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Weakly Supervised Salient Object Detection with

Spatiotemporal Cascade Neural Networks
Yi Tang, Wenbin Zou, Member, IEEE, Zhi Jin, Member, IEEE, Yuhuan Chen, Yang Hua, Xia Li

Abstract—Recently, deep learning techniques have substan-
tially boosted the performance of salient object detection in
still images. However, the salient object detection in videos by
using traditional handcrafted features or deep learning features
is not fully investigated, probably due to the lack of sufficient
manually labeled video data for saliency modeling, especially
for the data-driven deep learning. This paper proposes a novel
weakly supervised approach to salient object detection in a video,
which can learn a robust saliency prediction model by using very
limited manually labeled data and a large amount of weakly
labeled data that could be easily generated in a supervised
approach. Furthermore, we propose a spatiotemporal cascade
neural network (SCNN) architecture for saliency modeling, in
which two fully convolutional networks are cascaded to evaluate
visual saliency from both spatial and temporal cues to lead
the optimal video saliency prediction. The proposed approach
is extensively evaluated on the widely used challenging datasets,
and the experiments demonstrate that our proposed approach
substantially outperforms the state-of-the-art salient object de-
tection models.

Index Terms—Video saliency, weakly supervised learning, s-
patiotemporal prior fusion, cascade fully convolutional network

I. INTRODUCTION

S
ALIENT object detection, which aims to identify the

objects or regions that are noticeable and mostly attract

human attention in an image/video, has become a research

focus of computer vision for decades. It is generally as

a preprocessing step to support high-level computer vision

tasks, such as object segmentation, object recognition, object

tracking and content-based video compression. A number

of approaches have been proposed to detect salient objects.

The recent approaches based on deep Convolutional Neural

Networks (CNNs), e.g., [1]–[3], have substantially improved
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Fig. 1. Salient object detection in dynamic scenes by using different models.
(a) Paired frames and the ground truth of the second frame. (b) Saliency maps
for the second frame generated by the previous DSMT model [1] (top), DCL
model [2] (middle) and UCF model [4] (bottom). (c) Results generated by
our proposed SCNN model, including spatial prior (top), optical flow (middle)
and the saliency map for the second frame (bottom).

the performance of salient object detection in still images.

However, these deep learning models trained by still images

may not perform well in some dynamic video scenes.

One of the key issues is the difficulty in eliminating the

interference of relatively complex background regions, which

may be unmoving or moving in a video. The image saliency

approaches take each video frame as a still image and perform

saliency detection one by one, without considering the motion

of objects. Therefore, those background regions, which are

salient in a still image, are easily highlighted in the generated

saliency map (See the examples in Fig. 1). However, the

motion is the most important cue to attract human attention and

these regions may not be salient in a video. Before the usage

of neural networks, such motion information is introduced into

video saliency approaches by graphics models [5], [6]. These

approaches firstly generate an initial saliency map from global

motion clues [5] or gradient flow field [6], and then exploit an

energy function with spatiotemporal constraint to estimate the

final saliency in video sequences. Due to their employment of

the handcrafted features in these methods, the salient objects

are difficult to be detected in complex video scenes.

Recently, deep learning models are employed into the video

saliency prediction. As far as we know, a robust deep learning

model needs to be trained by the large-scale labeled pixel-wise

video frames. Unfortunately, the pixel-wise labeling is very

time-consuming and needs huge human resources. It should

be noted the fact that current datasets for video salient object
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detection have very limited manually labeled ground truth.

For instance, a total number of labeled data are no more

than 7000 frames in the widely used video datasets, including

SegTrackV2 [7], FBMS [8], VSB100 [9] and DAVIS [10],

where some of them only label a small part of frames in a

video sequence. In [11], an approach by synthesizing video

data from still frames has been proposed to generate large-

scale simulated video data and the corresponding pixel-wise

annotations. The other methods introduce weakly supervised

learning to train networks by image-level labels [12]–[14].

These labels, that indicate the presence/absence or specific

category of objects in an image, are easier to collect than the

pixel-wise ones. However, as for the deep models of saliency

detection, the pixel-wise labels are more suitable to train the

network.

Bearing in mind the issues aforementioned, we, on the one

hand, aim to find a solution to learn a salient object detection

model in a weakly supervised approach, that trains a saliency

model by using limited manually labeled ground truth and

huge weakly pixel-wise labeled data which are generated in

a fusing saliency maps way. On the other hand, we expect to

propose a deep neural network architecture which can learn

spatial and temporal cues to identify salient objects in a video.

