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Abstract

As a forward-looking measure of future equity market volatility, the VIX index has gained

immense popularity in recent years to become a key measure of risk for market analysts

and academics. We consider discrete reported intraday VIX tick values as realisations of a

collection of curves observed sequentially on equally spaced and dense grids over time and

utilise functional data analysis techniques to produce one-day-ahead forecasts of these curves.

The proposed method facilitates the investigation of dynamic changes in the index over very

short time intervals as showcased using the 15-second high-frequency VIX index values. With

the help of dynamic updating techniques, our point and interval forecasts are shown to enjoy

improved accuracy over conventional time series models.
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1 Introduction

In 1993, the Chicago Board Options Exchange (CBOE) introduced the CBOE volatility index (VIX)

implied by S&P 500 Index option prices. VIX is computed based on a weighted portfolio of

30-day S&P 500 calls and puts, to construct a forward-looking measure of future equity market

volatility. Driven by the introduction of a range of VIX derivatives: futures, options, and exchange-

traded notes, the VIX index has gained immense popularity in recent years. It has become a

key measure of risk for market analysts and academics alike, causing it to be referred to as the

‘investor fear gauge’ by the financial press and investment community (see, e.g., Whaley 2000).

Therefore, producing accurate forecasts of future VIX index values are of great importance to risk

management. Such forecasts are of interest to all parties involved in analysing VIX and VIX-related

instruments, including hedge and pension funds, endowments, and even retail investors.

While producing volatility forecasts of the S&P 500 and other equity indices is popular in the

literature (see, e.g., Wang and Zhu 2010, Xu 1999, Bali and Theodossiou 2007, Kılıç and Uǧur

2018), modelling implied volatility indices have received less research attention. Researchers

have previously considered VIX index values as discrete time series, producing forecasts using

autoregressive fractionally integrated moving average models and heterogeneous autoregressive

models (see, e.g., Konstantinidi et al. 2008, Fernandes et al. 2014). Psaradellis and Sermpinis (2016)

extend these approaches by successfully adopting them in a hybrid genetic algorithm support

vector regression of implied volatility index data (see, e.g., Dunis et al. 2013, Sermpinis et al. 2014,

for further details). Besides the drawback of the studies being conducted at a daily frequency,

another common disadvantage is that the discrete models employed ignore the underlying implied

VIX evolution dynamics, that is, how the index moves from time t− 1 to time t. Therefore, the

underlying stochastic process that generates intraday VIX observations cannot be determined.

However, functional data analysis techniques, such as the techniques we implement in the present

study, can be used to extract additional information beneath a time series of functions, assisting

the investigation of essential sources of pattern and variation (see, e.g., Horváth and Kokoszka

2012, Kokoszka and Reimherr 2017, Ramsay and Silverman 2005, Chapter 1).

Functional time series is attracting an ever-increasing focus, leading to a rapidly growing

body of research on modelling and forecasting. From a parametric perspective, Bosq (2000)

proposed the functional autoregressive of order 1 (FAR(1)) and derived one-step-ahead forecasts

that are based on a regularised form of the Yule-Walker equations. FAR(1) was later extended to a

FAR(p), under which order p can be determined via Kokoszka and Reimherr (2013)’s hypothesis

testing procedure. Aue et al. (2015) introduced a vector autoregressive (VAR) model based on the

functional principal component analysis (PCA), together with a forecasting method based on VAR

forecasts of principal component scores. This VAR model can also be considered as an extension of

Hyndman and Shang (2009), where principal component scores are forecast by a univariate time
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series forecasting method, such as the autoregressive integrated moving average (ARIMA) method.

Klepsch and Klüppelberg (2016) proposed the functional moving average (FMA) process with an

innovations algorithm to obtain the best linear predictor. Klepsch et al. (2017) extended the FAR

and FMA processes to a vector autoregressive moving average model, which can be considered

a more straightforward estimation approach of the functional autoregressive moving average

(FARMA) model. Recently, Li et al. (2018) considered long-range dependent curve time series

and proposed a functional autoregressive fractionally integrated moving average model. From a

nonparametric perspective, Besse et al. (2000) introduced functional kernel regression to model the

temporal dependence by a similarity measure characterised by semi-metric, bandwidth, and kernel

functions. From a semi-parametric perspective, Aneiros-Pérez and Vieu (2008) proposed a semi-

functional partial linear model that combines parametric and nonparametric models, enabling

consideration of additive covariates and the use of a continuous path in the past to predict future

values of a stochastic process. Apart from the estimation of a conditional mean, Hörmann et al.

(2013) consider a functional analogy of the autoregressive conditional heteroscedasticity model

for modelling conditional variance. Recently, Kokoszka et al. (2017) proposed a portmanteau

test for measuring autocorrelation under a functional analogue of the generalised autoregressive

conditional heteroscedasticity model.

Among the various modelling and forecasting methods for functional time series, such as those

listed above, many adopt functional PCA as a dimension reduction tool. Functional PCA can

summarise an infinite-dimensional object into finite dimensions, sacrificing little information in the

process. We utilise the functional PCA approach, also considered in Hyndman and Shang (2009)

and Aue et al. (2015), to decompose a time series of functions into a set of functional principal

components and their corresponding principal component scores. Correlation among each set

of principal component scores obtained in functional PCA decomposition possesses temporal

dependence information of the original functional time series. To forecast principal component

scores, Hyndman and Shang (2009) considered a univariate time series forecasting method (e.g.,

autoregressive integrated moving average), while Aue et al. (2015) apply a multivariate time series

forecasting method (e.g., a vector autoregressive model). Conditioning on the past curves and

estimated functional principal components, point forecasts can be obtained by multiplying the

forecast principal component scores by the estimated functional principal components. This type

of algorithm is referred to as the ‘TS method’ in the remaining sections because it relies on either

univariate or multivariate time series forecasting methods.

This paper is closely related to a previous study involving forecasting five-minute S&P 500

index returns using various functional time series methods with dynamic updating by Shang

(2017). Shang (2017) noted that applying the forecasting methods to intraday financial data with

denser time intervals (less than 5 minutes) would be a validation of the proposed forecasting
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methods. We provide this validation through the use of the higher resolution 15-second VIX data.

Our study contributes further by utilising robust approaches that control for the destabilising effect

of outliers, and by extending the application of functional techniques to further the understanding

of intraday implied VIX movements. We uncover intraday VIX patterns that allow academics

and practitioners to better prepare for extreme events and given the proliferation of VIX-related

futures, options, and exchange-traded products. While it is not our primary focus, our research

could form the basis of idiosyncratic high frequency hedging and trading strategies.

The rest of this paper is structured as follows. In Section 2, we describe the VIX data employed

in our study. In Section 3, we introduce the functional PCA, the robust functional PCA, and the

robust regularised singular value decomposition. We present several dynamic updating methods

for updating point forecasts in Section 4 and introduce some dynamic updating methods for

updating interval forecasts in Section 5. Using the forecast error measures shown in Section 6, we

examine point and interval forecast accuracies in Section 7. Conclusions are presented in Section 8,

along with some ideas on how the present research can be extended.

