–24.

[20] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, and W. Snow, “ONOS: towards
an open, distributed SDN OS,” in Proceedings of the third workshop
on Hot topics in software defined networking. ACM, 2014, pp. 1–6.

[21] D. Kreutz, F. Ramos, P. Verissimo, C. E. Rothenberg, S. Azodolmolky,
and S. Uhlig, “Software-defined networking: A comprehensive survey,”
arXiv preprint arXiv:1406.0440, 2014.

[22] M. Jarschel, T. Zinner, T. Hofeld, P. Tran-Gia, and W. Kellerer, “Inter-
faces, attributes, and use cases: A compass for sdn,” Communications
Magazine, IEEE, vol. 52, no. 6, pp. 210–217, 2014.

[23] “ONF Specifications.” [Online]. Available: https://www.
opennetworking.org/sdn-resources/technical-library

http://blogs.vmware.com/networkvirtualization/2014/08/vmware-nsx-customer-story-colt-decreases-data-center-networking-complexity.html
http://blogs.vmware.com/networkvirtualization/2014/08/vmware-nsx-customer-story-colt-decreases-data-center-networking-complexity.html
http://blogs.vmware.com/networkvirtualization/2014/08/vmware-nsx-customer-story-colt-decreases-data-center-networking-complexity.html
http://www.nuagenetworks.net/momentum/
http://www.projectfloodlight.org/floodlight/
http://www.projectfloodlight.org/floodlight/
http://www.opendaylight.org
http://opencontrail.org/
https://www.opennetworking.org/sdn-resources/technical-library
https://www.opennetworking.org/sdn-resources/technical-library

30 IEEE COMMUNICATION SURVEYS & TUTORIALS

[24] S. Scott-Hayward, G. O’Callaghan, and S. Sezer, “SDN Security: A
Survey,” in IEEE SDN for Future Networks and Services (SDN4FNS),
2013, pp. 1–7.

[25] R. Kloeti, “OpenFlow: A Security Analysis,” April 2013. [Online].
Available: ftp://yosemite.ee.ethz.ch/pub/students/2012-HS/MA-2012-
20 signed.pdf

[26] K. Benton, L. J. Camp, and C. Small, “OpenFlow Vulnerability
Assessment,” in Proceedings of the second ACM SIGCOMM workshop
on Hot topics in software defined networking. ACM, 2013, pp. 151–
152.

[27] D. Kreutz, F. Ramos, and P. Verissimo, “Towards secure and depend-
able software-defined networks,” in Proceedings of the second ACM
SIGCOMM workshop on Hot topics in software defined networking.
ACM, 2013, pp. 55–60.

[28] D. Li, X. Hong, and J. Bowman, “Evaluation of Security Vulnerabilities
by Using ProtoGENI as a Launchpad,” in Global Telecommunications
Conference (GLOBECOM 2011). IEEE, 2011, pp. 1–6.

[29] S. Shin and G. Gu, “Attacking Software-Defined Networks: The First
Feasibility Study,” in Proceedings of the second ACM SIGCOMM
workshop on Hot topics in software defined networking. ACM, 2013,
pp. 165–166.

[30] R. Smeliansky, “SDN for network security,” in Science and Technology
Conference (Modern Networking Technologies)(MoNeTeC), 2014 First
International. IEEE, 2014, pp. 1–5.

[31] L. Schehlmann, S. Abt, and H. Baier, “Blessing or curse? Revisiting
security aspects of Software-Defined Networking,” in Network and
Service Management (CNSM), 2014 10th International Conference on.
IEEE, 2014, pp. 382–387.

[32] V. T. Costa and L. H. M. K. Costa, “Vulnerability Study of FlowVisor-
based Virtualized Network Environments,” in 2nd Workshop on Net-
work Virtualization and Intelligence for the Future Internet, 2013.

[33] A. Y. Ding, J. Crowcroft, S. Tarkoma, and H. Flinck, “Software defined
networking for security enhancement in wireless mobile networks,”
Computer Networks, vol. 66, pp. 94–101, 2014.

[34] M. Tsugawa, A. Matsunaga, and J. A. Fortes, Cloud Computing Se-
curity: What Changes with Software-Defined Networking?, ser. Secure
Cloud Computing. Springer, 2014, pp. 77–93.

[35] S. Hernan, S. Lambert, T. Ostwald, and A. Shostack, “Threat modeling-
uncover security design flaws using the stride approach,” MSDN
Magazine-Louisville, pp. 68–75, 2006.

[36] “OpenFlow Switch Specification Version 1.4,” Open Networking
Foundation. [Online]. Available: https://www.opennetworking.org

[37] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, You,
Get off of My Cloud: Exploring Information Leakage in Third-party
Compute Clouds,” in Proceedings of the 16th ACM Conference on
Computer and Communications Security, ser. CCS ’09. ACM, 2009,
pp. 199–212.

[38] R. Sherwood, G. Gibb, K. Yap, G. Appenzeller, M. Casado, N. McK-
eown, and G. Parulkar, “Flowvisor: A network virtualization layer,”
OpenFlow Switch Consortium, Tech.Rep, 2009.

