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A sediment record from a small lake in the north-eastern part of the Kamchatka Peninsula has been investigated
in a multi-proxy study to gain knowledge of Holocene climatic and environmental change. Pollen, diatoms,
chironomids and selected geochemical parameterswere analysed and the sediment recordwas datedwith radio-
carbon. The study shows Holocene changes in the terrestrial vegetation as well as responses of the lake ecosys-
tem to catchmentmaturity andmultiple stressors, such as climate change and volcanic eruptions. Climate change
is themajor driving force resulting in the recorded environmental changes in the lake, although recurrent tephra
deposition events also contributed. The sediment record has an age at the base of about 10,000 cal yrs BP, and
during the first 400 years the climate was cold and the lake exhibited extensive ice-cover during winter and
relatively low primary production. Soils in the catchment were poor with shrub alder and birches dominating
the vegetation surrounding the lake. At about 9600–8900 cal yrs BP the climate was cold and moist, and strong
seasonalwind stress resulted in reduced ice-cover and increased primary production. After ca. 8900 cal yrs BP the
forest density increased around the lake, runoff decreased in a generally drier climate resulting in decreased
primary production in the lake until ca. 7000 cal yrs BP. This generally dry climate was interrupted by a brief
climatic perturbation, possibly attributed to the 8.2 ka event, indicating increasingly windy conditions with
thick snow cover, reduced ice-cover and slightly elevated primary production in the lake. The diatom record
shows maximum thermal stratification at ca. 6300–5800 cal yrs BP and indicates together with the geochemical
proxies a dry and slightlywarmer climate resulting in a high productive lake. Themost remarkably change in the
catchment vegetation occurred at ca. 4200 cal yrs BP in the form of a conspicuous increase in Siberian dwarf pine
(Pinus pumila), indicating a shift to a cooler climate with a thicker and more long-lasting snow cover. This
vegetational change was accompanied by marked shifts in the diatom and chironomid stratigraphies, which
are also indicative of colder climate and more extensive ice-cover.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

To trace and reconstruct long-term environmental changes in
aquatic as well as terrestrial ecosystems multi-proxy stratigraphic
analysis of lake sediments is a widely used and successful approach
. This is an open access article under
(Lotter et al., 1995). Aquatic ecosystems at high latitudes are susceptible
to, and commonly respond promptly to climate change. In particular
there is a straightforward relationship between climate and aquatic
environment in lakes situated near ecotonal boundaries (Smol et al.,
2005; Lotter et al., 2010). Many physical properties of lakes, e.g., the
duration of ice-cover and thermal stratification, are crucially linked to
algal dynamics and community structure as these factors affect the
light availability, available habitats and nutrient cycle (Smol et al.,
2005; Rühland et al., 2008). Warming trends decrease the length of
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.gloplacha.2015.02.013
mailto:elinor.andren@sh.se
http://dx.doi.org/10.1016/j.gloplacha.2015.02.013
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.sciencedirect.com/science/journal/09218181
www.elsevier.com/locate/gloplacha


2 E. Andrén et al. / Global and Planetary Change xxx (2015) xxx–xxx
lake ice-cover which prolongs the growth season and expands the zone
of available habitats and new substrates for littoral diatom taxa and the
development of more diverse diatom communities (Douglas et al.,
1994; Smol et al., 2005; Douglas and Smol, 2010).