2 Intraday CBOE volatility index

As the CBOE calculates the VIX index every 15 seconds1, we adopt the highest resolution dataset

and consider 15-second VIX index values from 3 January 2017 to 30 June 2017. Via the functional

time series analysis techniques, non-stationary daily curves of intraday VIX values are transformed

into daily curves of cumulative intraday returns (CIDRs, see, e.g., Gabrys et al. 2010). CIDRs have

been proved to be stationary by Kokoszka et al. (2014). Although the VIX itself is not directly

tradable, the approach is employed as it offers a transformation that facilities the construction of

stationary functional time series. Let Pi(tj) denote the daily VIX value at time tj (j = 1, · · · , m) on

day i (i = 1, · · · , n). CIDRs are computed as

Ri(tj) = 100×
[
ln Pi(tj)− ln Pi(t1)

]
, (1)

where ln(·) represents the natural logarithm and time intervals between tj−1 and tj are 15 seconds

in length. Figure 1 indicates that the curved shape of CIDRs is similar to the shape of the VIX

curves at the original scale.

Thus, we consider constructing continuous curves of CIDRs on the observed VIX index values

1The use of 15-second frequency is because it is the highest frequency available for the VIX index. Some of its

derivatives may trade at a higher frequency, but the index value is only recalculated and released on a 15-second basis.

So to provide us with the most current information and the highest level of granularity to model its evolution, we

use these 15-second VIX quotes. This data frequency is particularly relevant for the dynamic functional time series

approaches we propose.
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(b) Functional time series curves of CIDR VIX index

Figure 1: Graphical displays of VIX index functional data curves from 3 January 2017 to 30 June 2017.

as

Xi(t) = Ri(tj), t ∈ (15(j− 1), 15j] , for j = 1, · · · , τ,

where τ denotes the total number of realised 15-second intraday cumulative returns. In this

study, we consider VIX values reported by CBOE between 9:30:00 to 16:15:00 on each trading day.

Therefore, τ has a maximal value of 1621. Once the functional time series is constructed, we work

directly with this continuous series going forward.

To construct continuous CIDRs, we initially group 201,500 discrete observations obtained

between 9:30:00 to 16:15:00 into 125 daily curves. We observe that on different trading days,

timings of the first and the last VIX values can vary slightly. To ensure each daily curve is of the

same length, we adopt the linear interpolation algorithm (Hyndman et al. 2018) in R software (R

Core Team 2018) to fill in missing values (if any) at both ends of each daily curve. CIDRs are then

computed based on Equation (1), leading to N = 202, 625 discrete intraday cumulative returns

separated into n = 125 CIDRs.

Traditionally, the presence of outliers can diminish the performance of functional time series

models. Therefore, we showcase that our approach is robust to the presence of such outliers.

According to Febrero et al. (2007) and Hyndman and Shang (2010), a functional outlier is a curve

generated by a stochastic process that has a different distribution from that of standard curves.

Based on this general definition, outliers can be further grouped into categories, such as magnitude

outlier, shape outlier, and partial outlier (see Sguera et al. 2016, for more details). Using the

functional outlier detection method proposed by Hyndman and Shang (2010), among the 125

curves the seven most volatile daily curves (about 5%)2 are suspected to be outliers, as shown

2The proportion of outlying curves is specified to be around 5% which is an arbitrary but commonly used threshold

in functional data analysis.
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in Figure 2. Identified outliers that display abnormal shapes and magnitudes correspond to the

dates 30 January 2017, 21 March 2017, 27 March 2017, 17 May 2017, 19 May 2017, 9 June 2017

and 29 June 2017 (as highlighted by the coloured lines in Figure 2b). These days correspond

with events of special economic significance as we now outline. The first highlighted trading

day of 30 January 2017 witnessed a stock market hit by US travel ban fears as President Trump

placed a ban on immigration from seven Muslim-majority countries. The most volatile curve

displayed corresponded to 29 June 2017 when technology stocks of S&P 500 slumped suddenly

amid concerns of overvaluation and monetary policy tightening from the Federal Reserve causing

investors to dump3.
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(a) Bivariate HDR boxplot
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line)

Figure 2: A functional outlier detection method, namely the highest density region, is adapted to identify

five outliers representing about 5% of the total number of curves.

We consider functional time series forecasting methods that are robust to the effect of outliers.

To exhibit this desirable property, we have not excluded any of those seven potentially outlying

curves mentioned in this section from either our parameter estimation or forecasting processes.

3 Forecasting method

We employ the functional principal component regression of Hyndman and Shang (2009), Shen

(2009), Hays et al. (2012) and Aue et al. (2015) to model and forecast functional time series of

CIDRs. We adopt the functional PCA as the primary forecasting technique because it plays a vital

role in the development of functional data analysis (for reviews, see Hall 2011, Morris 2015, Shang

3A comprehensive discussion of these special economic events leading to unusual market movements are included

in our Supplement.
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2014). To deal with outliers identified, we consider a robust functional PCA method (Hyndman

and Ullah 2007) and a robust regularised singular value decomposition (Zhang et al. 2013).

3.1 Functional principal component regression

We denote an arbitrary stationary functional time series by (Xi : i ∈ Z). Xi are assumed to be

located in the Hilbert space,H = L2(I) which has the inner product 〈x, y〉 =
∫
I x(t)y(t)dt, where

t is a continuum and I ∈ [1, p] represents a function support range. Xi are assumed to be square

integrable with finite squared norm ‖Xi‖2 =
∫
I X

2
i (t)dt < ∞. Using X to denote a set of all Xi

defined on a common probability space (Ω, A, P), we have X ∈ Lp
H(Ω, A, P), indicating that for

some positive value p > 0, E(‖X ‖p) < ∞. When p = 1, it gives the mean curve of the stationary

functional time series X (t), defined as µ(t) = E[X (t)]; when p = 2, it gives the covariance

operator K(s, t) = cov[X (s),X (t)] = E{[X (s) − µ(s)][X (t) − µ(t)]}. According to Karhunen

(1946) and Loève (1946), the covariance operator can be defined as

K(s, t) =
∞

∑
k=1

λkφk(s)φk(t), s, t ∈ I ,

where φk(t) denotes the kth orthonormal principal component, and λk denotes the kth eigenvalue.