Therefore, we propose a spatiotemporal cascade neural

network (SCNN) architecture, which utilizes spatial and tem-

poral priors to model visual saliency in videos. Moveover, to

overcome the problem of the lack of pixel-wisely labeled data,

we propose a weakly supervised learning strategy to train deep

neural networks. In summary, the contributions of this paper

are as follows:

1. We propose a spatiotemporal cascade neural network

(SCNN) architecture, which leverages two fully convo-

lutional neural networks to evaluate visual saliency from

both spatial and temporal cues.

2. We introduce an weakly supervised approach, which

takes advantage of large-scale weakly labeled data for

saliency model learning. These weakly labeled data not

only complement manually labeled ones, but also enable

to achieve obvious performance improvement for salient

object detection.

3. We present a novel approach to extract the motion

information of salient object from optical flow fields,

which is able to be effectively incorporated into the

proposed SCNN framework.

4. We demonstrate that our proposed approach substantial-

ly outperforms the state-of-the-art salient object detec-

tion models.

II. RELATED WORKS

In this section, we review related works in spatiotemporal

saliency models, CNN-based saliency methods and relevant

approaches by using weak supervision.

Spatiotemporal saliency models. Over the recent decades,

a variety of techniques and theories have be exploited to detect

salient objects in still images, such as spatial prior [15], low-

rank matrix recovery [16], regional contrast [17], graphical

modeling [18], and information theory [19].

While spatial information has been extensively investigated

for still images, video salient object detection models need

to integrate both spatial and temporal information. A dynamic

fusion model by combining spatial and temporal saliency maps

has been proposed in [20]. In [21], Gao et al. propose a

novel framework based on center-surrounding hypothesis to

predict salient objects from multi-scale handcrafted features

of color, orientation and luminance. Then, by extending to the

center-surrounding hypothesis, a discriminant saliency model

is proposed in [22], where dynamic spatiotemporal textures

are employed for saliency detection in the video sequence.

Rahtu et al. propose a novel statistical framework [23] for

saliency prediction by fusing motion, illumination and color

information. In [24], an adaptive fusion method is proposed

to integrate pixel-level spatial and temporal saliency maps

by using color and motion handcrafted features in superpixel

level. By fusing spatial edges and temporal motion boundaries

from continuous optical flow maps, Wang et al. [6] use a

geodesic model to detect salient regions in video sequences.

Kalboussi et al. [25] produce the dynamic map and static map

by exploiting dense motion estimation and spatial edges detec-

tion, respectively. Then, the flood fill algorithm is introduced

to fuse the maps for saliency prediction. In addition, recent

works about video saliency employ motion attention cue [26],

nonparametric kernel density feature [27], motion continuity

[28], low-rank coherency diffusion [5] and gradient flow field

[29] to fuse spatial and temporal saliency maps.

CNN-based saliency methods. The above methods utilize

handcrafted features and optimization models. However, with

the resurgence of the neural network, especially the appearance

of CNN, the saliency detection field has a breakthrough. The

development of saliency detection with CNN consists of two

stages. The first stage is mainly using deep features to take

the place of handcrafted features in saliency detection models.

In [30], Zhao et al. treat image patches based on superpixels

as CNN input and extract their corresponding deep features to

complete saliency detection. Besides, in [31], the combination

of region proposals and deep features are used for local

estimation and global search in saliency detection. In [32], the

deep features are extended to multi-scale deep features, which

combine with multi-level region decomposition to generate

saliency maps. The second stage is directly generating pixel-

wise saliency maps in an end-to-end Fully Convolutional

Network (FCN) [33]. Recent work [34] modifies FCN and

proposes a deep hierarchical network. In [3], [35], Recurrent

Neural Network (RNN) is composed with FCN to perform

a full saliency prediction. In [2], pooling layers in FCN

are decreased to make prediction map denser and branches

of convolutional layers are increased to generate multi-scale

saliency maps. Meanwhile, multi-task learning is employed to

optimize the FCN in [1]. The works of video saliency detection

by deep learning are not very much, but recent work [11] has

succeeded to fuse spatial and temporal saliency stimuli via

FCN.

Weakly Supervised Learning. Recently, weakly supervised

learning methods have been introduced into many areas such

as object detection [36], [37], object localization [38], [39],

semantic segmentation [40], [41]. In [42], the saliency detec-
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Fig. 2. A schematic diagram of the proposed SCNN framework. A fully convolutional network (FCN) is proposed to generate a spatial prior map which
is combined with a temporal prior map, evaluated from optical flow fields, as the input of the second FCN having the same architecture as the first one. A
post-processing operation is followed to generate the final saliency map. The network parameters are learned through a weakly supervised approach.

tion is applied for weakly-supervised object detection via a

self-paced curriculum learning regime. Lai et al. [43] inte-

grates saliency information into an end-to-end neural network

to perform weakly supervised object detection. In [44], a

weakly supervised image parsing method is proposed by using

saliency results to guide the dictionary learning. In the area

of saliency detection, Cholakkal et al. [12] firstly propose a

weakly supervised top-down saliency approach by exploiting

the backtracking ScSPM image classifier. Then, they extend

the approach by combining a selected saliency map from the

fast bottom-up saliency approaches to generate the final map

in [45]. After that, a two-stage weakly supervised network [14]

is proposed for saliency prediction. The network is firstly pre-

trained with image-level tags, and then self-trained by using

estimated pixel-level labels. In [46], an image-level classifier

and a pixel-level map generator are composed to conduct

saliency detection.