The Kamchatka Peninsula in eastern Russia is one of the most
remote and least studied regions of eastern Asia. With 29 active and
300 extinct volcanoes, Kamchatka is one of the most active volcanic
regions in the world. The location at the Pacific Rim contributed to its
significant strategic military importance, and a large part of the
peninsula was prohibited territory until the collapse of the Soviet
Union in the early 1990s. Kamchatka has a sparse population of about
400,000, of which the majority live in the city of Petropavlovsk-
Kamchatsky, which also contributes to the preservation of a relatively
unexplored and pristine terrain. Atmospheric circulation and climate
variability in Beringia today is depending mainly on the strength and
position of the Siberian High and Aleutian Low (Mock et al., 1998). In
a palaeoclimatic perspective variability in sea surface temperature
suggests a close atmospheric coupling between the North Pacific and
North Atlantic until 10,000 cal yrs BP, visible as similarities between
the NGRIP oxygen isotope record and reconstructed sea-surface
temperatures from the western Bering Sea, NW Pacific and Sea of
Okhotsk (Max et al., 2012). However, during the last 7000 years the
sea surface temperatures in the North Pacific area show more complex
variations, suggesting strong regional overprints (Max et al., 2012).
Changes in the position and activity of the Aleutian Low, sea ice dis-
tribution and summer insolation have systematically influenced Ho-
locene climate in the subarctic North Pacific (Harada et al., 2014).
Eastward displacement or increased intensity of the Aleutian Low
seems to correspond with increased sea ice extent in the western
Okhotsk Sea and the eastern Bering Sea (Harada et al., 2014). Be-
tween 10,000 and 6500 cal yrs BP the atmospheric pressure pattern
over the Okhotsk Sea shows a northern Aleutian Lowmode resulting
in expanded easterly distribution of sea-ice (Katsuki et al., 2010).
Studies of oxygen isotope data from the Yukon Territory, north-
western Canada, indicate millennial-scale variations in the position
and intensity of the Aleutian Low pressure system (Anderson et al.,
2005).

Palaeoclimatic reconstructions from the Kamchatka region have
been carried out mainly based on terrestrial peat sequences (Dirksen
et al., 2013 and references therein) but there are also reconstructions
based upon studies of glacial deposits (Barr and Solomina, 2014) and
marine sediment records from the Sea of Okhotsk, western Bering Sea
and north-western Pacific Ocean (Max et al., 2012). The earliest palyno-
logical investigations of the landscape development in Kamchatka date
to the late 1960s/early 1970s (e.g., Braitseva et al., 1968, 1973). The
postglacial vegetation development starts with the predominance of
dwarf birch tundra with grasses and lower shrub communities, and
the most distinct shift was an expansion of Pinus pumila (Siberian
dwarf pine) during the mid-Holocene (Khomentovsky, 2004; Dirksen
et al., 2013). Vegetation development in Kamchatka is explained by
the influence of climatic factors, but also by the impact of geological
factors such as frequent volcanic eruptions (Khomentovsky, 2004).
There is a direct impact of volcanic eruptions on vegetation, visible as
modified soil properties and nutrient cycles, which favour terrestrial
growth (Urrutia et al., 2007). Volcanic events could also affect aquatic
ecosystems through direct increases in nutrient input from ashfall on
the water surface (e.g., silica, phosphorous, and sulphur), or as input
of organic matter from vegetation damage in the surrounding catch-
ment and changed water pH (Harper et al., 1986). Changes in physical
conditions of lakes, such as temporarily reduced light penetration,
sealing of the sediment–water interface, or burial of macrophytes in
the littoral zone could further disrupt the aquatic environment
(Urrutia et al., 2007). Such changes of lacustrine ecosystems can, in
turn, produce important changes in algal communities and benthic
fauna (Urrutia et al., 2007). Numerous studies have investigated the
impact of tephras on diatom assemblages in lakes from volcanic areas
all over the world, and the results seem to vary between significant
correlation to minor registered impacts (e.g., Harper et al., 1986;
Hickman and Reasoner, 1994; Barker et al., 2000, 2003; Telford et al.,
2004; Hoff et al., 2013) with diatoms in lakes responding only about
one half of the time from tephra deposition (Telford et al., 2004).
Previous studies concluded that the predominant millennial-scale
forcing of the diatom flora relates to climate shifts despite frequent
centennial-scale perturbations to tephra influx (Barker et al., 2003;
Telford et al., 2004).