Separability of the Hilbert space allows us to apply the Karhunen-Loève expansion to approxi-

mate the stochastic process X based on the principal component score βk given by the projection

of [X (t)− µ(t)] in the direction of the kth eigenfunction φk as

X (t) = µ(t) +
∞

∑
k=1

βkφk(t). (2)

Dimension reduction can be achieved by utilising Equation (2) and truncating the first K principal

components. In this way, we assume that the K-dimensional vector (β1, · · · , βk) contains most of

the useful information in X (t), leading to an adequate approximation as

X (t) = µ(t) +
K

∑
k=1

βkφk(t) + e(t), (3)

where e(t) represents model residuals after excluding the first K principal components. There

are at least four approaches to selecting the number of retained principal components K: (1) the

scree plot or the fraction of variance explained by the first several functional principal components

(Chiou et al. 2012); (2) the pseudo-versions of the Akaike information criterion (AIC) and Bayesian

information criterion (Yao et al. 2005); (3) the cross-validation with one-curve-leave-out (Rice and

Silverman 1991); (4) the bootstrap technique (Hall and Vial 2006). We use the first method to find

the value of K satisfying the following condition:

K = argmin
K:K≥1

{
K

∑
k=1

λ̂k

/ ∞

∑
k=1

λ̂k1{λ̂k>0} ≥ δ

}
,
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where δ = 90% and 1{λ̂k>0} to exclude possible zero eigenvalues4.

In practice, construction of a functional time series X (t) = {X1(t), · · · ,Xn(t)} utilises the em-

pirical mean function µ̂(t) = 1
n ∑n

i=1Xi(t) and the empirical covariance function K̂(s, t) estimated

based on data. Estimated functional principal components functions Φ(t) =
[
φ̂1(t), · · · , φ̂k(t)

]
are

then extracted from the empirical covariance function. The h-step-ahead point forecasts of curve

Xn+h(t) can then be obtained through a conditional expectation as

X̂n+h|n(t) = E [Xn+h(t)|µ̂t,Φ(t),X (t)]

= µ̂(t) +
K

∑
k=1

β̂n+h|n,kφ̂k(t),

where β̂n+h|n,k represents the point forecasts of βn+h,k. A univariate time series forecasting method

and a multivariate time series forecasting method are used in the analysis of our VIX data and

discussed in Section 3.4.

3.2 Robust functional principal component analysis

The presence of outliers often affects the estimation of functional principal components from

the covariance operator K(s, t) = cov[X (s),X (t)] and leads to inferior estimation and forecast

accuracies. Hyndman and Ullah (2007) introduced a two-step algorithm of extracting robust

functional principal components by down-weighting the effect of outliers. This procedure begins

by initially implementing the robust functional PCA algorithm as proposed by Hubert et al. (2002),

calculating the integrated squared error of curve i as

vi =
∫

t∈I

[
Xi(t)−

K

∑
k=1

βi,kφk(t)
]2

dt, for i = 1, · · · , n.

By this algorithm, outlying curves tend to have large values of vi. A set of weights can be

assigned to curves satisfying vi < s + λ
√

s, where a tuning parameter λ controls the amount of

robustness and s represents the median of {v1, · · · , vn}. According to Hyndman and Ullah (2007),

the efficiency of this procedure follows a cumulative normal distribution. We specify λ = 2.33

to ensure the efficiency equals to Φ
(

2.33/
√

2
)
= 95%, suggesting that 5% of curves are to be

classified as outliers.

3.3 Robust regularised singular value decomposition

Apart from conducting robust PCA, we also consider the robust regularised singular value de-

composition (RobRSVD) method of Zhang et al. (2013) for analysing functional data. RobRSVD

4Horváth and Kokoszka (2012) compared different methods of selecting the number of retained functional principal

components and argued that the cumulative percentage of total variance method worked best throughout applications

in their book. Hence, we have adopted this method in our study of VIX.
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extends the idea of the traditional singular value decomposition (SVD), which aims to find a

sequence of rank-one matrix approximations of a data matrix (Gabriel and Zamir 1979), to obtain

a series of robust regularised rank-one matrix approximations. Implementation of the RobRSVD

method involves computing the first pair of singular vectors via solving a least-squares problem as

(u1,v1) = argmin
u,v

{
ρ
(
X − uv>

)
+ Pλ(u,v)

}
,

where u and v are m-dimensional and n-dimensional vectors respectively, ρ(·) is a robust loss

function, Pλ(u,v) is a two-way roughness penalty to ensure smoothness for the u and v, and λ is

a vector of penalty parameters. After removing the effects of the first pairs of u and v, following

pairs of vectors can be obtained by applying the method to the model residuals from the previous

step. Features of this sequential approach include allowing the different pairs of singular vectors to

have different levels of smoothness. According to Zhang et al. (2013), the nonnegative, symmetric

loss function for a rank-one approximation of the matrix X is defined as

ρ

(
X − uv>

σ

)
=

m

∑
i=1

n

∑
j=1

ρ

(Xi(tj)− uivj

σ

)
, (4)

where σ is a scale parameter measuring the variability in the approximation error. In practice, the

value of σ can be estimated by the conventional normalised median absolute deviation method, as

defined by Maronna et al. (2006) as

σ̂ =
1

0.675
Medij

(
|rij|, rij 6= 0

)
,

where residuals are defined as rij = X − ûv̂>. Huang et al. (2009) suggested a specific form of the

penalty function

Pλ(u,v) = λuu
>Ωuu · ‖v‖2 + λvv

>Ωvv · ‖u‖2 + λuu
>Ωuu · λvv>Ωvv,

whereΩu andΩv are symmetric and nonnegative definite penalty matrices to the left and right

singular vectors respectively, and ‖·‖ is the Euclidean norm. The implementation of Equation (4)

includes a Huber’s function defined as

ρθ(x) =

x2 if |x| ≤ θ

2θ|x| − θ2 if |x| > θ
,

where a smaller value of the smoothness parameter θ gives a more robust estimation. A commonly

used θ = 1.345 is adopted because it produces 95% efficiency for normal errors (Huber and

Ronchetti 2009).

3.4 Univariate and multivariate time series forecasting methods

We consider the univariate time series forecasting method of Hyndman and Shang (2009) which

utilises an ARIMA model. This procedure can be applied to non-stationary time series that contains
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a stochastic trend component. The VIX data considered spans 125 days without any apparent

seasonality. Therefore, an ARIMA model is defined in the following general form:

(
1− φ1B − · · · − φpBp) (1−B)d βk = γ +

(
1 + θ1B + · · ·+ θqBq)wk,

where γ represents the intercept, (φ1, · · · , φp) denote the coefficients associated with the autore-

gressive component, (θ1, · · · , θq) denote the coefficients associated with the moving average com-

ponent, B denotes the backshift operator, d denotes the differencing operator, βk = (β1,k, · · · , βn,k)

represents the kth estimated principal component scores, and wk = (w1,k, · · · , wn,k) represents

the error term. We select the optimal ARIMA model based on an information criterion, and

subsequently estimate parameters in the optimal model via the maximum likelihood estimation

method. In practice, we use the automatic ARIMA algorithm of Hyndman and Khandakar (2008)

to select the optimal model based on the corrected AIC (an information criterion that performs

well for small sample sizes).

For data that have strict diagonal auto-covariances at all lags, univariate time series forecasting

methods can be accurate and time efficient (see, e.g. Aue et al. 2015). Given the vectors of functional

principal component scores may have the dependence structure of the principal component score

matrix, a univariate functional time series modelling process may result in a loss of information.