III. THE PROPOSED MODEL

Fig.2 illustrates the framework of our proposed model.

Given a video frame, a spatial prior map, on one hand, is

generated through a fully convolutional network (FCN). On

the other hand, a temporal prior map is obtained by evaluating

visual saliency from optical flow fields. Furthermore, the

spatial prior map and the temporal prior map are combined

to generate a spatiotemporal prior map to guide the second

FCN for saliency prediction. The generated saliency map is

refined further through a model of conditional random field.

The connected two FCNs for visual saliency prediction from

both spatial and temporal evaluation is called spatiotemporal

cascade neural network (SCNN). The SCNN parameters are

learned by our proposed weakly supervised approach.

In the following, we present firstly the details of SCNN.

Then, we show how to generate the spatiotemporal prior

map. After that, we introduce the weakly supervised learning

approach. Finally, the CRF for saliency refinement is given.

A. The spatiotemporal cascaded neural network

The proposed SCNN consists of two FCNs having the

same architecture extended from VGG network [48], which

contains five convolutional blocks, each of which has several

convolutional layers. In order to generate feature maps rather

than feature vectors, the last two fully connected layers need

to be transferred into convolutional layers with 1 × 1 kernel

like [33]. Therefore, the FCN in our SCNN contains six

convolutional blocks. Besides, in order to recover the scale

of feature maps, an up-sampling layer is added at the top of

FCN to generate a saliency map with a resolution of the input

video frame. In the FCNs, each convolutional operation can

be formulated as follow:

f(X ;W, b) = σ(W ∗ X + b) (1)

where f(·) denotes the generated feature map by a convolu-

tional operation; X is the input and contains three channels

tensors (X ∈ Rh∗w∗c); b is a bias term; W is a set of

kernel parameters; σ(·) denotes the activation function, which

is Rectified Linear Unit (ReLU) in our experiments.

The original VGG network contains five max-pooling layer-

s. The scale of feature maps is reduced twice after each max-

pooling layer, which largely reduces the scale of the feature
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Segmentation in optical flow map Computing saliency in RGB image Multi-level fusion

Fig. 3. The pipeline of the generation of motion prior map. Superpixels are obtained by [47] in the left block. The middle block shows the multi-level saliency
maps are computed by deep features. In the right block, the fusing saliency maps are generated by linear addition.

maps from the last convolutional layer. After the operation of

up-sampling, the feature maps are very coarse and the spatial

context information is also lost, which is not conducive to

generate the final saliency map. To keep the scale of final

feature map suitable, a padding operation of 100 pixels is

added in the Conv block1 in the first convolutional layer in

[33] (See Fig.2). Although it can increase the scale of feature

map, it brings a lot of useless information as well. In this paper,

we remove the last two max-pooling layers so that the feature

maps after the Conv block3 have enough scale to retain dense

features. However, this operation also changes the receptive

fields of convolution and makes the original parameters of

kernels not suitable for new convolutional layers. Therefore,

the convolution layers with dilation [49], that add holes into

convolutional kernels, are employed to keep receptive fields

and spatial context information.

In our SCNN, the multi-layer up-sampling is used for resiz-

ing the feature maps. In [2] [33], the up-sampling operation is

embedded after every convolutional block. However, through

our experiments, we find that the up-sampled feature maps

from the first four max-pooling layers have less effect on the

final saliency map. To simplify the structure of the network

and speed up the process, we only up-sample the feature maps

from the last two convolutional blocks, and then sum them up

element-wisely to obtain the final feature map.

The generated feature map from the first FCN is called

spatial prior map and combined with the temporal prior map

evaluated from optical flow fields to obtain a spatiotemporal

prior map, which is presented in detail in Section III-B. Then,

the spatiotemporal prior is exploited to guide the second FCN

learning for saliency prediction. Due to the embedding of the

spatiotemporal prior map, the convolutional operation in the

first layer of the second FCN is modified as follow:

f(X ,P;W1,W2, b) = σ(W1 ∗ X +W2 ∗ P + b)

= σ([W1 W2] ∗ [X P]T + b)
(2)

where P denotes and the spatiotemporal prior map; W1 is a

set of kernel parameters for the input frame X whereas W2 is

the one for the spatiotemporal prior map P; b is a bias term.