Until recently only few palaeolimnological studies of Holocene en-
vironmental and climate change have been undertaken in Kamchatka,
and most of these have focused on the southern part of the peninsula
(e.g., Hoff et al., 2012, 2013; Nazarova et al., 2013). The present
investigation was carried out as a part of the Swedish BERINGIA
2005 expedition (Bennett et al., 2006). We present a multiproxy
study of a Holocene lake sediment sequence, which includes analyses
of pollen, chironomids, diatoms and geochemistry. The study site,
Pechora Lake, located in north-eastern Kamchatka, was selected
based on its relatively remote distance to active volcanoes and its
proximity to the Pacific Ocean, which has a pronounced influence
on the regional climate (Ivanov, 2002). The aim of this study is to
provide novel insights into Holocene climate and environmental
change from the poorly studied area of northern Kamchatka. Our
study allows us to interpret both terrestrial vegetation changes and
lacustrine responses to catchment maturity and multiple stressors,
such as climate change and volcanic eruptions throughout the
Holocene. We identify drivers of lake development and outline the
causal-link between the aquatic ecosystem response, e.g., succession
in species composition and fluctuating primary production, and
regional climate change.

2. Setting

The Kamchatka Peninsula is 1250 km long and up to 500 km wide
(51–60°N, 156–163°E), covering an area of about 472,000 km2 located
between the Sea of Okhotsk to the west and the Bering Sea to the east
(Fig. 1).

Pechora Lake (unofficial name; 59°17.6′N, 163°07.8′E), is a small
lake (approximately 50 x 300 m, water depth ca. 4.3 m) located
about 2 km from the Bering Sea coast, near the town of Ossora in
north-eastern Kamchatka (Fig. 1). The area is scattered with small
lakes that consists of depressions in the irregular moraine terrain.
The water is circumneutral with pH 6.7 and a conductivity of 16 μS
measured on a single occasion during fieldwork in August 2005 at
water temperature 16.3 °C. The lake, which is hydrologically open
with well-defined inlet and outlet streams, is situated at an altitude
of 45 m a.s.l., and the nearby mountains reach altitudes of 200–
800 m (Fig. 2). Pechora Lake is partly surrounded by Sphagnum
peatlands and the present-day vegetation is characterised by bushes
of P. pumila and Alnus viridis (mountain alder), which grow on the
higher ground near the lake. Betula nana (dwarf birch), Empetrum
nigrum (crow berry) as well as various herbs and grasses are also
common. The slopes of the mountains in the vicinity are covered by
tree birches. The nearest active volcano is Shiveluch which is located
ca. 300 km south of the study area.

The present-day climate of Kamchatka is influenced by the position
of the peninsula at the eastern margin of the Asian landmass and the
proximity to the cold Bering Sea and Sea of Okhotsk (Ivanov, 2002).
This results in a temperate monsoon climate south of 60°N, controlled
by the interaction between the Siberian High and the Aleutian Low
pressure systems (Mock et al., 1998). At the north-eastern coast the
maritime influence results in strong cyclonic activity which reduces
the impact of the monsoon (Ivanov, 2002). The complex topography
of the peninsula with two high mountain ranges also affects the local
climate resulting in an interior with relatively dry climate and marked
seasonal variations in temperature. The coastal margin of the Ossora



Fig. 1.Map of Pechora Lake and its situation near the north-eastern coast of Kamchatka, Russian Far East.
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region is characterised by a cool and maritime climate with cold
summers and short growing seasons. The meteorological station at
Ossora (WMO ID 32246, 59°15′N, 163°04′E, running since April 2008),
displays an average temperature (5-years mean 2010–2014) of the
warmest months (July/August) of 13.7 °C/13.6 °C and the coldest
months (January/February) −15.7 °C/−15.5 °C. Annual precipitation
(only available from 2014) is 737 mm yearly mean (http://rp5.ru/).
Monthly mean temperatures are under 0 °C between November and
April (5-years mean 2010–2014), and precipitation fall as snow
between November andMay (snow cover data 2012–2014). Maximum
snow depth reached 197–83 cm during January to April year 2012 to
2014.
Fig. 2. Photo showing Pechora Lake in a westerly direction with the nearby mountains about 1
standing on the shore.
3. Methods