[39] A. Al-Shabibi, M. D. Leenheer, M. Gerola, A. Koshibe, G. Parulkar,
E. Salvadori, and B. Snow, “OpenVirteX: make your virtual SDNs
programmable,” in Proceedings of the third workshop on Hot topics in
software defined networking. ACM, 2014, pp. 25–30.

[40] “OpenVirtex (OVX) Network Hypervisor.” [Online]. Available:
www.openvirtex.org

[41] D. Drutskoy, E. Keller, and J. Rexford, “Scalable network virtualization
in software-defined networks,” Internet Computing, IEEE, vol. 17,
no. 2, pp. 20–27, 2013.

[42] SDN Dev Center: Unlock Network Innovation, Hewlett Packard Com-
pany, 2014, www.hp.com/go/sdndevcenter.

[43] S. Sezer, S. Scott-Hayward, P. Chouhan, B. Fraser, D. Lake,
J. Finnegan, N. Viljoen, M. Miller, and N. Rao, “Are we ready
for SDN? Implementation challenges for software-defined networks,”
Communications Magazine, IEEE, vol. 51, no. 7, 2013.

[44] O. O. MM and K. OKAMURA, “Securing Distributed Control of Soft-
ware Defined Networks,” International Journal of Computer Science
& Network Security, vol. 13, no. 9, 2013.

[45] H. Li, P. Li, S. Guo, and S. Yu, “Byzantine-resilient secure software-
defined networks with multiple controllers,” in Communications (ICC),
2014 IEEE International Conference on. IEEE, 2014, pp. 695–700.

[46] D. Yu, A. W. Moore, C. Hall, and R. Anderson, Authentication for
Resilience: The Case of SDN, ser. Security Protocols XXI. Springer,
2013, pp. 39–44.

[47] X. Wen, Y. Chen, C. Hu, C. Shi, and Y. Wang, “Towards a secure
controller platform for openflow applications,” in Proceedings of the

second ACM SIGCOMM workshop on Hot topics in software defined
networking. ACM, 2013, pp. 171–172.

[48] S. Scott-Hayward, C. Kane, and S. Sezer, “OperationCheckpoint:
SDN Application Control,” in 22nd IEEE International Conference on
Network Protocols (ICNP). IEEE, 2014, pp. 618–623.

[49] OPENFLOWSEC.ORG, “Security-Enhanced Floodlight.” [Online].
Available: www.openflowsec.org

[50] P. Porras, S. Cheung, M. Fong, K. Skinner, and V. Yegneswaran,
“Securing the Software-Defined Network Control Layer,” in Proceed-
ings of the 2015 Network and Distributed System Security Symposium
(NDSS), February 2015.

[51] D. M. F. Mattos, L. H. G. Ferraz, and O. C. M. B. Duarte, “AuthFlow:
Authentication and Access Control Mechanism for Software Defined
Networking.”

[52] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and G. Gu, “A
security enforcement kernel for OpenFlow networks,” in Proceedings of
the first workshop on Hot topics in software defined networks. ACM,
2012, pp. 121–126.

[53] S. Shin, Y. Song, T. Lee, S. Lee, J. Chung, P. Porras, V. Yegneswaran,
J. Noh, and B. B. Kang, “Rosemary: A Robust, Secure, and High-
Performance Network Operating System,” in Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2014, pp. 78–89.

[54] B. Chandrasekaran and T. Benson, “Tolerating SDN application failures
with LegoSDN,” in Proceedings of the 13th ACM Workshop on Hot
Topics in Networks. ACM, 2014, p. 22.

[55] S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “AVANT-GUARD:
scalable and vigilant switch flow management in software-defined
networks,” in Proceedings of the 2013 ACM SIGSAC conference on
Computer & Communications Security. ACM, 2013, pp. 413–424.

[56] P. Fonseca, R. Bennesby, E. Mota, and A. Passito, “A replication
component for resilient OpenFlow-based networking,” in Network
Operations and Management Symposium (NOMS), 2012 IEEE. IEEE,
2012, pp. 933–939.

[57] G. Yao, J. Bi, and P. Xiao, “Source address validation solution with
OpenFlow/NOX architecture,” in 19th IEEE International Conference
on Network Protocols (ICNP). IEEE, 2011, pp. 7–12.

[58] J. Naous, R. Stutsman, D. Mazieres, N. McKeown, and N. Zeldovich,
“Delegating network security with more information,” in Proceedings
of the 1st ACM workshop on Research on enterprise networking.
ACM, 2009, pp. 19–26.

[59] M. Canini, D. Venzano, P. Peresini, D. Kostic, and J. Rexford, “A NICE
way to test OpenFlow applications,” in Proceedings of the 9th USENIX
conference on Networked Systems Design and Implementation, 2012.

[60] E. Al-Shaer and S. Al-Haj, “FlowChecker: Configuration analysis and
verification of federated OpenFlow infrastructures,” in Proceedings of
the 3rd ACM workshop on Assurable and usable security configuration.
ACM, 2010, pp. 37–44.