Aue et al. (2015) introduced a multivariate time series model to counter this problem. The most

commonly used multivariate time series model is the vector autoregressive (VAR) model, for the

following reasons: (1) estimation of parameters for the VAR model is generally straightforward

as ordinary least squares (OLS), maximum likelihood and Bayesian methods are all possible

candidate procedures; (2) the properties of the VAR model have been studied (see, e.g. Tsay 2013);

(3) the VAR model has a clear structure and can be considered as a type of multivariate multiple

linear regression. To utilise the multivariate time series forecasting method, we define a VAR

model of order ϑ if the multivariate principal component scores βk = [β1,k, · · · , βn,k]
> satisfy

βk = φ0 +
ϑ

∑∑∑
v=1

φϑβk−v + ak,

where φ0 is an n-dimensional constant vector, and φv are n× n matrices for v > 0 and φϑ 6= 0 and

ak is a set of independent and identically distributed (i.i.d.) random error vectors with a mean

of zero and a positive-definite covariance matrix that has only positive eigenvalues. We use the

corrected AIC to select the optimal order of ϑ.

Comparisons of point and interval forecast accuracies between the univariate ARIMA and

multivariate VAR models can be found in the literature. For example, Peña and Sánchez (2007)

noted that if the series (i.e., principal component score vectors) are very weakly related, considering

the joint dynamics of the series can marginally improve the univariate time series forecasts.

Conversely, when historical observations of one time series can significantly influence another
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time series, the multivariate time series forecasts have many advantages compared to the univariate

time series forecasts. We present a comparison between point and interval forecasts obtained by

the univariate and multivariate time series forecasting methods in Section 7.

4 Updating point forecasts

Constructing functional time series based on segments of a longer univariate time series often

encounters the problem that newly arriving curve data may not possess all the important features

of the complete curve. After observing the first m0 time periods on day n+ 1 ofXn+1(t), denoted by

Xn+1(te) = [Xn+1(t1), · · · ,Xn+1(tm0)]
>, our interest is forecasting the data in the remaining part

of the same curve, denoted by X l
n+1(t), where t ∈ Il . As described in Section 3, the one-step-ahead

TS forecast of

X̂ l,TS
n+1|n(t) = µ̂l(t) +

K

∑
k=1

β̂TS
n+1|n,kφ̂l

k(t), for l ∈ (m0, p], (5)

where µ̂l(t) represents the mean curve for the remaining time period and φ̂l
k(t) represents the kth

functional principal component of the remaining time period.

However, Equation (5) does not utilise the partially observed curve. For improving point

forecast accuracy, dynamic updating methods are often considered because such methods incorpo-

rate newly observed information into forecasting the remaining curve of the day n + 1 (see also

Shang and Hyndman 2011). In this section, several dynamic updating methods are introduced

and compared in consideration of their ability to improve forecast accuracy.

4.1 Block moving (BM)

The BM method adopts the general structure of the TS method with redefined starting and ending

time points for our CIDR curves. Treating time as a continuous variable, the BM method changes

the support range of Equation (3) from [1, p] to (m0, p] ∪ [1, m0]. The consequences include a loss

of data at the beginning of the first curve and complete subsequent partially observed curves.

The data loss in the first curve will only have a minimal negative influence on the forecasts given

enough data (i.e., a large number of curves) because the forecasts depend very little on observations

from the distant past.

4.2 Ordinary least squares (OLS)

A regression approach based on the functional principal components obtained in Equation (3) can

also be used to approximate the remaining part of the most recent curve. Let F e be the m0 × K

matrix of the response variable, whose (j, k)th entry is φ̂k(tj), for 1 ≤ j ≤ m0 and 1 ≤ k ≤ K.

Let Xn+1(te) be the m0 × 1 matrix of the response variable, βn+1 = [βn+1,1, · · · , βn+1,K]
> and
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εn+1(te) = [εn+1(t1), · · · , εn+1(tm0)]
>. The regression model used to estimate coefficients βn+1

has the following equation

X∗n+1(te) = F eβn+1 + εn+1(te),

whereX∗n+1(te) = Xn+1(te)− µ̂(te) denotes the mean-adjusted response variable. Using the OLS

estimation method, we have

β̂OLS
n+1 = (F>e F e)

−1F>e X∗n+1(te). (6)

Then, the OLS forecasts of X l
n+1(t) at discretised time points are given by

X̂OLS
n+1 (tl) = µ̂(tl) +

K

∑
k=1
β̂OLS

n+1,kφ̂k(tl),

where tl = {tm0+1, · · · , tτ; τ ≤ q} represents the discretised time points in the remaining period5.

4.3 Ridge regression (RR)

To conduct the inverse computation in Equation (6) in practice, a sufficiently large number of

observations for β̂OLS
n+1 =

[
β̂OLS

1,n+1, · · · , β̂OLS
K,n+1

]>
are necessary. To address this problem, we con-

sider the ridge regression method of Hoerl and Kennard (1970), using the functional principal

components as predictors and the partially observed data as responses. The RR method has a

feature of shrinking the regression coefficient estimates towards zero, achieved by minimising a

penalised residual sum of squares:

argmin
{(
X∗n+1(te)−F eβn+1

)>
(X∗n+1(te)−F eβn+1) + λβ>n+1βn+1

}
,

where λ > 0 is a parameter that controls the amount of shrinkage. Taking the first derivative with

respect to βn+1 leads to the estimated coefficients as

β̂RR
n+1 =

(
F>e F e + λIK

)−1
F>e X∗n+1(te),

where IK is a (K× K) identity matrix. The β̂RR
n+1 has the following properties: (i) when 0 < λ < ∞,

β̂RR
n+1 is a weighted average between 0 and β̂OLS

n+1 ; (ii) when λ → 0, β̂RR
n+1 approaches to β̂OLS

n+1 ;

(iii) when λ→ ∞, β̂RR
n+1 goes to 0 . With an optimal selection of λ, the RR forecasts of X l

n+1(t) at

discretised time points are given by

X̂RR
n+1(tl) = µ̂(tl) +

K

∑
k=1

β̂RR
n+1,kφ̂k(tl).

5When updating point forecasts for a particular day, we keep using the same K obtained in the model estimation

step as per Equation (3).
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4.4 Penalised least squares (PLS)

The RR method avoids the singularity problem associated with β̂OLS
n+1 , but it does not use the

TS forecasts β̂TS
n+1|n. The PLS method shrinks regression coefficient estimates towards β̂TS

n+1|n by

minimising a penalised residual sum of squares:

argmin
{
(X∗n+1(te)−F eβn+1)

>(X∗n+1(te)−F eβn+1) + λ(βn+1 − β̂TS
n+1|n)

>(βn+1 − β̂TS
n+1|n)

}
.