3.1. Coring, sub-sampling and dating

Sediment cores were sampled with a 1-m long, 5-cm diameter
Livingstone piston corer (Wright et al., 1984), operated from a rubber
boat in the centre of the lake. To stabilise the coring platform the rubber
boat was tied to crossing ropes extending across the entire lake. Water
depthsweremeasuredwith a scaled plumb line from thewater surface.
Multiple holes were cored with 0.5 m depth displacement to assure re-
covery of a complete stratigraphy. Piston cores were retrieved as 1-m
long sediment sections which were wrapped in plastic film, aluminium
2 km away in the background. For scale use the rubber boat and silhouette of two persons

http://rp5.ru/


4 E. Andrén et al. / Global and Planetary Change xxx (2015) xxx–xxx
foil, thick plastic andmodified plastic drain pipes, and stored in wooden
boxes until sub-sampling was carried out in the laboratory.

A sample at the base of the sediment sequencewas sampled for AMS
14C dating directly in the field and measured in the Radiocarbon Dating
Laboratory at Lund University. Six additional bulk sediment samples
evenly distributed along the stratigraphy were subsampled in the
laboratory for AMS 14C dating at Queen's University Belfast. Seven
visible tephra layers were subsampled for geochemical analyses to
allow for tephrochronology. Further details of the chronological
approach are provided by Plunkett et al. (in this issue).

Biological proxy datawill be stored in an appropriate database (such
as Neotoma) as soon as possible. Until then, data can be obtained on
request to the authors.

3.2. Pollen

Pollen samples were taken volumetrically (0.5 cm3) at every 4 cm
with a plastic syringe with the nozzle removed as described in Maher
(1981). Sub-samples for the analysis of pollen and spores were treated
following conventional methods using HCl, KOH, HF and acetolysis
(Bennett and Willis, 2001). Two Lycopodium spore tablets were added
to the volume-specific samples (0.5 cm3) to enable concentration
calculations (Stockmarr, 1971). Microscopic analysis was generally
carried out to a minimum count of 500 pollen grains (if possible) of
terrestrial trees, shrubs and herbs under a magnification of ×400 for
routine identification. Critical types were determined by ×1000magni-
fication using an oil-immersion (anisole). It was aimed to count at least
100 added Lycopodium spores per sample to allow statistical analyses.

The total pollen sum used for determination of relative frequencies
includes terrestrial pollen types. Percentages of other taxa (i.e., obligate
aquatics, non-pollen palynomorphs, indeterminable and unknown
grains) are based upon the total pollen sum plus the count of the taxon
in question. The palynological nomenclature generally follows Beug
(2004). Stratigraphic zonation of the pollen data was performed using
psimpoll 4.27 (Bennett, 2009) and six differentmethodologies of numer-
ical zonation techniques were tested (Klimaschewski, 2011). Percentage
pollen and spore dataset were used and only taxa exceeding a threshold
of 5% at any level in the dataset were included into the calculations
(Gordon and Birks, 1972; Birks and Berglund, 1979; Birks, 1973; 1986).
The datasets were recalculated to the sum of the included taxa
(Bennett, 1996). Each method was assessed against a broken-stick-
model to determine precisely the number of significant zones in pollen
sequences (Bennett, 1996). Optimal splitting by information content,
carried out with non-randomised and non-transformed samples of the
summarised diagram was selected to be the most suitable method for
zonation. The rate-of-change measures the degree of dissimilarity be-
tween adjacent samples (e.g., Lotter et al., 1992). We used Chi-squared
coefficient 2 available in psimpoll (Bennett, 2009) as a measure of dis-
similarity. Principal component analysis (PCA) was used to define plant
communities (cf. Seppä and Bennett, 2003) based on square-root trans-
formation with covariance matrices using only taxa exceeding a thresh-
old of a minimum of 5% of the main pollen sum. The reduced datasets
were recalculated as proportions of the sum of types that are included
(Bennett, 2009). According to Birks and Line (1992) rarefaction analysis
is a useful tool to measure the palynological richness of pollen spectra.
Changes in the palynological richness are interpreted as reflecting chang-
es in the floristic richness and the mosaic structure of a landscape
through time.