[61] S. Son, S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “Model
Checking Invariant Security Properties in OpenFlow.” [Online].
Available: http://faculty.cse.tamu.edu/guofei/paper/Flover-ICC13.pdf

[62] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. Godfrey, and S. T.
King, “Debugging the data plane with anteater,” ACM SIGCOMM
Computer Communication Review, vol. 41, no. 4, pp. 290–301, 2011.

[63] A. Khurshid, W. Zhou, M. Caesar, and P. Godfrey, “VeriFlow: Verifying
network-wide invariants in real time,” ACM SIGCOMM Computer
Communication Review, vol. 42, no. 4, pp. 467–472, 2012.

[64] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and
S. Whyte, “Real time network policy checking using header space
analysis,” in USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2013.

[65] J. Wang, Y. Wang, H. Hu, Q. Sun, H. Shi, and L. Zeng, Towards a
Security-Enhanced Firewall Application for OpenFlow Networks, ser.
Cyberspace Safety and Security. Springer, 2013, pp. 92–103.

[66] H. Hu, G.-J. Ahn, W. Han, and Z. Zhao, “Towards a Reliable SDN
Firewall,” Presented as part of the Open Networking Summit 2014
(ONS 2014), 2014.

[67] H. Hu, W. Han, G.-J. Ahn, and Z. Zhao, “FLOWGUARD: Building
Robust Firewalls for Software-Defined Networks,” in Proceedings of
the third workshop on Hot topics in software defined networking.
ACM, 2014, pp. 97–102.

[68] W. Han, H. Hu, and G.-J. Ahn, LPM: Layered Policy Management for
Software-Defined Networks, ser. Data and Applications Security and
Privacy XXVIII. Springer, 2014, pp. 356–363.

[69] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,
A. Story, and D. Walker, “Frenetic: A network programming language,”
ACM SIGPLAN Notices, vol. 46, no. 9, pp. 279–291, 2011.

ftp://yosemite.ee.ethz.ch/pub/students/2012-HS/MA-2012-20_signed.pdf
ftp://yosemite.ee.ethz.ch/pub/students/2012-HS/MA-2012-20_signed.pdf
https://www.opennetworking.org
www.openvirtex.org
www.hp.com/go/sdndevcenter
www.openflowsec.org
http://faculty.cse.tamu.edu/guofei/paper/Flover-ICC13.pdf

A SURVEY OF SECURITY IN SOFTWARE DEFINED NETWORKS 31

[70] T. Hinrichs, N. Gude, M. Casado, J. Mitchell, and S. Shenker, “Express-
ing and enforcing flow-based network security policies,” University of
Chicago, Tech.Rep, 2008.

[71] M. Reitblatt, N. Foster, J. Rexford, and D. Walker, “Consistent up-
dates for software-defined networks: Change you can believe in!” in
Proceedings of the 10th ACM Workshop on Hot Topics in Networks.
ACM, 2011, p. 7.

[72] F. A. Botelho, F. M. V. Ramos, D. Kreutz, and A. N. Bessani, “On
the feasibility of a consistent and fault-tolerant data store for SDNs,”
in Software Defined Networks (EWSDN), 2013 Second European
Workshop on. IEEE, 2013, pp. 38–43.

[73] C. Schlesinger, A. Story, S. Gutz, N. Foster, and D. Walker, “Splendid
Isolation: Language-Based Security for Software-Defined Networks,”
in Proceedings of the first workshop on Hot topics in software defined
networks. ACM, 2012, pp. 79–84.

[74] R. W. Skowyra, A. Lapets, A. Bestavros, and A. Kfoury, “Verifiably-
safe software-defined networks for CPS,” in Proceedings of the 2nd
ACM international conference on High confidence networked systems.
ACM, 2013, pp. 101–110.

[75] A. Guha, M. Reitblatt, and N. Foster, “Machine-verified network
controllers,” in ACM SIGPLAN Notices, vol. 48. ACM, 2013, pp.
483–494.

[76] T. Ball, N. Bjrner, A. Gember, S. Itzhaky, A. Karbyshev, M. Sagiv,
M. Schapira, and A. Valadarsky, “VeriCon: towards verifying controller
programs in software-defined networks,” in Proceedings of the 35th
ACM SIGPLAN Conference on Programming Language Design and
Implementation. ACM, 2014, p. 31.

[77] N. Handigol, B. Heller, V. Jeyakumar, D. Mazieres, and N. McKeown,
“Where is the debugger for my software-defined network?” in Proceed-
ings of the first workshop on Hot topics in software defined networks.
ACM, 2012, pp. 55–60.

[78] S. Namal, I. Ahmad, A. Gurtov, and M. Ylianttila, “Enabling Secure
Mobility with OpenFlow,” in IEEE Software Defined Networks for
Future Networks and Services. IEEE, 2013.

[79] M. Liyanage, M. Ylianttila, and A. Gurtov, “Securing the control
channel of software-defined mobile networks,” pp. 1–6, 2014.

[80] S. Shin, P. Porras, V. Yegneswaran, M. Fong, G. Gu, and M. Tyso,
“FRESCO: Modular composable security services for software-defined
networks,” in Proceedings of Network and Distributed Security Sym-
posium, 2013.