At the top of SCNN, a loss function is applied to compute

the errors between the final feature map S ∈ [0, 1]h∗w∗1 and

the pixel-wise labeled G ∈ [0, 1]h∗w∗1, where h and w denote

the height and width of an input video frame, respectively.

Considering the unbalance between the number of salient

pixels and that of non-salient pixels, we exploit a modified

cross-entropy loss function as follows:

L(S,G) =− α

h∗w
∑

i=1

gi logP (si = 1|Xi,W)

− (1− α)
h∗w
∑

i=1

(1− gi) logP (si = 0|Xi,W)

(3)

where si ∈ S and gi ∈ G denote the saliency value and the

label of ground truth for a pixel Xi, respectively; α denotes

the balance factor and is set as the ratio of background pixels

in the ground truth G.

B. Generation of spatiotemporal prior map

In our SCNN framework, a spatiotemporal prior map P ,

which is a combination of the spatial prior map Ps and

the temporal prior map Pt, is proposed to guide the second

FCN learning for salient object prediction. As the guidance

seed, we emphasize the precision rather than recall; i.e.,

we do not expect to highlight the whole salient object in

the spatiotemporal prior map P , but those salient regions

highlighted should be reliable. Therefore, the element-wise

production is adopted to fuse the spatial and temporal prior

maps, i.e.

P = Ps ⊗ Pt (4)

where ⊗ denotes the operation of element-wise production.

Such an operation highlights the shared salient regions in



1051-8215 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2018.2859773, IEEE

Transactions on Circuits and Systems for Video Technology

5

SCNN Generated 

labels

Label improvement 

Network optimization

SGD, 𝜃

weighted sum,𝑆 =  𝑖=1𝑁 𝑤𝑖𝑆𝑖

Fig. 4. Weakly supervised learning approach generates weak labels increas-
ingly and learns SCNN parameters iteratively with the augmented data.

both the spatial and temporal prior maps and suppresses those

regions being salient in one prior map only.

As mentioned in the previous subsection, the spatial prior

map Ps is generated from the first FCN. Specifically, the FCN

takes a frame as the input and produces the corresponding

feature maps. Then, the feature map of the last convolutional

layer is activated by a sigmoid function to generate the spatial

prior map Ps as follows

Ps = Ψ

(

Us

(

Fs(X ; θ)
)

)

(5)

where Ψ(·) denotes sigmoid operation; Us(·) denotes the up-

sampling operation; Fs(·) represents the convolution operation

with the parameters θ. In our experiments, the bilinear up-

sampling is used to ensure the spatial prior map Ps having a

resolution of the input video frame.

To generate the temporal prior map Pt, we propose a novel

approach to evaluate visual saliency from optical flow fields.

As illustrated in Fig.3, we firstly perform M segmentations on

the optical flow map by using graph-based algorithm [47] with

different parameters to generate multi-scale superpixels. Then

we extract deep features [32] from RGB image (video frame)

for each superpixel r
j
i (j = 1, 2, ...,M), where i denotes

the superpixel index in the j-level segmentation, to train a

binary classifier of the three-layer neural network for salient

superpixel prediction. Finally, the saliency maps from different

segmentation levels are linearly fused to generate the temporal

prior map Pt as follows:

Pt(ri) =
1

M

M
∑

j=1

Sj
(

D(rji )
)

(6)

where D(·) denotes the deep features of the superpixel r
j
i ;

Sj(·) denotes the saliency value predicted by the binary

classifier. the segmentation level M is set to 3, which is a

balance setting between the accuracy and the processing time.

C. Weakly supervised learning approach

Deep learning has demonstrated its success in various tasks.

However, it is a data-driven approach and needs large-scale

Algorithm 1 Parallel iteration strategy in training process

Input: the initial network parameters θ0 and network input

X , the initial weak pixel-wise label G0 by fusing saliency

maps Si with initial weights w0, the number of epoch β;

Output: final network parameters θβ
1: for t = 1, 2, ..., β do

Network optimization:

2: Use weak pixel-wise label Gt−1 and input images X to

compute network loss by Eq.3;

3: Update network parameters θt by using SGD;

Weak label improvement:

4: Add saliency map generated by our SCNN and update

weights wt by Eq.8;

5: Generate binary weak labels Gt through segmenting the

fused saliency map S in Eq.7 by Otsu threshold.

