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Abstract 

An optical experimental procedure for evaluating the J-Integral from full-field 

displacement fields under dynamic loading is proposed in this work. The methodology 

is applied to measure the J-integral in the dynamic compressive loading of fiber-

reinforced composites and to calculate the dynamic fracture toughness associated with 

the propagation of a kink-band. A modified J-Integral that considers inertia effects is 

calculated over the full-field measurements obtained by digital image correlation, for 

double edge-notched specimen of IM7-8552 laminates dynamically loaded in a split-



  

Hopkinson pressure bar (SHPB). A sensibility study is conducted to address the 

influence of the speckle parameters. The results show good agreement with 

experimental observations obtained by using a different data reduction method, 

suggesting the existence of a rising R-curve for the studied material under dynamic 

loading. Furthermore, it was noticed that the inertia effect can be negligible, indicating a 

state of dynamic equilibrium in which quasi-static approaches may comfortably be used. 

 

Keywords: dynamic fracture toughness, digital image correlation (DIC), J-Integral, 

fiber-reinforced composite materials. 

List of symbols 

          longitudinal, transversal, and shear modulus 

    in-plane Poisson coefficient 

  specimen half width 

        crack length, initial crack length, crack increment 

   strain rate 

SR subset radius 

    nearest neighbor distance 

  Feret diameter 

       
  dynamic J-Integral, dynamic J-Integral fit 

     displacement field, acceleration field 

  in-plane direction 

  elastic energy 

  Kronecker delta 

  stress tensor 



  

  specific mass 

  weight function 

  area of a data point 

   data point 

    domain width, domain height 

   inner contour region 

            laminate fracture toughness and fracture toughness of 0º and 90º plies 

     time frame, peak load time frame 

    variable relative importance 

    input-hidden layer connection weights 

   hidden layer-output connection weights 

     laminate thickness, thickness of 0º plies 

 

Introduction 

The compression failure in notched composites has been thoroughly studied with during 

the past decades [1] [2] [3] [4] [5]. Fiber-reinforced composites exhibit in compression a 

failure mechanism through the onset and propagation of kink bands [6, 2, 7, 8] that may 

be represented as cracks. Therefore, a fracture toughness is associated to the kink band 

failure mechanism. The fracture toughness is one of the key parameters used in strength 

prediction methods for composite materials. Its accurate determination is therefore 

essential and has given birth, in the past years, to the widespread development of 

different experimental techniques.  

The experimental work performed has been mainly conducted under static loading 

conditions. The CT specimen ([9] [10] [11], among others) and the size effect method 

[12] have been used to measure the R-curve associated with the propagation of a kink-

band. Despite the work performed so far only one paper [13] has been published on the 



  

determination of dynamic compressive failure for fiber-reinforced composites. 

Considering that, in several real applications, composite structures need to withstand 

dynamic loading, it is necessary to further understand the dynamic behavior of this 

important class of materials. 

Several works have studied the strain-rate dependence on fracture toughness of 

composite materials. Changes in the fracture toughness value have been explained by 

rate dependence on elastic properties as well as sensitivity of stress resistance limit [13] 

[14] [15] [16] [17]. This indicates a lack of consensus regarding the origin of the time 

dependent behavior, motivating effort toward this topic. 

Many authors rely on quasi-static approaches on data reduction of their dynamic 

analysis, relying on the premise that dynamic stress equilibrium has been reached. Jiang 

and Vecchio [18] show in a review that the quasi-static theory is the preferred method to 

calculate fracture toughness under impact conditions, a conclusion reached by many 

other authors [19] [20] [21] [22] [23]. On the other hand, Nishioka [24] considers that 

the use of computer simulations is the only possible way to overcome difficulties in 

acquiring higher-order dynamic properties along a transient loading history. 