[81] J. McCauley, A. Panda, M. Casado, T. Koponen, and S. Shenker,
“Extending SDN to large-scale networks,” Open Networking Summit,
pp. 1–2, 2013.

[82] S. Scott-Hayward, “Design and deployment of secure, robust and
resilient sdn controllers,” in Proceedings of the 2015 IEEE Conference
on Network Softwarization (NetSoft). IEEE, 2015, pp. 1–5.

[83] F. Botelho, A. Bessani, F. M. Ramos, and P. Ferreira, “On the design
of practical fault-tolerant sdn controllers,” in Proc. of the 3rd European
Workshop on Software Defined NetworksEWSDN, vol. 14, 2014.

[84] P. Kazemian, G. Varghese, and N. McKeown, “Header space analysis:
Static checking for networks.” in NSDI, 2012, pp. 113–126.

[85] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker,
“Abstractions for network update,” in Proceedings of the ACM SIG-
COMM 2012 conference on Applications, technologies, architectures,
and protocols for computer communication. ACM, 2012, pp. 323–334.

[86] S. Natarajan, X. Huang, and T. Wolf, “Efficient conflict detection
in flow-based virtualized networks,” in Computing, Networking and
Communications (ICNC), 2012 International Conference on, Jan 2012,
pp. 690–696.

[87] R. Moskowitz, P. Nikander, P. Jokela, and T. Henderson, “Host identity
protocol,” RFC5201, April, 2008.

[88] K. Giotis, C. Argyropoulos, G. Androulidakis, D. Kalogeras, and
V. Maglaris, “Combining OpenFlow and sFlow for an effective and
scalable Anomaly Detection and Mitigation mechanism on SDN Envi-
ronments,” Computer Networks, 2013.

[89] R. Hand, M. Ton, and E. Keller, “Active Security,” in ACM SIGCOMM
Hot Topics in Networks, 2013.

[90] R. Skowyra, S. Bahargam, and A. Bestavros, “Software-
Defined IDS for Securing Embedded Mobile Devices,” 2013.
[Online]. Available: http://www.cs.bu.edu/techreports/pdf/2013-005-
software-defined-ids.pdf

[91] Y. Wang, Y. Zhang, V. Singh, C. Lumezanu, and G. Jiang, “NetFuse:
Short-circuiting traffic surges in the cloud,” in 2013 IEEE International
Conference on Communications (ICC). IEEE, 2013, pp. 3514–3518.

[92] A. Zaalouk, R. Khondoker, R. Marx, and K. Bayarou, “OrchSec: An
orchestrator-based architecture for enhancing network-security using

Network Monitoring and SDN Control functions,” in Network Opera-
tions and Management Symposium (NOMS), 2014 IEEE. IEEE, 2014,
pp. 1–9.

[93] E. Tantar, M. R. Palattella, T. Avanesov, M. Kantor, and T. Engel, Cog-
nition: A Tool for Reinforcing Security in Software Defined Networks,
ser. EVOLVE-A Bridge between Probability, Set Oriented Numerics,
and Evolutionary Computation V. Springer, 2014, pp. 61–78.

[94] A. K. Nayak, A. Reimers, N. Feamster, and R. Clark, “Resonance:
dynamic access control for enterprise networks,” in Proceedings of the
1st ACM workshop on Research on enterprise networking. ACM,
2009, pp. 11–18.

[95] A. Ramachandran, Y. Mundada, M. B. Tariq, and N. Feamster, “Se-
curing enterprise networks using traffic tainting,” 2009.

[96] J. H. Jafarian, E. Al-Shaer, and Q. Duan, “Openflow random host
mutation: transparent moving target defense using software defined
networking,” in Proceedings of the first workshop on Hot topics in
software defined networks. ACM, 2012, pp. 127–132.

[97] P. Kampanakis, H. Perros, and T. Beyene, “SDN-based solutions for
Moving Target Defense network protection,” in A World of Wireless,
Mobile and Multimedia Networks (WoWMoM), 2014 IEEE 15th Inter-
national Symposium on. IEEE, 2014, pp. 1–6.

[98] C.-J. Chung, P. Khatkar, T. Xing, J. Lee, and D. Huang, “NICE:
Network intrusion detection and countermeasure selection in virtual
network systems,” IEEE Transactions on Dependable and Secure
Computing, p. 1, 2013.

[99] T. Xing, D. Huang, L. Xu, C.-J. Chung, and P. Khatkar, “Snortflow: A
openflow-based intrusion prevention system in cloud environment,” in
Research and Educational Experiment Workshop (GREE), 2013 Second
GENI. IEEE, 2013, pp. 89–92.

[100] T. Xing, Z. Xiong, D. Huang, and D. Medhi, “SDNIPS: Enabling
Software-Defined Networking Based Intrusion Prevention System in
Clouds,” pp. 308–311, 2014.

[101] C. Jeong, T. Ha, J. Narantuya, H. Lim, and J. Kim, “Scalable network
intrusion detection on virtual SDN environment,” in Cloud Networking
(CloudNet), 2014 IEEE 3rd International Conference on. IEEE, 2014,
pp. 264–265.