6: end for

data with ground truth to learn network parameters. Although

it is easy to obtain video data, the pixel-wisely labeling for the

ground truth is very time consuming, that is why some datasets

labeled a part of video frames only for the performance

evaluation of salient object detection. Therefore, we propose a

weakly supervised approach which learns network parameters

by generating weakly labeled data increasingly along with the

model learning iteration. Our hypothesis is that if we assign

weak labels for some frames unlabeled in the training set

and then make the labels stronger during training processing,

these frames and weak labels are also useful to learn network

parameters. To this end, we use a method fusing saliency maps

to generate the pixel-wise labels and propose an interactive

iteration approach to complete our weakly supervised learning.

As illustrated in the Fig.4, the proposed weakly supervised

learning approach consists of two components, including net-

work optimization for SCNN and labeling improvement for

the generated weak labels. Given some labeled data available,

the SCNN model is optimized, through the stochastic gradient

descent (SGD) method, and generates a saliency map for the

input video frame. The generated saliency map is combined

with other saliency maps, obtained by existing salient object

detection models, to generate weak labels. Interactively, these

weak labels are included in the training data for the next

iteration of SCNN model optimization. In this way, the two

components boost each other interactively and iteratively until

the convergence is reached.

To fuse the SCNN generated saliency with other saliency

maps generated by several existing saliency models, we exploit

weighted linear combination, i.e.,

S =
N
∑

i=1

wi ∗ Si (7)

where Si(i = 1, · · · , N) denotes the saliency map generated

by SCNN or existing saliency models thus N models used

in total. The weights {w1, w2, ..., wN} of combination are

obtained by the quadratic programming through minimizing
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the following objective function

w∗ = argmin
wi

||G −
N
∑

i=1

wi ∗ Si|| (8)

where G denotes the available manually labeled ground truth

and w∗ are the optimal weights. In other words, we use the

data with ground truth to learn the weights in Eq.8, and these

weights are used to fuse those saliency maps without ground

truth. With the fused saliency map S , we generate binary

labels through Otsu thresholding method. Compared with other

methods such as mean thresholding, P-Tile thresholding, etc

[50], Ostu is stable, effective and able to produce automatically

binary images. Hence, we choose it to generate the binary

labels. The overall algorithm of the weakly supervised learning

approach is summarized in Algorithm 1. It should be noted that

the weak pixel-wise labels by fusing saliency maps are used to

optimize the proposed network during the training process. In

the testing process, all of the fusing saliency maps are removed

in the network. Then, the trained SCNN produces directly the

saliency prediction.

In the implementation, three existing saliency models [1]–

[3] are introduced to generate fusing saliency maps. These

three models are recent deep models and achieve competi-

tive performance in image saliency detection. Although their

saliency maps exist some flaws in video datasets, the main

salient regions can be detected. Besides, by using the weighted

linear combination, the saliency maps can compensate for each

other. Thus we can produce more accurate weak pixel-wise

labels and exploit them to support the network training.

D. Pixel-wise saliency refinement

The SCNN is already able to detect salient regions in

frames, but saliency labels may be too coarse. Therefore,

the conditional random field (CRF) framework is exploited

to refine saliency pixel-wisely. Specifically, a CRF energy

function is defined respect to saliency labels (as random

variables), and its minimum leads to the optimal saliency

labeling. Following the previous work [51], the CRF energy

function is defined as follows:

E(si, sj) = −
∑

i

logΘ(si) +
∑

i,j

ϕij(si, sj) (9)

where si and sj denote the pixels in a saliency map S ,

respectively. The first is a unary potential, where Θ(si) is

defined as the saliency value si. The second is a pairwise

potential and expanded as follows:

ϕij(si, sj) = µ(si, sj)[ω1 ∗ exp(−
||pi − pj ||

2

2δ2α
−

||Ii − Ij ||
2

2δ2β
)

+ ω2 ∗ exp(−
||pi − pj ||

2

2δ2γ
)]

(10)

where µij(si, sj) = 1 if si 6= sj , otherwise 0. The first term

is appearance kernel, which promotes the adjacent pixels with

similar color appearance to be assigned with the same label.

The second term is smoothness kernel, whose purpose is to

eliminate small isolated regions. In this equation, pi, pj denote

coordinates of pixels, and Ii, Ij denote intensity of pixels.

The parameters δα, δβ control the impact of spatial distance,

whereas δγ determines the impact of intensity contrast; ω1 and

ω2 are the weights of the two kernels.

IV. EXPERIMENTS

In this section, we present firstly the most commonly used

benchmark datasets and evaluation criteria for salient object

detection. Moreover, the implementation of our approach is

introduced in detail. Then, we compare our proposed SCNN

with the state-of-the-art saliency detection models, and analyze

the effect of each module. Finally, the runtime complexity is

reported.