Sun and Han [25] used the modified crack closure (MCC) integral to calculate mode I 

dynamic energy release rate of wedge loaded compact tension (WLCT) specimens using 

a finite elements formulation suggested by Jih and Sun [26]. The crack propagation is 

simulated by sequentially releasing the crack path nodes, based on experimental 

measurements of crack tip position, and the crack-closure integral calculated 

continuously trailing the crack-tip [27]. For Jih and Sun [26], an advantage of this 

method compared to the J-Integral is that it can easily separate the energy release rate 

for each fracture mode without knowing, a priori, the mixed-mode ratio. Navarro et al. 

[28] followed the work of Guo and Sun [29], which similarly to Sun and Hun [25], used 

the finite elements method with node releasing strategy to calculate mode I dynamic 

fracture toughness of carbon/epoxy and glass/epoxy composites. Differently from Jih 

and Sun [26], they used the energy balance (total strain-energy and total kinetic-energy) 

to calculate the energy release rate. Wu and Dzenis [30] also performed finite elements 

simulations on their dynamic delamination (Modes I and II) study. Instead of using a 

contour integral, like in the work presented by Sun and Han [25], they calculated stress 

intensity factors directly by the crack opening displacement, assuming an asymptotic 

displacement field near crack tip (Sih et al. [31]). The use of the crack opening 



  

displacement instead of J-Integral was justified by the fact that the numerical 

differentiation step would reduce the accuracy of the analysis, since the stress field is 

calculated by the displacement derivative. In addition, it was pointed out that the 

dynamic path-independent integral would not avoid the singular stress field because it 

involves area integrals within the contour. Lee et al. [32] used the analytical expressions 

of the displacement field derived by Liu et al. [33] to calculate the dynamic stress 

intensity factor. Differently from Wu and Dzenis [30], where finite elements method 

was employed do calculate the crack opening displacement, they used 2D digital image 

correlation (DIC) and high-speed photography to obtain the full-field displacements and 

further calculate the dynamic stress intensity factors. An analogous approach was used 

by Joudon et al. [34] for the measurement of the dynamic mode I fracture toughness of 

toughened epoxy resins. The authors used a strain gage method instead of DIC, 

following the work of Khanna and Shukla [35], which assumes an asymptotic strain 

field near the tip of a moving crack with constant velocity. Additionally, the authors 

mentioned that the local analysis of asymptotic fields are preferred on determining 

fracture mechanics parameters during fast propagating cracks on brittle polymers. Kunh 

et al. [13] studied the dynamic compression toughness for carbon/epoxy under a strain 

rate of 100s
-1

. The approach presented uses the relations between the size effect law, 

proposed by Bažant et al. [36], the energy release rate and R-curve, under a quasi-static 

assumption, reporting a significant increase in the fracture toughness. In agreement with 

Wosu et al. [21], they reported a negligible influence of the kinetic energy in total 

process energy, justifying the use of the quasi-static approach. 

The use of J-Integral over full-field measurements has also been proposed. Jiang et al. 

[37] calculated the value of the J-Integral, under quasi-static regime, for composite 

materials used in dental restorations over full-field measurements obtained by DIC and 

reported no considerable dependence on size and location of the integration path, 

concluding that the J-Integral calculation aside the DIC, is a reliable technique for 

calculating the material fracture toughness. Similar results were found in other studies, 

confirming the reliability of the use of J-Integral over full-field measurements [38] [39] 

[9]. In addition, the use of the area domain J-Integral has been reported by some authors 

as an advantageous alternative to the traditional contour J-Integral, regarding the 

integration domain dependency and the error reduction [40] [41]. 



  

To achieve a reliable DIC, the subset size must be trade-off between the capacity of 

distinguishing it from different subsets and avoiding mask heterogeneities in full-field 

measurements by using a large window. Additionally, small subsets would lead to an 

increase of local correlation coefficient minimums, decreasing the technique efficiency 

[42]. Studies have been done towards finding the optimal subset values, considering the 

image and the speckle pattern properties. A practical suggestion is the use of a subset 

size that circumscribes at least three speckle particles. Leading to the development of 

geometric models for determining the optimal subset size [43] [44] [45] [46] [47] [48] 

[49]. 