[102] S. A. Mehdi, J. Khalid, and S. A. Khayam, “Revisiting traffic anomaly
detection using software defined networking,” in Recent Advances in
Intrusion Detection. Springer, 2011, pp. 161–180.

[103] S. Dotcenko, A. Vladyko, and I. Letenko, “A fuzzy logic-based
information security management for software-defined networks,” in
Advanced Communication Technology (ICACT), 2014 16th Interna-
tional Conference on. IEEE, 2014, pp. 167–171.

[104] R. Braga, E. Mota, and A. Passito, “Lightweight DDoS flooding attack
detection using NOX/OpenFlow,” in IEEE 35th Conference on Local
Computer Networks (LCN). IEEE, 2010, pp. 408–415.

[105] J. Suh, H. Choi, W. Yoon, T. You, T. Kwon, and Y. Choi, “Imple-
mentation of Content-oriented Networking Architecture (CONA): A
Focus on DDoS Countermeasure,” in European NetFPGA Developers
Workshop, 2010.

[106] C. YuHunag, T. MinChi, C. YaoTing, C. YuChieh, and C. YanRen, “A
novel design for future on-demand service and security,” in Communi-
cation Technology (ICCT), 2010 12th IEEE International Conference
on. IEEE, 2010, pp. 385–388.

[107] S. Lim, J. Ha, H. Kim, Y. Kim, and S. Yang, “A SDN-oriented DDoS
blocking scheme for botnet-based attacks,” in Ubiquitous and Future
Networks (ICUFN), 2014 Sixth International Conf on. IEEE, 2014,
pp. 63–68.

[108] B. Anwer, T. Benson, N. Feamster, D. Levin, and J. Rexford, “A
slick control plane for network middleboxes,” in Proceedings of the
second ACM SIGCOMM workshop on Hot topics in software defined
networking. ACM, 2013, pp. 147–148.

[109] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul, “En-
forcing network-wide policies in the presence of dynamic middlebox
actions using flowtags,” in Proc. NSDI, 2014.

[110] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu,
“SIMPLE-fying Middlebox Policy Enforcement Using SDN.” ACM
SIGCOMM, August 2013.

[111] Y.-J. Chen, F.-Y. Lin, and L.-C. Wang, “Dynamic Security Traversal
in OpenFlow Networks with QoS Guarantee,” International Journal of
Science and Engineering, vol. 4, no. 2, pp. 251–256, 2014.

[112] X. Liu, H. Xue, X. Feng, and Y. Dai, “Design of the multi-level security
network switch system which restricts covert channel,” in IEEE 3rd
International Conference on Communication Software and Networks
(ICCSN). IEEE, 2011, pp. 233–237.

[113] J. R. Ballard, I. Rae, and A. Akella, “Extensible and scalable network
monitoring using OpenSAFE,” Proc.INM/WREN, 2010.

http://www.cs.bu.edu/techreports/pdf/2013-005-software-defined-ids.pdf
http://www.cs.bu.edu/techreports/pdf/2013-005-software-defined-ids.pdf

32 IEEE COMMUNICATION SURVEYS & TUTORIALS

[114] S. Shin and G. Gu, “CloudWatcher: Network security monitoring using
OpenFlow in dynamic cloud networks (or: How to provide security
monitoring as a service in clouds?),” in 20th IEEE International
Conference on Network Protocols (ICNP). IEEE, 2012, pp. 1–6.

[115] S. Hirono, Y. Yamaguchi, H. Shimada, and H. Takakura, “Development
of a secure traffic analysis system to trace malicious activities on
internal networks,” in Computer Software and Applications Conference
(COMPSAC), 2014 IEEE 38th Annual. IEEE, 2014, pp. 305–310.

[116] A. Bates, K. Butler, A. Haeberlen, M. Sherr, and W. Zhou, “Let SDN
Be Your Eyes: Secure Forensics in Data Center Networks,” in Workshop
on Security of Emerging Networking Technologies (SENT), 2014.

[117] V. Dangovas and F. Kuliesius, “SDN-Driven Authentication and Access
Control System,” in The International Conference on Digital Informa-
tion, Networking, and Wireless Communications (DINWC2014). The
Society of Digital Information and Wireless Communication, 2014, pp.
20–23.

[118] U. Toseef, A. Zaalouk, T. Rothe, M. Broadbent, and K. Pentikousis, “C-
BAS: Certificate-based AAA for SDN experimental facilities,” in 2014
Third European Workshop on Software Defined Networks (EWSDN).
IEEE, 2014, pp. 91–96.

[119] Z. Chen, W. Dong, H. Li, J. Cao, P. Zhang, and X. Chen, “Collaborative
Network Security in Multi-Tenant Data Center for Cloud Computing,”
Tsinghua Science and Technology, vol. 1, p. 009, 2014.

[120] M. F. Ahmed, C. Talhi, M. Pourzandi, and M. Cheriet, “A Software-
Defined Scalable and Autonomous Architecture for Multi-tenancy,” in
Cloud Engineering (IC2E), 2014 IEEE International Conference on.
IEEE, 2014, pp. 568–573.