(7)

In Equation (7), the first term measures the “goodness of fit” and the second term penalises the

departure of the regression coefficient estimates from the β̂TS
n+1|n. Taking the first derivative with

respect to βn+1 leads to the estimated coefficients as

β̂PLS
n+1 =

(
F>e F e + λIK

)−1 (
F>e X∗n+1(te) + λβ̂TS

n+1|n

)
. (8)

The β̂PLS
n+1 has the following properties: (i) when 0 < λ < ∞, β̂PLS

n+1 is a weighted average between

β̂PLS
n+1|n and β̂OLS

n+1 ; (ii) when λ → 0, β̂PLS
n+1 approaches to β̂OLS

n+1 given
(
F>e F e

)−1
exists; (iii) when

λ→ ∞, β̂PLS
n+1 go to β̂OLS

n+1 . With an optimal selection of λ, the PLS forecasts of X l
n+1(t) at discretised

time points are given by

X̂PLS
n+1(tl) = µ̂(tl) +

K

∑
k=1

β̂PLS
n+1,kφ̂k(tl).

4.5 Selection of shrinkage parameters in the RR and PLS methods

Both the RR method and the PLS method require the optimal selection of λ. To minimise forecast

errors, the choice of λ should also vary as we observe an increasing number of data points in a

trading day. We adopt a holdout forecast evaluation method to select λ. We divide a time series of

functions into a training sample (including days from 1 to 85) and a testing sample (including days

from 86 to 125). We further divide the training sample into a training set (including days from 1

to 43) and a validation set (including days from 44 to 85). The optimal values of λ for different

updating periods are determined by minimising the averaged forecast error criteria within the

validation set (see Section 6).

4.6 Functional linear regression

The OLS, RR, and PLS methods share a common feature of considering a discretised data approach

to produce updates for the remaining period. To take advantage of functional data analysis, which

allows observations to be considered as realisations of a continuous function, we also consider

the functional linear regression of Chiou et al. (2012) (see also Müller et al. 2011). For a detailed

overview of functional linear regression, refer to Müller (2005) and Morris (2015). The functional

linear regression can be expressed as

X l
n+1(t) = µl(t) +

∫
s∈Ie

[
X e

n+1(s)− µe(s)
]

β(s, t)ds + el
n+1(t) s ∈ Ie, t ∈ Il, (9)
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where Ie ∈ [1, m0] and Il ∈ (m0, p] represent two function support ranges for the partially obser-

ved and remaining segments of curve on day n + 1, respectively; µe(s) and µl(t) represent two

mean functions for the partially observed data and remaining data periods, respectively; X e
n+1(s)

and X l
n+1(t) represent functional predictor and functional response variables, respectively. Equa-

tion (9) can be viewed as function-on-function linear regression (see also Ramsay and Silverman

2005, Chapter 16), where β(s, t) and el
n+1(t) denote the regression coefficient function and error

function, respectively.

Estimation of the regression coefficient function β(s, t) involves projecting a time series of

functions onto functional principal component scores. Using functional PCA, we obtain

X e
i (t) = µe(t) +

∞

∑
k=1

ξi,kφe
k(t)

= µe(t) +
K

∑
k=1

ξi,kφe
k(t) + ηe

i (t),

X l
i (t) = µl(t) +

∞

∑
m=1

ζi,mΨl
m(t)

= µl(t) +
M

∑
m=1

ζi,mΨl
m(t) + vl

i(t),

where φe
k(t) and Ψl

m(t) represent the kth and mth functional principal components for the partially

observed and remaining segments of curve on day n+ 1, respectively; ξi,k and ζi,m are the principal

component scores of X e
i (t) and X l

i (t), respectively; K and M denote the number of retained

components, respectively; ηe
i (t) and vl

i(t) represent the error functions associated with the partially

observed data and remaining data periods, respectively, due to finite truncations.

Let ζm = [ζ1,m, · · · , ζn,m]
> and ξk = [ξ1,k, · · · , ξn,k]

>. Using ζ = [ζ1, · · · , ζM] as the response

variable and ξ = [ξ1, · · · , ξK] as a predictor, the equation considered can be expressed as

ζ = ξ× ς , (10)

where ς can be estimated by OLS, leading to

ς̂ =
(
ξ>ξ

)−1
ξ>ζ, (11)

with ξ>ζ jointly estimated by their cross-covariance structure∫
t∈I

∫
s∈Ie

φk(s)Ψm(t)cov
[
X e(s),X l(t)

]
dsdt, k = 1, · · · , K, m = 1, · · · , M,

where X e(s) =
[
X e

1 (s), · · · ,X e
n(s)

]> and X l(t) =
[
X l

1(t), · · · ,X l
n(t)

]>
represent two vectors of

functions that correspond to the partially observed and remaining segments of curve on day n + 1,

respectively.

From Equation (9), we can obtain a point forecast of X l
n+1(t) as

X̂ l
n+1(t) = µ̂l(t) +

∞

∑
m=1

ζn+1,mΨl
m(t), (12)

which has an approximation based on Equation (10) and Equation (12) as

X̂ l
n+1(t) ≈ µ̂l(t) + ξ̂n+1 × ς̂ × Ψ̂ l(t),

where ς̂ is estimated from Equation (11), and Ψ̂ l(t) =
[
Ψ̂l

1(t), · · · , Ψ̂l
M(t)

]
.
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5 Interval forecast methods

Prediction intervals are often used to assess the probabilistic uncertainty associated with point

forecasts. As emphasised in Chatfield (1993), it is essential to provide interval forecasts for the

following reasons: (1) assess future uncertainty; (2) enable different strategies to be planned for a

range of possible outcomes indicated by the interval forecasts; (3) compare forecasts from different

methods more thoroughly; (4) explore different scenarios based on different assumptions. It is

always essential to be clear about the sources of errors before quantifying forecast uncertainty

via computations. In our functional principal component regression, we identify two sources of

errors: (1) the errors in estimating the regression coefficient estimates; (2) the errors remain in the

model residuals. In Section 5.1, we describe a nonparametric bootstrap method for constructing

one-step-ahead prediction intervals for the TS method, and in Section 5.2 we demonstrate how

the prediction intervals can be updated from the BM method, PLS method, and functional linear

regression.

5.1 Nonparametric prediction interval

The focus of our study is on short-term time series forecasting; we define the one-step-ahead

in-sample forecast errors for estimated principal component scores as

Ω̂j,k = β̂n−j+1,k − β̂n−j+1|n−j,k, for j = 1, · · · , n− K,

where K represents the number of retained principal components in Equation (3). Sampling

with replacement within these one-step-ahead forecast errors gives a bootstrap sample of βn+h,k,

denoted by β̂b
n+1|n,k. For h = 1, we have

β̂b
n+1|n,k = β̂n+1|n,k + Ω̂

b
∗,k, for b = 1, · · · , B,

where Ω̂b
∗,k denotes the bootstrapped forecast errors obtained by sampling with replacement from

(Ω̂1,k, · · · , Ω̂n−K,k), and B = 1000 symbolises the number of bootstrap replications.