A. Datasets and performance evaluation criteria

We perform experiments on four benchmark datasets includ-

ing MSRA10k [52], SegtrackV2 [7], FBMS [8] and DAVIS

[10].

MSRA10K contains 10k images from diverse scenes, such

as person, animals, plants, traffic signs, etc. This dataset is

widely used in image saliency detection.

SegtrackV2 contains 14 video sequences including 1,066

frames in total. Thus each sequence contains 100 frames

appropriately. Each frame is manually labeled for salient

objects.

FBMS has 59 video sequences including 13,960 frames

in total. This dataset is divided into a training set (with 29

video sequences) and a test set (with 30 video sequences). The

ground truths are incomplete and discontinuous. For example,

there are 7,306 frames in the test set, but only 720 frames

have their corresponding ground truths.

DAVIS consists of 50 video sequences containing 3,455

frames in total, and each frame is pixel-wisely labeled. This

dataset contains a diversity of difficult scenes, such multiple

objects with occlusion, appearance variation, motion blurred

and low contrast, that makes it challenging for salient object

detection.

In our experiments, we train our SCNN model with all

images in MSRA10K, SeqtrackV2 and the training set of

FBMS, and test the performance with the testing set of FBMS

and the DAVIS dataset.

As for evaluation criteria, the standard precision-recall (PR)

curve is adopted. In computing PR curve, each saliency map

is normalized into the range of [0, 255]. Each integer within

this range is used as a threshold for segmentation to generate

a binary mask to compute precision and recall by comparing

against the ground truth. Furthermore, the mean absolute error

(MAE) (See Eq.11) is also used to measure the average

prediction error between saliency maps and ground truths,

which is defined as:

MAE =
1

|S|

∑

i

|S(pi)− G(pi)| (11)

where pi denotes any pixel in a frame; S and G denote the

generated saliency map and its corresponding ground truth,

respectively.
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Fig. 5. Comparison with 16 different saliency detection methods including 6 video saliency detection methods (solid lines) and 10 image saliency detection
methods (dashed lines) by using DAVIS dataset (top) and FBMS dataset (bottom). The left two columns are PR curves and the right one is MAEs of different
methods.

B. Implementation

The proposed SCNN has mainly been implemented with

Caffe library [53] and its MATLAB API. As an auxiliary, deep

learning toolbox [54] in MATLAB is used at the same time.

For the network training, we start firstly with the pre-

trained VGGNet [55], learned from ImageNet dataset [56],

and transfer its fully connected layers into fully convolutional

layers. Secondly, MSRA10K is used for fine-tuning the FCN.

Then, two pre-trained FCN are connected to form the SC-

NN. The spatiotermporal prior map fusing the spatial prior

map generated from the first FCN and temporal prior map

evaluated from optical flow field is fed into the second FCN.

Since the spatiotermporal prior is added to guide the network

learning, the first convolutional layer in the second FCN is

not suitable. Therefore, the parameters of this layer are re-

initialized with four channels by Xavier function. Thirdly, we

use the SegtrackV2 and the training set of FBMS to fine-tune

the SCNN. Lastly, in the inference phase, the saliency maps

generated from SCNN are refined further by CRF.

In the whole training process, stochastic gradient descent

(SGD) is used to update the parameters. The initial learning

rate is 10−2 and 10−10 for the two-phrase fine-tuning, respec-

tively. The weight decay is set to 0.005 and momentum is

0.9.

C. Comparison to the state-of-the-art saliency models

For performance comparison, we compare the proposed ap-

proach with six state-of-the-art video saliency approaches and

ten image saliency detection approaches both qualitatively and

quantitatively. The video saliency approaches we compared

are space-time saliency detection (ST) [57], cluster-based co-

saliency method (CS) [26], segmenting saliency detection (SS)

[23], consistent gradient based saliency (CG) [29], saliency-

aware method (SA) [6] and video salient object detection

via fully convolutional networks (SFCN) [11]. The compared

image saliency detection models include eight deep learning

based models: deep contrast learning (DCL) [2], recurrent

fully convolutional network (RFCN) [3], deep saliency multi-

task (DSMT) [1], local estimation and global search (LEGS)

[31], visual saliency on multi-scale deep features (MDF) [32],

aggregating multi-level convolutional features (Amulet) [58],

saliency detection with image-level supervision (WSS) [14],

learning uncertain convolutional features (UCF) [4] and two

models based on handcrafted features: robust background

detection (SO) [59], saliency filters (SF) [15].

Fig.5 shows the PR curves and MAEs generated by the

proposed SCNN model and the other sixteen state-of-the-

art saliency models. Clearly, the proposed SCNN achieves

obvious higher performance on each dataset in term of both

PR curve and MAE criteria. Notice that the PR curve of our

approach outperforms the others by a large margin on the

DAVIS dataset and also has an improvement on the FBMS

dataset. In the aspect of MAE, the proposed SCNN decreases

it to 5.8% and 10.8% on the DAVIS and FBMS datasets,

respectively.