However, all the studies performed using J-Integral and DIC were done in quasi-static 

conditions and didn’t evaluated the J results sensitivity in relation to the parameters 

used in DIC and in the formulation of J-Integral, although there are some works that 

evaluate the influence of DIC parameters in strain error. Thus, this work aims to 

analyse, by using artificial neural networks, the influence of the parameters used for J 

calculation. In addition, it is discussed the application of an inertial term in the J integral 

and the possibility of the construction of a dynamic R curve based on fracture toughness 

results. 

This work is complementary to thse published by Kuhn et al. [13]. Therefore, it is 

discussed the determination of the dynamic fracture toughness of the tested material by 

two different methodologies: the analytical model presented by Catalanotti et al. [9] 

[12], and the DIC analysis, proposed in this paper. 

 

Materials and Methods 

Material and tests specimens. 

Flat panels with a 4 mm thickness and a layup of [90/0]8S were manufactured using 

HexPly IM7-8552 carbon-epoxy prepreg system. The panel was cured by hot-pressing 

following the curing cycle suggested by the manufacturer [50]. Table 1 shows the 

elastic properties of the laminate measured under high strain (         ) [13]. 

High strain rate fracture tests were carried out on double-edge notched in compression 

(DENC) specimens machined from the panel by a 1 mm drill bit. The specimens have 

all the same shape but different sizes, or in other word, the width and the length of the 



  

specimen are proportional to a characteristic size, W, as indicated in Figure 1. Table 2 

shows the dimensions used in this experimental campaign. 

For the assessment of full-field displacements by the DIC technique the specimens were 

covered by a random black and white speckle pattern. 

Experimental setup and high strain rate tests 

The high strain rate tests were performed in a split-Hopkinson pressure bar (SHPB). 

Different bar diameters and pulse shapers were used to achieve the same strain rate for 

all specimens (         ). A high-performance PHOTRON AS-Z camera was used to 

capture the speckle pattern variation along time. The acquisition frequency and the 

resolution were 300,000 fps 256 x 128 pixels
2
, respectively. Further details of the 

experimental setup can be found in [13]. 

 

Full field measurements (DIC) 

Subset determination model 

Aiming for a good analysis of deformations by the DIC method, the ideal size of the 

subset radius to be used must be determined. It will determine the size of the window 

for which the occurred displacement identification is made according to the change of 

location of sets of points at different gray scale values. In order to respect the 

requirements of having at least 3 speckles by subset [48] and to ensure the best possible 

resolution, a geometric model, in which the speckles are considered perfectly circular 

and their centers are located at the vertices of an equilateral triangle, is proposed. This is 

the most homogeneous arrangement for three points around the same reference point. 

Therefore, the model considers the distance between the centers of the circles as the 

nearest neighbor distance (NND) and that the diameter of the circles as the speckles 

Feret diameter (D) [51], as shown in Figure 2. 

The considered value for the speckle size is that which covers 95% of the particles Feret 

diameter distribution, ensuring a wide range of particles size within the subset. 

Analogously, the free path between particles considered is that in respect of 95% of the 

nearest neighbor distance distribution (NND). By using Euclidian geometry, the subset 

radius value (SR), that is equivalent to de distance between de triangle center and the 

circumference that circumscribes the three small circles, is calculated by Equation 1. 



  

               
  

 
       Equation 1 

To obtain the speckles Feret diameter and the free path distributions, image processing 

techniques were performed in steps, illustrated in Figure 3, using the open source 

software ImageJ® [52], following the sequence below: 

a) Histogram equalization: To enhance the contrast by stretching out the intensity 

distribution to the whole range of intensity spectrum. 

b) Classification: The image is made binary by using the Bernsen adaptive threshold 

filter [53], with a 15  15 px² window. The resulting black regions refer to the 

particles while white regions refer to the background. 

c) Watershed: to avoid overestimating the particles size by separating touching 

objects. 

d) Area filter and despeckle: To remove particles smaller than 4 px² and smooth sharp 

regions of particles. 