[121] X. Wang, Z. Liu, J. Li, B. Yang, and Y. Qi, “Tualatin: Towards network
security service provision in cloud datacenters,” in Computer Commu-
nication and Networks (ICCCN), 2014 23rd International Conference
on. IEEE, 2014, pp. 1–8.

[122] S. Seeber and G. D. Rodosek, “Improving Network Security Through
SDN in Cloud Scenarios,” pp. 376–381, 2014.

[123] “sFlow - Sampling Technology for Network Traffic Monitoring.”
[Online]. Available: www.sflow.org

[124] Y. Zhang, “An adaptive flow counting method for anomaly detection
in SDN,” in Proceedings of the ninth ACM conference on Emerging
networking experiments and technologies. ACM, 2013, pp. 25–30.

[125] S. Shirali-Shahreza and Y. Ganjali, “Efficient Implementation of Se-
curity Applications in OpenFlow Controller with FleXam,” in High-
Performance Interconnects (HOTI), 2013 IEEE 21st Annual Symposium
on. IEEE, 2013, pp. 49–54.

[126] M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement
with opensketch,” in Proceedings 10th USENIX Symposium on Net-
worked Systems Design and Implementation, NSDI, vol. 13, 2013.

[127] L. Jose, M. Yu, and J. Rexford, “Online measurement of large traffic
aggregates on commodity switches,” in Proc. of the USENIX HotICE
workshop, 2011.

[128] R. V. Nunes, R. L. Pontes, and D. Guedes, “Virtualized network iso-
lation using software defined networks,” in Local Computer Networks
(LCN), 2013 IEEE 38th Conference on. IEEE, 2013, pp. 683–686.

[129] “Nmap.” [Online]. Available: http://nmap.org/
[130] “Cisco onePK.” [Online]. Available: http://www.cisco.com/c/en/us/

products/ios-nx-os-software/onepk.html
[131] “Snort - Open Source Intrusion Prevention System.” [Online].

Available: https://www.snort.org
[132] “Open Source Intrusion Detection and Prevention System.” [Online].

Available: http://suricata-ids.org
[133] IETF LISP (Locator/ID Separation Protocol). [Online]. Available:

http://datatracker.ietf.org/wg/lisp/
[134] L. Zhang, G. Shou, Y. Hu, and Z. Guo, “Deployment of Intru-

sion Prevention System based on Software Defined Networking,” in
Communication Technology (ICCT), 2013 15th IEEE International
Conference on. IEEE, 2013, pp. 26–31.

[135] H. Farhadi and A. Nakao, “Rethinking Flow Classification in SDN,”
in Cloud Engineering (IC2E), 2014 IEEE International Conference on.
IEEE, 2014, pp. 598–603.

[136] S. Zander, G. J. Armitage, and P. Branch, “A survey of covert
channels and countermeasures in computer network protocols,” IEEE
Communications Surveys and Tutorials, vol. 9, no. 1-4, pp. 44–57,
2007.

[137] G. Stabler, A. Rosen, S. Goasguen, and K.-C. Wang, “Elastic IP
and security groups implementation using OpenFlow,” in Proceedings
of the 6th international workshop on Virtualization Technologies in
Distributed Computing Date. ACM, 2012, pp. 53–60.

[138] K. Wang, Y. Qi, B. Yang, Y. Xue, and J. Li, “LiveSec: Towards
effective security management in large-scale production networks,”
in Distributed Computing Systems Workshops (ICDCSW), 2012 32nd
International Conference on. IEEE, 2012, pp. 451–460.

[139] B. C. Neuman and T. Tsó, “Kerberos: An authentication service for
computer networks,” Communications Magazine, IEEE, vol. 32, no. 9,
pp. 33–38, 1994.

[140] “Lightweight directory access protocol (LDAP): The protocol,” IETF
RFC 4511, 2006.

[141] “GENI: Global Environment for Network Innovation.” [Online].
Available: http://www.geni.net

[142] “OFELIA: OpenFlow in Europe - Linking Infrastructure and
Applications.” [Online]. Available: www.fp7-ofelia.eu

[143] H. Zhang, “A vision for cloud security,” Network Security, vol. 2014,
no. 2, pp. 12–15, 2014.

[144] Open Networking Foundation Security Working Group. [Online].
Available: https://www.opennetworking.org/technical-communities/
areas/services

[145] “SDN Architecture (Issue 1),” June, 2014. [Online]. Avail-
able: https://www.opennetworking.org/images/stories/downloads/sdn-
resources/technical-reports/TR SDN ARCH 1.0 06062014.pdf

[146] ETSI ISG Network Functions Virtualization Security Expert
Group. [Online]. Available: http://www.etsi.org/technologies-clusters/
technologies/nfv

[147] “Network Functions Virtualization (NFV) - NFV Security
- Problem Statement v1.1.1,” October, 2014. [Online].
Available: http://www.etsi.org/deliver/etsi gs/NFV-SEC/001 099/001/
01.01.01 60/gs NFV-SEC001v010101p.pdf