We assume the model residuals to be i.i.d random noise given the first K functional princi-

pal component decomposition in Equation (3) approximates data relatively well. We can then

bootstrap the model residual function ên+1(t) by randomly sampling with replacement from the

historical residual functions {ê1(t), · · · , ên(t)}. Putting the two sources of errors together yields B

bootstrapped forecasts of Xn+1(t), as defined by

X̂ b
n+1|n(t) = µ̂(t) +

K

∑
k=1

β̂b
n+1|n,kφ̂k(t) + êb

n+1(t).

Therefore, 100(1− α)% prediction intervals can be defined as α/2 and (1− α/2) empirical quantiles

of
{
X̂ 1

n+1|n(t), · · · , X̂ B
n+1|n(t)

}
. With a modification of function support range, this nonparametric

prediction interval approach also works for the BM method.
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5.2 Updating prediction interval

5.2.1 PLS method

We can dynamically update prediction intervals using a nonparametric bootstrap method with

sequentially observed new data. The initial step involves bootstrapping B samples of the TS

forecast regression coefficient function, denoting them by β̂b,TS
n+1|n =

[
β̂b,TS

n+1|n,1, · · · , β̂b,TS
n+1|n,K

]>
. The

bootstrapped TS regression coefficient estimates will consequently lead to β̂b,PLS
n+1 according to

Equation (8). Then we obtain B replications of X̂b,PLS
n+1 (tl) as

X̂b,PLS
n+1 (tl) = µ̂(tl) +

K

∑
k=1
β̂b,PLS

n+1,kφ̂k(tl) + ê
b
n+1(tl). (13)

Therefore, 100(1− α)% prediction intervals for the updated forecasts can be defined as α/2 and

(1− α/2) empirical quantiles of
{
X̂1,PLS

n+1 (tl), · · · , X̂B,PLS
n+1 (tl)

}
.

5.2.2 Functional linear regression

Apart from Equation (13), which constructs the pointwise prediction intervals for the remaining

segments of the curve on day n + 1, we can also use functional linear regression together with a

bootstrap method to build pointwise prediction intervals. Utilising the functional linear regression

in Equation (9), we can obtain the bootstrapped forecasts X l,b
n+1(t) as

X̂ l,b
n+1(t) = µl(t) +

∫
s∈Ie

[
X e

n+1(s)− µ(s)
]

β̂b(s, t)ds + êl,b
n+1(t), s ∈ Ie, t ∈ Il, (14)

where β̂b(s, t) represents the bootstrapped regression coefficient estimates, and êl,b
n+1(t) stands for

the bootstrapped error function associated with the remaining time period. Parameter variation in

the estimation of regression coefficients is captured by β̂b(s, t), while êl,b
n+1(t) measures the model

variability in the fitted model.

We assume that the one-step-ahead forecast errors do not correlate and implement the i.i.d.

bootstrap method by sampling with replacement from historical errors
{

êl
K(t), · · · , êl

n(t)
}

. We

also use bootstrapping to obtain β̂b(s, t) in Equation (14) by sampling with replacement from the

original functional time series expressed as

X b
i (t) = µ(t) +

min(n,∞)

∑
k=1

βb
i,kφk(t), i = 1, · · · , n,

where
(

βb
1,k, · · · , βb

n,k

)
denote the kth bootstrapped principal component scores via maximum

entropy (see also Shang 2018). With a set of bootstrapped data {X b
1 (t), · · · ,X b

n (t)} available,

we apply the functional linear regression of Equation (9) to obtain bootstrapped estimates of

regression coefficient function.

For bootstrapping the multivariate time series {β1, · · · ,βn} we apply the maximum entropy

bootstrap method (Vinod 2004) which has the following advantages: (1) stationarity of principal
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component scores is not required; (2) time series ranks are computed by the method; (3) the

bootstrap samples satisfy the ergodic theorem, central limit theorem, and mean preserving con-

straint; (4) the method can be applied to panel time series in which cross-covariance of the original

data matrix is well preserved. In practice, we utilise the maximum entropy bootstrap algorithm

described in Vinod et al. (2009), with implementation via the meboot.pdata.frame function of the

meboot package in R (R Core Team 2018).

6 Measures of point forecast accuracy

6.1 Absolute and squared forecast errors

We calculate the point forecasts between the proposed methods and evaluate their forecast accuracy

using mean absolute forecast error (MAFE) and mean squared forecast error (MSFE). The errors

assess the absolute and squared differences between the forecasts and the actual values of the

variable being forecast, with equations expressed as

MAFEj =
1
q

q

∑
i=1

∣∣∣Xi(tj)− X̂i(tj)
∣∣∣ , (15)

MSFEj =
1
q

q

∑
i=1

[
Xi(tj)− X̂i(tj)

]2
, (16)

where q represents the number of curves in the forecasting period, Xi(tj) represents the actual

holdout sample for the jth time period in the ith curve, and X̂i(tj) represents the point forecasts

for the holdout sample. To apply the updating algorithm detailed in Section 4, at least one data

point on the ith curve has to be observed. Using TS, BM, PLS and BM methods the updating

period can start at the j = 2nd, · · · , 1620th 15-second tick interval for the CIDRs of VIX data.

However, the functional linear regression method requires the updating period to start from the

j = 6th 15-second tick interval as the method is not suitable with initial zeros (added by linear

interpolation, see Section 2 for more details) on each curve.

6.2 Mixed errors

We calculate mean mixed error (MME) functions that are asymmetric loss functions penalising

incorrect predictions. Brailsford and Faff (1996), Fuertes et al. (2009) and Kearney et al. (2018) have

previously considered by these measures in the evaluation of volatility forecasting methods. They

are essential for option market participants as sellers (buyers) are more likely to worry about under

(over)-prediction than buyers (sellers). The MME(U) is defined to penalise under-predictions more
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heavily while the MME(O) gives more substantial penalties to under-predictions.

MMEj(U) =
1
q

 iON

∑
i=iO1

∣∣∣Xi(tj)− X̂i(tj)
∣∣∣+ iUN

∑
i=iU1

√
|Xi(tj)− X̂i(tj)|


and

MMEj(O) =
1
q

 iON

∑
i=iO1

√
|Xi(tj)− X̂i(tj)|+

iUN

∑
i=iU1

∣∣∣Xi(tj)− X̂i(tj)
∣∣∣
 ,

where q represents the number of curves in the forecasting period,
{

iU1 , · · · , iUN; iUN ≤ q
}

stands for

the under-predictions, and
{

iO1 , · · · , iON; iON ≤ q
}

stands for the over-predictions.

6.3 Correct predictor of the direction of change

To measure how well our models can forecast the direction of movement, we also calculate the

mean correct predictor of the direction of change (MCPDC) as the percentage of X̂i(tj) that has

the same sign as the corresponding observations Xi(tj). MCPDC ignores the magnitude of errors

and is also employed in other studies of the CBOE volatility index, for example in Bernales and

Guidolin (2014) and Kearney et al. (2018).