Full field measurements 

The full field measurements (displacements and strains) were calculated by the DIC 

technique, using the open-source DIC software Ncorr [42]. The subset size for each 

specimen was determined by the procedure descripted previously. Green-Lagrange 

strains are calculated by Ncorr, using the strain-displacement relation with small 

deformation formulation (Equation 2). Ncorr uses piecewise least-squares fitting over a 

region of the displacement field data points, the strain window, to calculate the 

displacements gradient (  ). The size of the strain window will be discussed further. 

   
 

 
 
   

   
 

   

   
        Equation 2 

 

 

Dynamic J-Integral calculation 

Formulation 

In this study an implementation of the J-Integral proposed by Atluri [54] and used in 

Kuna [55] is proposed. It considers the inertia effect and neglects the kinetic energy, for 

the case of dynamically loaded stationary cracks. 



  

The J-Integral is calculated for each notch, and the higher value is taken. The discrete 

implementation of the J-Integral is the sum of the contribution of each individual data 

point within the domain boundaries and   represents the area of a data point, in mm². 

                
   

   
 

  

   
  

   

   
       

  
     Equation 3 

The domain transformation, from contour to area, requires the use of a weight function 

q, that must follow two requirements: 

1. Must vary smoothly from 0 (at the outer contour) to 1 (at the inner contour). 

2. Must value 1 within the inner contour (in the present case the inner contour 

    ). 

In the discrete implementation, the operator       represents the gradient vector, where 

   is the length represented by a data point edge. The J-Integral was calculated for 

every time step (i.e. image frames), so that a behavior over time can be obtained. The 

chosen function is a biquadratic equation, shown in Equation 4, which satisfies the 

mentioned conditions. 

         
     

  
  

     

           Equation 4 

In the proposed methodology the weight function is also responsible for the domain 

boundaries determination. Since it only has values within the outer contour and the J-

Integral terms multiply q and   , the J-Integral area domain can be set by the 

parameters c and h (i.e. the width and the height of function domain). Figure 5 shows 

the biquadratic equation for a domain with 170  65 data points. 

Fracture toughness definition 

In this study, the initiation fracture toughness is defined as the point of instability, 

assumed as the point of the peak load during the test [13] [12]. Considering the linear-

elastic behavior of the material, GC is defined as: 

                   Equation 5 

The fracture toughness calculation consisted in a polynomial fit of the J-Integral values 

over time for all specimens of each type. A window of 23 consecutive frames, which 

comprises all the experimental fracture process, was used. The 21
st
 frame matches the 

peak load time (t = tp), so all specimens of each type could be synchronized by the peak 



  

load frame and plot over the same time domain, as can be seen on Figure 6. Further, a 

third order polynomial was used to fit the J-Integral over time and the value of     
       

is assumed to be the initiation fracture toughness. 

 

Parameters sensitivity analysis 

The influence of three parameters were assessed in this study: the strain window, the 

domain width (c), and the domain height (h), as shown in Figure 4. 

Full factorial design 

A full factorial design was generated to evaluate de influence of the parameters on J-

Integral value. Three parameters were chosen for assessing the robustness of the 

method: the strain window, the domain height, and the domain width. 

 The strain window relates to the sensitivity of the J-Integral regarding the 

smoothness of the strain field. 

 The domain size variation verifies whether the area domain J-Integral is 

dependent to the integration domain, analogous to the path independence of the 

classic J-Integral. 

Five levels, shown in Table 3, were heuristically chosen for each parameter. 

Analysis of Parameters Relative Importance (RI%) 

Lilliefors’ tests [56] have shown that the J-Integral residuals do not fit in a normal 

distribution regarding the variation of the parameters. So, it would not be appropriate to 

evaluate the effect of the variables using the ANOVA method. The connection weights 

(CWM) method was used to estimate RI for each variable based on the weights of a 

trained artificial neural network (ANN) [57]. The relative importance of a given input 

variable can be defined by Equation 6, for the case of a single hidden layer. 

           
 
          Equation 6 

where, n is the total number of hidden nodes,     is the weight of the connections 

between input nodes and hidden nodes, and    is the weight of the connection between 

hidden nodes and the output node. In this study, a multilayer perceptron (MLP) ANN 

with four hidden neurons within a single hidden layer (Figure 7) was heuristically 

chosen to evaluate the RI% of input variables. 