[148] “Network Functions Virtualization (NFV) - NFV Security -
Security and Trust Guidance v1.1.1,” December, 2014. [Online].
Available: http://www.etsi.org/deliver/etsi gs/NFV-SEC/001 099/003/
01.01.01 60/gs NFV-SEC003v010101p.pdf

[149] “Resolution 77 - Standardization work in ITU-T for
software-defined networking,” ITU-T World Telecommunication
Standardization Assembly, Tech. Rep., November 2012. [Online].
Available: http://www.itu.int/en/iTU-T/wtsa12/Documents/resolutions/
Resolution%2077.pdf

[150] ITU-T SG13 Future Networks - Questions Under Study.
[Online]. Available: http://www.itu.int/en/ITU-T/studygroups/2013-
2016/13/Pages/questions.aspx

[151] IETF FORCES (Forwarding and Control Element Separation).
[Online]. Available: http://datatracker.ietf.org/wg/forces/

[152] IETF PCE (Path Computation Element). [Online]. Available: http:
//datatracker.ietf.org/wg/pce/

[153] IETF ALTO (Application-Layer Traffic Optimization). [Online].
Available: http://datatracker.ietf.org/wg/alto/

[154] IETF Netmod (NETCONF Data Modeling Language). [Online].
Available: http://datatracker.ietf.org/wg/netmod/

[155] IETF NetConf (Network Configuration). [Online]. Available: http:
//datatracker.ietf.org/wg/netconf/

[156] IETF NVO3 (Network Virtualization Overlays). [Online]. Available:
http://datatracker.ietf.org/wg/nvo3/

[157] IETF I2RS (Interface to the Routing System). [Online]. Available:
http://datatracker.ietf.org/wg/i2rs/

[158] IRTF SDN Research Group. [Online]. Available: http://irtf.org/sdnrg
[159] D. Meyer, “The Software-Defined-Networking Research Group,” IEEE

Internet Computing, pp. 84–87, 2013.
[160] “OpenFlowSec.” [Online]. Available: http://www.openflowsec.org/

SDNSuite.html
[161] “OpenDaylight AAA.” [Online]. Available: https://wiki.opendaylight.

org/view/AAA:Main
[162] “OpenDaylight Defense4All.” [Online]. Available: https://wiki.

opendaylight.org/view/Project Proposals:Defense4All
[163] “OpenDaylight SNBI.” [Online]. Available: https://wiki.opendaylight.

org/view/SecureNetworkBootstrapping:Main
[164] “Network Functions Virtualization - Introductory White Paper,”

October, 2012. [Online]. Available: http://portal.etsi.org/NFV/NFV
White Paper.pdf

[165] “OpenStack Cloud Software.” [Online]. Available: www.openstack.org
[166] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid

prototyping for software-defined networks,” in Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks. ACM, 2010,
p. 19.

[167] “ProtoGENI,” 2014. [Online]. Available: http://protogeni.net/
[168] C. Hall, D. Yu, Z. li Zhang, J. Stout, A. Odlyzko, A. W. Moore,

J. Camp, K. Benton, and R. Anderson, Collaborating with the enemy

www.sflow.org
http://nmap.org/
http://www.cisco.com/c/en/us/products/ios-nx-os-software/onepk.html
http://www.cisco.com/c/en/us/products/ios-nx-os-software/onepk.html
https://www.snort.org
http://suricata-ids.org
http://datatracker.ietf.org/wg/lisp/
http://www.geni.net
www.fp7-ofelia.eu
https://www.opennetworking.org/technical-communities/areas/services
https://www.opennetworking.org/technical-communities/areas/services
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR_SDN_ARCH_1.0_06062014.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR_SDN_ARCH_1.0_06062014.pdf
http://www.etsi.org/technologies-clusters/technologies/nfv
http://www.etsi.org/technologies-clusters/technologies/nfv
http://www.etsi.org/deliver/etsi_gs/NFV-SEC/001_099/001/01.01.01_60/gs_NFV-SEC001v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-SEC/001_099/001/01.01.01_60/gs_NFV-SEC001v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-SEC/001_099/003/01.01.01_60/gs_NFV-SEC003v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-SEC/001_099/003/01.01.01_60/gs_NFV-SEC003v010101p.pdf
http://www.itu.int/en/iTU-T/wtsa12/Documents/resolutions/Resolution%2077.pdf
http://www.itu.int/en/iTU-T/wtsa12/Documents/resolutions/Resolution%2077.pdf
http://www.itu.int/en/ITU-T/studygroups/2013-2016/13/Pages/questions.aspx
http://www.itu.int/en/ITU-T/studygroups/2013-2016/13/Pages/questions.aspx
http://datatracker.ietf.org/wg/forces/
http://datatracker.ietf.org/wg/pce/
http://datatracker.ietf.org/wg/pce/
http://datatracker.ietf.org/wg/alto/
http://datatracker.ietf.org/wg/netmod/
http://datatracker.ietf.org/wg/netconf/
http://datatracker.ietf.org/wg/netconf/
http://datatracker.ietf.org/wg/nvo3/
http://datatracker.ietf.org/wg/i2rs/
http://irtf.org/sdnrg
http://www.openflowsec.org/SDNSuite.html
http://www.openflowsec.org/SDNSuite.html
https://wiki.opendaylight.org/view/AAA:Main
https://wiki.opendaylight.org/view/AAA:Main
https://wiki.opendaylight.org/view/Project_Proposals:Defense4All
https://wiki.opendaylight.org/view/Project_Proposals:Defense4All
https://wiki.opendaylight.org/view/SecureNetworkBootstrapping:Main
https://wiki.opendaylight.org/view/SecureNetworkBootstrapping:Main
http://portal.etsi.org/NFV/NFV_White_Paper.pdf
http://portal.etsi.org/NFV/NFV_White_Paper.pdf
www.openstack.org
http://protogeni.net/