6.4 Interval scores

We calculate the interval score of Gneiting and Raftery (2007) (see also Gneiting and Katzfuss 2014)

to evaluate interval forecast accuracy. The one-step-ahead prediction intervals for each year in

the forecasting period can be calculated at the (1− α)× 100% nominal coverage probability. We

consider the common case of the symmetric (1− α)× 100% prediction interval, with lower and

upper bounds serving as predictive quantiles at α/2 and 1− α/2, denoted by X̂ l(tj) and X̂ u(tj).

The scoring rule of Gneiting and Raftery (2007) for the interval forecast at time point tj is

Sα

[
X̂ l(tj), X̂ u(tj); X (tj)

]
=
[
X̂ u(tj)− X̂ l(tj)

]
+

2
α

[
X̂ l(tj)−X (tj)

]
1{X (tj) < X̂ l(tj)}

+
2
α

[
X (tj)− X̂ u(tj)

]
1{X (tj) > X̂ u(tj)},

where 1{·} represents the binary indicator function, and α (customarily α = 0.2) denotes the level

of significance. The interval score rewards a narrow prediction interval, if and only if the true

observation lies within the prediction interval. When X (tj) is contained in the interval, and the

distance between X̂ l(tj) and X̂ u(tj) is minimised, the optimal interval score will be achieved.

The mean interval score for each time point j is calculated by averaging interval scores over

different days in the forecasting period as

Sα,j =
1
q

q

∑
i=1

Sα

[
X̂ l

i (tj), X̂ u
i (tj); Xi(tj)

]
, j = 2, · · · , 1620,

where Sα[X̂ l
i (tj), X̂ u

i (tj); Xi(tj)] denotes the interval score for the ith day of the forecasting period.
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7 Results

We calculate and compare the point and interval forecast accuracies of the functional principal

component regression with univariate and multivariate time series forecasting methods in Table 1.

Generally, the multivariate (VAR) time series forecasting method produces slightly larger forecast

errors than the univariate time series (ARIMA) forecasting method. This result may be due to

there being more parameters to be estimated in the VAR model as opposed to the ARIMA model.

Table 1: Comparison of point and interval forecast accuracies between a univariate time series forecasting

method and a multivariate time series forecasting method, for VIX CIDRs over the 40 days in the

forecasting period.

MSFE MAFE Interval score

ARIMA VAR ARIMA VAR ARIMA VAR

Min 0.7939 1.3486 0.6900 0.9866 8.2059 8.7041

Median 8.1868 8.6180 2.3820 2.5446 9.1384 9.2167

Mean 22.0173 25.3357 3.0447 3.3261 15.7863 17.3692

Max 354.7139 342.1089 16.1869 16.0261 128.4479 124.2109

Hereafter, the ARIMA forecasting method is used to compare point and interval forecast

accuracies between the standard functional PCA, the robust functional PCA, and the RobRSVD

estimation for the TS method. Table 2 demonstrates that the three methods exhibit very close point

and interval forecast accuracies.

Table 2: Comparison of point and interval forecasting accuracies of TS methods with standard functional

principal component analysis, robust functional principal component analysis and robust methods

utilising the regularised singular value decomposition, denoted as FPCA, M-FPCA and RobRSVD,

respectively.

MSFE MAFE Interval score

FPCA M-FPCA RobRSVD FPCA M-FPCA RobRSVD FPCA M-FPCA RobRSVD

Min 0.7939 0.7768 0.7753 0.6900 0.6774 0.6770 8.2059 8.2445 8.6548

Median 8.1868 8.0633 8.1196 2.3820 2.3789 2.3792 9.1384 9.0990 9.2289

Mean 22.0173 22.0134 22.0224 3.0447 3.0429 3.0465 15.7863 15.8190 15.6758

Max 354.7139 355.0930 354.9265 16.1869 16.1776 16.1833 128.4479 130.4321 127.0060
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7.1 Updating point forecasts

As we receive partially observed data from the most recent curve, we can dynamically update

our forecasts in the hope of achieving better forecast accuracy. Using the five dynamic updating

methods detailed in Section 4, we construct plots of averaged MSFE and MAFE across all discreti-

sed (evaluation) time points as shown in Figure 3. When the BM method, the RR method, and

functional linear regression are used, the forecast errors tend to decrease with some fluctuation.

Averaged over the forecasting period and measured by the averaged MAFE, the functional linear

regression has the best point forecast accuracy. Assessed by the averaged MSFE, the functional

linear regression also has the lowest forecast errors across all daily trading times, except for the

hour (approx.) from 13:00:00 to 15:00:00 during which time the most volatile movements of the

VIX index were recorded as shown in Figure 3. As we receive increasingly more partially observed

data in the most recent curve, dynamic updating methods tend to perform much better than the

TS method. These unsurprising results highlight the advantages of a functional data-analytic

approach that views data as realisations of a continuous stochastic process. As the frequency of

the data increases, the performance of the dynamic updating method should improve even further,

as interpolation errors will likely decrease.
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Figure 3: A comparison of point forecast accuracy between the TS method and four dynamic updating met-

hods, as measured by MSFE and MAFE. Note that FLR stands for functional linear regression.

Diebold and Mariano (2002) tests are also conducted to formally assess the most accurate

forecasting method, with hypotheses and corresponding results shown in Table 3. For example, in

Test 1 we consider a squared-loss function and an absolute-loss function as defined in Equation

(16). The null hypothesis is that the two forecasts have the same accuracy, while the alternative

hypothesis is that the FLR method is more accurate than the TS model. With the help of the

forecast package in R (R Core Team 2018), almost zero p-values (< 2.2e − 16) are obtained for

both loss functions, indicating that the null hypothesis should be rejected. Results in all other
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rows of the same table can be interpreted similarly. Overall, Table 3 shows that the functional

linear regression model outperforms all other methods in producing accurate point forecasts.

Such superior performance is not only sample-specific but can also draw inferences on the entire

population.

Table 3: Diebold-Mariano tests of accuracy for point forecasts obtained by the TS method and four dynamic

updating methods.

Squared-error loss Absolute-error loss

Hypotheses Test Statistic p-value Test Statistic p-value

Test 1
H0 : ErrorFLR = ErrorTS

-89.0106 < 2.2e− 16 -83.9062 < 2.2e− 16
HA : ErrorFLR < ErrorTS

Test 2
H0 : ErrorFLR = ErrorBM

-88.7233 < 2.2e− 16 -83.3199 < 2.2e− 16
HA : ErrorFLR < ErrorBM

Test 3
H0 : ErrorFLR = ErrorPLS

-24.1949 < 2.2e− 16 -43.4326 < 2.2e− 16
HA : ErrorFLR < ErrorPLS

Test 4
H0 : ErrorFLR = ErrorRR

-21.7857 < 2.2e− 16 -49.3449 < 2.2e− 16
HA : ErrorFLR < ErrorRR

Forecast results reported so far are obtained for the VIX index data from January to June of

2017. To add robustness to the results, we have also conducted an extended analysis using all

of 2016 (details included in the Supplement), providing additional support for the proposition

that functional time series forecasting models with dynamic updating (especially the FLR model)

should be considered in order to produce accurate forecasts of the VIX index. Furthermore, it

also indicates that our proposed models do not depend on a particular data range to provide the

desired results outlined here.