  

 

Results and discussion 

Subset Size 

Table 4 shows the results for the subset size for each specimen type, and its respective 

input parameters (Feret diameter and NND). 

The scale factor increases with the decrease of the specimen size (i.e. the zoom in 

smaller specimens has great magnitude compared to larger specimens), therefore all 

specimens present approximately the same size in pixels. Considering the speckle 

particles distribution to be the same for all specimens (the same application method was 

used), Larger specimens are expected to present smaller speckle particles, in pixels. 

Consequently, decreasing subset size. 

Dynamic Fracture Toughness 

The above defined initiation fracture toughness criterion was applied to all specimens. 

Figure 8 shows the J-Integral over time and the polynomial fit for type II. The initial 

point, or 0s, refers to the 20
th

 frame before the peak load frame. It is a representative 

curve that follows the other types. 

Computing the fracture toughness for all specimens, it was possible to evaluate the 

sensitivity of its value regarding the variation of the method parameters. The connection 

weights method [57] indicates that the greatest relative influence comes from the 

domain height (i.e. along crack direction), as shown in Figure 9. 

Table 5 shows the fracture toughness and its standard deviation for three scenarios: 

 3 parameters variation: the full factorial design. 

 2 parameters variation: strain window fixed at a value of 9 data points, and the 

domain parameters varying from 50% to 90% of the specimen size in the 

respective direction. 

 1 parameter variation: strain window fixed at a value of 9 data points, the 

domain width fixed at 90% of specimen width, varying the domain height from 

50% to 90% of the specimen half height (W). 

The results show an increasing trend of the dynamic fracture toughness in respect of 

specimen size. Considering that different sizes relate to different notch sizes (a0), it is 



  

plausible the existence of a rising R-Curve for the IM7-8552 under dynamic loads, as 

expected. Since the R-Curve of a given material is invariant, in the present case in 

which a0/W is constant greater test specimens are expected to achieve instability at 

greater GC values. This result agrees to the results obtained by Kuhn et al. [13], which 

calculated a R-curve of the same material based on the method proposed by Catalanotti 

et al. [12]. This method relies on the relation between the energy release rate and the 

size-effect law established by Bažant et al. [36]. 

The method used by Kuhn et al. [13] to establish the relation between W and Δa was 

applied to the results obtained in the present paper. Figure 10 shows the average 

initiation fracture toughness of the full factorial design (Figure 8) and the R-curve 

obtained by Kuhn et al [13]. 

The R-Curve calculated by Kuhn et al. [13], for longitudinal plies, was compared to the 

fracture toughness results calculated in the present work (Equations 5 and 7), neglecting 

the transversal plies contribution (        ), following Pinho et al. [10]. 

    
 

  
  .        Equation 7 

An important remark is that, differently from Kuhn et al. that obtained the R-Curve 

based on the size effect law applied on the specimens’ ultimate stress, the present work 

calculates the GC values based on full-field measurements, without using load 

information (except for the peak load time frame, tp). The close agreement of the results 

indicates that the proposed methodology could be a reliable alternative for fracture 

toughness determination of composite laminates subjected to dynamic loads. Table 6 

shows a comparison to values found in previous works for the same tested material. The 

same consideration of longitudinal fracture toughness applies (Equation 7). 

Regarding the domain dependence on fracture toughness value (Table 5) the greatest 

variation coefficient is 7.8%, for the type II in full factorial scenario. It shows that the 

dynamic fracture toughness does not depend significantly on the chosen area domain. 

Inertia Effect 

The fracture toughness calculation applied in this work (Equation 3), allows the 

assessment of the inertial term   
   

   
      contribution on total J-Integral value. It was 

found that the inertia contribution is negligible for all analyzed specimens, 



  

approximately 0.01%, 0.10%, and 0.35% of the total fracture toughness, for types I, II 

and, III respectively, suggesting the achievement of the dynamic equilibrium, agreeing 

with Kuhn et al. [13] on the reliability of the quasi-static methodology for the dynamic 

analysis. Moreover, a rising trend can be observed indicating the larger the specimens, 

the higher the inertial term is, even though it is negligible in the present study. This 

trend could be related to the time to achieve the dynamic equilibrium, that is longer for 

larger specimens [58]. 