A SURVEY OF SECURITY IN SOFTWARE DEFINED NETWORKS 33

on network management, ser. Security Protocols XXII. Springer, 2014,
pp. 154–162.

[169] M. Moshref, A. Bhargava, A. Gupta, M. Yu, and R. Govindan,
“Flow-level state transition as a new switch primitive for SDN,” in
Proceedings of the third workshop on Hot topics in software defined
networking. ACM, 2014, pp. 61–66.

Sandra Scott-Hayward (S’09-M’13) is a Senior
Engineer in the Network Security research group
at the Centre for Secure Information Technologies
(CSIT), Queens University Belfast. She has experi-
ence in both research and industry, having worked as
a Systems Engineer and Engineering Group Leader
with Airbus before returning to complete her Ph.D.
at Queens University Belfast. At CSIT, Sandra leads
research and development of network security archi-
tectures and protocols for software-defined networks
(SDN). Sandra is a Research Associate of the Open

Networking Foundation (ONF) and actively participates in the ONF Security
Working Group. She received an Outstanding Technical Contributor Award
from the ONF in February 2015.

Sriram Natarajan is a Senior Research Engineer
at Deutsche Telekom - Silicon Valley Innovation
Center (T-Labs), USA. Dr. Natarajan is engaged in
research in the areas of Software-defined Networks,
Network Function Virtualization, and Network Se-
curity. Dr. Natarajan serves as the Vice-Chair of
Security group at Open Networking Foundation.
Prior to joining T-Labs, he worked as a Senior
Researcher for NTT Innovation Institute Inc, where
he designed and developed network services for
NTT’s SDN solutions. Sriram holds a MS and a PhD

in Electrical and Computer Engineering from University of Massachusetts,
Amherst. During his PhD, Sriram worked on addressing security issues in
network virtualization.

Sakir Sezer (M) received the Dipl. Ing. degree in
electrical and electronic engineering from RWTH
Aachen University, Germany, and the Ph.D. degree
in 1999 from Queens University Belfast, U.K. He is
currently Research Director and Head of Network
and Cyber Security Research at CSIT and holds
the Chair for Secure Information Technologies at
Queens University Belfast. His research is leading
major (patented) advances in the field of high-
performance content processing and is currently
commercialized by Titan IC Systems. He has coau-

thored over 160 conference and journal papers in the areas of network
security, content processing, malware detection, and System on Chip. Prof.
Sezer has been awarded a number of prestigious awards including InvestNI,
Enterprise Ireland and Intertrade Ireland innovation and enterprise awards,
and the InvestNI Enterprise Fellowship. He is also cofounder and CTO of
Titan IC Systems and a member of the IEEE International System-on-Chip
Conference executive committee.

	Introduction
	Characteristics of Software-defined Networks
	Security Analyses and Potential Attacks in SDN
	Analyses of SDN Security
	Attacks and Vulnerabilities in SDN
	Unauthorized Access
	Data Leakage
	Data Modification
	Malicious/Compromised Applications
	Denial of Service
	Configuration Issues
	System Level SDN Security

	Solutions to Security Issues in SDN
	Unauthorized Access
	Malicious/Compromised Applications
	Denial of Service
	Configuration Issues
	Detecting Network Errors
	Real-Time Policy Checking
	Language-Based Resolution
	Consistent Abstractions/Network View
	Formal Verification Methods

	System Level SDN Security

	Network Security Enhancement using the SDN Framework
	Collect, Detect, Protect
	Attack Detection (Traffic Analysis) & Prevention (Rule Updating)
	DoS/DDoS Protection
	Security Middleboxes - Architectures and Services
	Authentication, Authorization and Accounting
	Secure, Scalable Multi-Tenancy

	Discussion: More or less Network Security?
	Improved Functionality
	Open Challenges
	Recommended Best Practices

	SDN Security in Industry: Open Standards and Open Source
	ONF Security Discussion Group
	ETSI ISG NFV Security Expert Group
	ITU-T Standardization of SDN
	Open Source Activities

	Future Research Directions
	Application-Network Transaction Security
	Secure Network Map
	Exploiting SDN for Moving Target Defense
	Security Assessment Framework
	Network Security as a Service (NSaaS)
	Removing Middleboxes from the Network

	Conclusion
	References
	Biographies
	Sandra Scott-Hayward
	Sriram Natarajan
	Sakir Sezer