7.2 Updating interval forecasts

After observing the VIX intraday cumulative returns from 9:30:00 to 14:59:45 on 30 June 2017, the

BM, PLS, and the functional linear regression method can be applied to dynamically update the

interval forecasts for the remaining trading time period of the same day. Figure 4 shows the 80%

pointwise prediction intervals for the next hour using three dynamic updating methods, compared

with the TS model that does not incorporate updating. It can be seen that the functional linear

regression produces the narrowest prediction interval, leading to the most accurate evaluation of

forecast uncertainty.
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Figure 4: Updating 80% pointwise prediction intervals using the TS method, BM method, PLS method,

and functional linear regression, respectively.

7.3 Economic evaluation of forecasts

Building on the superior predictability of dynamic functional time series models, we consider

applications that highlight the economic value of adopting the proposed forecasting methods.

As the VIX index itself cannot be directly traded, implementing a trading strategy involves the

adoption of intraday data for a related derivative product. To the best of our knowledge, there are

no existing intraday VIX trading strategies outlined in the literature, 6.

Utilising the MME lose functions and MCPDC measure, an indication of how well our VIX

forecasts at providing trading signals is presented in Figure 5. Our proposed functional time

series methods all have MCPDC7 values that are better than the commonly used benchmark. By

benchmark, we mean that a random model should correctly predict the direction of change of

the index 50% of the time. Among our functional time series methods, the FLR model produces

the highest mean MCPDC of about 80%. This result indicates that our considered functional

time series approaches should perform well when adapted to provide a buy/sell indicator to

pursue long/short positions in VIX index derivative products. Furthermore, the Mean Mixed

Error (Under/Over) results indicate that in general there is no significant bias arising from our

approaches, i.e., the forecasts do not systematically under or over predict the VIX index level. Such

6For instance, Konstantinidi et al. (2008), Konstantinidi and Skiadopoulos (2011) and Kourtis et al. (2016) only

consider trading strategies that were utilising either daily or monthly futures data.
7MCPDC of TS: max 63.75%, mean 60.48%; MCPDC of BM: max 70.47%, mean 60.88%; MCPDC of PLS: max

88.50%, mean 75.22%; MCPDC of RR: max 85.75% mean 76.98%; MCPDC of FLR: max 88.95% mean 79.13%.
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a concern would be particularly relevant for practitioners with stop-loss limits, or those informing

the purchase of VIX-related options using our VIX index forecasts.
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Figure 5: Mean Mixed Error (Under), labelled as MME(U); Mean Mixed Error (Over), labelled as

MME(O); and Mean Correct Predictor of the Direction of Change, labelled as MCPDC, computed

for the TS method and four dynamic updating methods.

However, many practical considerations need to be accounted for when implementing any

trading strategy. These factors are particularly numerous in a high-frequency environment, such

as ours. Many are idiosyncratic to individual market participants including, market frictions,

slippage, transaction costs, order book depth, microstructure noise, order latency, exchange rebates,

stop-loss limits, and leverage and portfolio diversification concerns. Without all knowledge of

such factors, outlining a simulated trading strategy would prove to be unrealistic.

8 Conclusion

Functional time series forecasting and updating methods discussed here treat observed data as

realisations of a continuous stochastic process. We use functional PCA to model the temporal

dependence among functional curves, reducing the dimensionality of data. A set of functional

principal components that explains at least 90% of the total variation in the 15-second VIX data is

considered so that the main features of the original functional time series can be maintained. We

produce one-day-ahead forecast VIX CIDRs by forecasting K retained principal component scores

through a univariate or multivariate time series forecasting technique. In particular, the forecasts

are obtained by multiplying the forecast principle component scores by the estimated functional

principal components and then adding the estimated mean function.

We consider five dynamic updating methods, which utilise partially observed data for the

most recent curve to improve forecast accuracy. The BM method applies the general structure of

the TS method to our VIX data but rearranges the function support to update forecasts during

the trading day. The OLS method treats the partially observed data in the most recent curve

as a discrete response vector and regresses it against the corresponding discretised functional
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principal components. However, the singularity problem may plague the implementation of

the OLS method, when the number of partially observed data points is less than the number of

functional principal components. To overcome this problem, we consider methods that shrink

the estimated regression coefficients. The RR method shrinks the regression coefficient estimates

towards zero, whereas the PLS method shrinks the regression coefficient estimates towards β̂TS
n+1|n.

The amount of shrinkage in the RR and PLS methods is controlled by a shrinkage parameter λ

that can be tuned by minimising the forecast error measure within a holdout data sample. One

commonality between the OLS, RR, and PLS methods is that they attempt to update forecasts by

utilising discrete time points. Conversely, the functional linear regression first decomposes two

blocks of functional time series that correspond to the partially observed data and remaining data

periods via the Karhunen-Loève expansion. The method then forms a linear model based on the

two sets of principal component scores via the ordinary least squares method and estimates the

regression coefficient function from which the updated forecasts can be obtained. Functional linear

regression outperforms all other dynamic updating methods investigated in producing the most

accurate point forecasts assessed using averaged MSFE and MAFE over the different discretised

time points in the testing sample.

As a means of assessing forecast uncertainty, a non-parametric bootstrap method is used to

construct prediction intervals for the TS and BM methods. The PLS prediction intervals are updated

as we sequentially observe new data in the most recent curve. When updating prediction intervals

through functional linear regression, we considered the maximum entropy bootstrapping and the

non-parametric bootstrapping method to obtain bootstrapped regression coefficient functions and

bootstrapped error functions, respectively. These approaches result in improved interval forecast

accuracy, allowing us to compare the different functional time series methods considered.

The focus of this paper is on statistical forecasting accuracy. However, the real-time dynamically

updating VIX forecasting results bring with them a number of important economic implications.

Firstly, as shown by Psaradellis and Sermpinis (2016), implied volatility index forecasts can feed

into profitable trading strategies involving tradable VIX derivatives, which despite many additi-

onal considerations, could also be adopted by practitioners in our high frequency environment.

Secondly, considering prediction intervals as we do, boasts the advantage of enabling a number of

different strategies to be planned and specified for a range of possible scenarios (Chatfield 1993).

Lastly, demonstrating predictability in the ‘fear gauge’ is of great benefit to market analysts and

practitioners alike, as it enables them to better prepare for the impact of future market movements.

For these reasons, economic evaluations of hedging and trading strategies based on the proposed

functional time series methods could form the basis for future research.
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