Fig.6 shows some saliency maps generated by the top

sixteen models on the two datasets. The first four sequences

(bmx-bumps, blackswan, bus, train) are from DAVIS and last

three sequences (camel01, horse04, goats01) are from FBMS.

Notice that the SA and CG by modeling the motion cues

are more difficult to predict saliency than the deep learning

based models (e.g. DCL, RFCN, MDF) learned from still

images only. The deep learning based models have success-

fully detected most of the salient regions in video sequences.
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Fig. 6. Saliency maps generated by using part of comparing methods and the proposed approach on DAVIS video sequences (bmx-bumps, blackswan, bus
and train), FBMS video sequences (camel01, horses04 and goats01). Qualitatively, our approach removes the inference of still salient region and generates
the most similar saliency maps to the ground truths.



1051-8215 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2018.2859773, IEEE

Transactions on Circuits and Systems for Video Technology

9

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

pr
ec

is
io

n

 

 

FG
FP
OS
OT
SCNN

FG FP OS OT SCNN
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
15%  

12.5%  

10.6%  

8.3%  

5.8%  

(b)

M
A

E

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

pr
ec

is
io

n

 

 

s−FCN
SCNN

s−FCN SCNN
0

0.02

0.04

0.06

0.08

0.1

0.12

10.2%  

5.8%  

(a)

M
A

E

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

pr
ec

is
io

n

 

 

Without weak labels
SCNN

Without weak labels SCNN
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
13.2%  

5.8%  

(c)

M
A

E

Fig. 7. PR curves (top) and MAEs (bottom) generated by using different configurations on DAVIS dataset. (a) Performance comparison between s-FCN and
the proposed SCNN. (b) Performance validation for the spatiotemporal prior. (c) Performance validation for the weakly supervised learning approach.

However, they highlight some background regions as well. For

example, the red brand in bmx-bumps sequence and river bank

in blackswan sequence from the background are highlighted

as salient regions. The main reason comes from the lack of

motion information for learning these models. Our approach

employs the spatiotemporal prior to guide saliency modeling

and eliminate the inference of unmoving salient regions effec-

tively, which makes the proposed approach achieve a higher

quality of saliency maps. As for the multiple objects, our

method also achieves competitive performance. In horse04 and

goats01 sequences, all of the horses and goats are detected by

the SCNN.

D. Validation of the proposed approach with different config-

urations

We perform several experiments on DAVIS dataset to vali-

date the effectiveness of SCNN framework, the spatiotemporal

prior and the weakly supervised learning approach, which

demonstrate the contributions of this paper.

To validate the proposed SCNN framework, a single fully

convolutional network (s-FCN), which has the same the struc-

ture of FCN in our SCNN, is used for generating the saliency

maps for input video frames. As shown in the Fig.7 (a) the PR

curve of SCNN is obviously higher than that of s-FCN and

decreases the MAE from 10.2% to 5.8%, which demonstrates

the effectiveness by using two FCNs to model visual saliency

from both spatial and temporal cues.

To validate the effectiveness of the spatiotemporal prior, we

report saliency performance by replacing it with the following

alternative methods while keeping other components of SCNN.

• FG: the color optical flow image is converted into gray-

scale one which is a typical method representing motion

information. Then the gray-scale motion image and the

INPUT

FG

SCNN

s-FCN

FP

OS

OT

camel

NA

hike elephanthockey swing

Fig. 8. Saliency maps by different configurations. From top to bottom, they are
saliency maps by single FCN (s-FCN), connecting graying optical flow prior
map and spatial prior map (FG), connecting spatial prior map and temporal
prior map (FP), only using the spatial prior of video frame (OS), only using
temporal prior map (OT), saliency maps without weak pixel-wise labels (NA)
training and Final saliency map (SCNN) with all of components

spatial prior map Ps generated from the first FCN using

Eq.(5) are stacked with the input video frame to form a

five-channel input of the second FCN.

• FP: the temporal prior map Pt generated with Eq.(6) and

the spatial prior map Ps are stacked with the input video

frame to form a five-channel input of the second FCN.

• OS: only the spatial prior map Ps is stacked with the

input video frame to form a four-channel input of the
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Fig. 9. Comparison between the proposed spatiotemporal cascade neural
network and the improvement of the CRF model on DAVIS dataset
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Fig. 10. Comparison of different network configuration by using the multi-
layer up-sampling on DAVIS dataset

second FCN.

• OT: only the temporal prior map Pt is stacked with the

input video frame to form a four-channel input of the

second FCN.