 

Conclusions 

The main conclusions outlined in this study can be summarized as follows: 

 The modified J-Integral calculated in this study makes possible the evaluation 

whether the dynamic equilibrium have been achieved, by the analysis of the 

inertial term against the total energy release rate value. 

 The proposed methodology for measuring the J-integral from full-field 

displacement provided by DIC is shown to be stable with regard to setting 

parameters. The results show a small variation coefficient regarding the DIC and 

the integration domain parameters. 

 Machine learning was useful on assessing the relative influence of the input 

variables. The use of the weights of a trained artificial neural network was an 

alternative in the present case, where statistical distributions could not be 

applied. 

 The results show a rising trend on the fracture toughness in respect of the 

increase of the specimen size, and consequently the increase of a0, suggesting 

the existence of a rising R-curve. 

 Present results and those from Kuhn et al. [13] are in close agreement, even 

though they come from two different methodologies, with non-related input 

variables. 
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Table 1: Laminate elastic properties for high strain rate. 

Ex =Ey (GPa) Gxy (GPa) νxy 

67.126 6.345 0.04 

 

Table 2: Nominal dimensions of the specimens (all values in mm). 

Specimen type I II III 

a0 2.50 3.75 6.75 

W 5.00 7.50 12.50 

 

Table 3: Parameters and parameter levels of the full factorial design. 

Parameter Level 1 Level 2 Level 3 Level 4 Level 5 



  

Strain window (data points) 10 14 18 22 26 

Domain height 50% 60% 70% 80% 90% 

Domain width 50% 60% 70% 80% 90% 

 

Table 4: Results for the subset size for each specimen type (all values in pixels). 

Specimen type D NND SR 

I 17 ± 1 11 ± 1 15 ± 0 

II 12 ± 2 11 ± 1 13 ± 4 

III 10 ± 1 10 ± 1 11 ± 2 

 

Table 5: Mean fracture toughness results and standard deviation (in kJ/m²) regarding the 

variation of the factorial design parameters. 

Specimen type 3 parameters 2 parameters 1 parameter 

I 61.8 ± 2.4 61.7 ± 1.3 59.4 ± 1.2 

II 67.6 ± 5.3 68.6 ± 3.4 66.4 ± 3.9 

III 91.3 ± 4.0 91.6 ± 2.7 88.4 ± 3.0 

 

Table 6: Comparison of the determined fracture toughness value for IM7-8552 

longitudinal plies with previous works
1
. 

Author Regime GC (kJ/m²) 

Present study (DIC)                    

                                                 
1
 The values related to Kuhn et al. [13] and Catalanotti et al. [12] refer to the steady-state fracture 

toughness value. 



  

Kuhn et al. [13]                

Kuhn et al. [13] Quasi-static      

Catalanotti et al. [12] Quasi-static     

 

 

Figure 1 - Specimen geometry. 

 

 

 

 

Figure 2 – Geometric model for subset radius. 

 



  

 a)  b) 

 c)  d) 

Figure 3 – a) Original image; b) Equalized image; c) Binary image; and d) Final image 

after watershed and size filtering. 

 

 

Figure 4 - An illustration of a stress field within a domain of size c  h including the 

notch, showing a single data point, marked in red. 



  

 

 

Figure 5 - Weight function for a 170  65 data points domain. 

 

a) 

 



  

b) 

Figure 6 - J-Integral scatter over time frames, (a) original input data, (b) shifted to 

synchronize the peak load frame. 

 

 

Figure 7 - Diagram of the multilayer perceptron used for RI% estimates. 

 



  

 

Figure 8 - J-Integral over time for type II.

 

Figure 9 - Relative influence of variables on fracture toughness. 

 



  
 

Figure 10 – GC points obtained in the present work (DIC) and the R-Curve obtained by 

Kuhn et al. [13] for longitudinal plies. 