From Fig.7 (b), we can clearly observe that our proposed

SCNN guided by the spatiotemporal prior substantially outper-

forms the four alternative methods mentioned above. In some

complex scenes, some background regions are generated in the

spatial prior. These background information directly affects the

network learning. The element-wise production may remove

some regions of salient objects. Besides, due to the accuracy in

both spatial prior and temporal prior, the main parts of salient

objects can be retained. Therefore, the fusing spatiotemporal

prior can guide the SCNN to learn more robust salient features.

The proposed weakly supervised learning approach gener-

ates weakly labeled data for training the network. To validate

the contribution, in Fig.7(c) we report the saliency perfor-

mance by using manually labeled ground truths only (without

including weak labels) to train our network. Clearly, The

proposed SCNN with weakly supervised learning approach

achieves notable higher performance. Fig.8 displays the some

saliency maps generated by our network with different con-

figurations.

In our approach, we exploit the dense CRF as the post-

processing to refine the saliency maps generated from SCNN.

In order to validate its effectiveness, we also set a experiment

to present the performance of our saliency maps with and

without the CRF in DAVIS dataset. The PR curves and MAEs

are shown in Fig. 9. We can see that the post-processing indeed

enhances the quality of the saliency results from our SCNN,

because it can improve the spatial coherence of the generated

saliency maps. However, the proposed SCNN also achieves

competitive performance.

In the some deep saliency models, the final saliency maps

are generated by fusing the up-sampling feature maps from

multi-scale convolutional blocks. Through the experiments,

we find that the up-sampling feature maps from the first four

convolutional blocks have less effect on the final saliency maps

in video saliency datasets. Therefore, we try to fuse the up-

sampling feature maps from the last two convolutional blocks

to generate the final saliency maps. The Fig. 10 shows that the

PR curve and MAE of the proposed architecture are slightly

better than the ones of integrating the up-sampling feature

maps from all of the convolutional blocks.

E. Runtime Analysis

The PC configuration is an Intel(R) i7-5820 CPU (3.3

GHz), a Nvidia Geforce TITAN X GPU (12 GB memory),

and 64G RAM. All approaches are run on this PC. Table.I

displays the average run time per frame of different methods

on DAVIS dataset. Among them, CG, SA, SS and our SCNN

by exploiting the optical flow cost much time than others.

SCNNf introduces the FlowNet2.0 [60] to extract optical flow.

Compared with traditional method of optical flow extraction

[61], FlowNet2.0 is faster by a robust deep learning model.

Table. II shows the average run time of each component of the

SCNN and SCNNf . We can see that the FlowNet2.0 decreases

the computation time from 36.720s to 0.739s and accelerates

the proposed method from 38.511s to 2.53s.

TABLE I
COMPARISON AVERAGE RUN TIME (SECONDS PER FRAME) ON DAVIS

DATASET

Method SCNN SCNNf ST CS SS SO

Time(s) 38.511 2.53 28.193 1.175 37.176 0.671

Method CG SA SFCN SF DCL RFCN

Time(s) 38.075 38.751 0.473 0.842 0.670 4.580

Method DSMT LEGS MDF Amulet UCF WSS

Time(s) 0.14 0.206 11.33 5.299 0.151 0.024

TABLE II
AVERAGE RUN TIME (SECONDS PER FRAME) OF EACH COMPONENT IN THE

PROPOSED APPROACH ON DAVIS DATASET

Model Component Time (s) Ratio (%)

SCNN

Optical flow computation 36.720 95.36

Temporal prior generation 0.823 2.14

Neural network processing 0.685 1.78

Saliency refinement 0.283 0.72

Total 38.511 100

SCNNf

Optical flow computation 0.739 29.2

Temporal prior generation 0.823 32.5

Neural network processing 0.685 27.1

Saliency refinement 0.283 11.2

Total 2.53 100
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V. CONCLUSION

In this paper, we propose a novel SCNN for salient object

detection in a video. The framework integrates the spatial prior

of the video frame and the temporal prior based on optical

flow, which successfully eliminates unmoving salient region

and generates final saliency maps in dynamic scenes. Based

on optical flow, we subtly incorporate superpixel segmentation

on optical flow map and multi-scale deep features to obtain a

high-quality temporal prior map, which can guide the training

of SCNN and support accurate inference. Furthermore, facing

the shortage of training data, a weak supervised learning

strategy is proposed. This method enables our network to learn

more information and make saliency maps more accurate.

Finally, we performed an extensive evaluation on the widely

used FBMS and DAVIS dataset. Experiments denote that the

proposed approach substantially outperforms the state-of-the-

art video saliency and image saliency models in term of both

PR curve and MAE criteria.
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