3.3. Chironomids and temperature reconstruction

Chironomid samples were analysed at 4–12 cm resolution. The
samples (0.41–1.13 g wet weight) were heated to 75 °C in 5% KOH
for 5 min, and progressively passed through 212 μm and
90 μm mesh sieves (Brooks et al., 2007). Chironomid head capsules
were picked out of the sieving residues under 40× magnification
and mounted in Euparal©. A minimum of 50 head capsules were
picked for each sample (Heiri and Lotter, 2001). Chironomids were
identified with reference to Wiederholm (1983), Rieradevall and
Brooks (2001) and Brooks et al. (2007). The stratigraphic zonation
of the chironomid data was performed within ZONE version 1.2
(Juggins, 1991) and the statistical significance of the zones was
assessed using BSTICK (Bennett, 1996). Detrended correspondence
analysis (DCA), a unimodal indirect ordination method (Hill and
Gauch, 1980), was performed on the chironomid relative
abundance data to summarise compositional changes over time.

Mean July air temperatures were inferred using a chironomid-based
temperature inference model (WA-PLS, 2 component, R2

boot = 0.81,
RMSEPboot = 1.43 °C) (Nazarova et al., 2014) based on a modern
calibration dataset of 88 lakes from eastern Russia (53°–75°N, 141°–
163°E) covering a mean July air temperature range of 1.8–13.3 °C. The
reliability of the chironomid-inferred temperature reconstructions was
assessed by the following methods. Less reliability was placed on fossil
samples in which (1) fewer than 50 chironomid head capsules were
extracted, (2) more than 5% taxa were not represented in the modern
training set or (3) more than 5% taxa were rare in modern dataset
(i.e., Hill's N2 less than 5) (Heiri and Lotter, 2001; Heiri et al., 2003,
2007). (4) Goodness-of-fit to temperature was evaluated by passively
positioning the fossil samples on a CCA of the modern training set
constrained solely against July temperature (Heiri and Lotter, 2001).
Any fossil samples that had a squared residual distance value within
the 10th percentile of values in themodern training setwere considered
to have a poor fit-to-temperature. (5) The modern analogue technique
(MAT) was used to detect fossil samples that lacked good analogues in
the modern calibration dataset using squared chord distance as a
measure of dissimilarity. Samples with a dissimilarity larger than the
95% threshold in the modern data were considered as having no good
analogues in the modern calibration dataset (Birks et al., 1990; Birks,
1995, 1998; Velle et al., 2005). (6) The significance of the reconstruc-
tions was also evaluated using the palaeoSig package (Telford, 2011)
in R (R Development Core Team, 2013) with 999 random reconstruc-
tions. Following Telford and Birks (2011), a reconstruction is considered
statistically significant if it explains more of the variance in the fossil
data than 95% of reconstructions that are derived from randomenviron-
mental variables. Chord-squared distance and Hill's N2 values were
calculated with the program C2 version 1.7.4 (Juggins, 2007). DCA and
CCA were performed using CANOCO 4.5 (ter Braak and Šmilauer,
2002). Species data were square-root transformed to stabilise species
variance and rare species were downweighted. In the evaluation of
goodness-of-fit (4) the CCA scaling focused on inter-sample distances
with Hill's scaling selected to optimise inter-sample relationships
(Velle et al., 2005).

3.4. Diatoms and pH-reconstruction

Sediment samples were cleaned for diatom analysis following
Battarbee et al. (2001) at sample intervals of between 4 and 8 cm and
mounted on permanent slideswith Naphrax™. Diatomswere identified
and counted under an Olympus BX51 light microscope using the
Nomarski differential interference contrast with a magnification of
×1000 and oil immersion. At least 300 valves were enumerated in
each sample following the protocol of Schrader and Gersonde (1978).
Diatom identification followed Krammer and Lange-Bertalot (1986,
1988, 1991a,b), Camburn and Kingston (1986), Lange-Bertalot and
Metzeltin (1996), Fallu et al. (2000) and Antoniades et al. (2008). The
stratigraphic zonation of the diatom data was performed with CONISS
within TILIA version 1.7.16 (Grimm, 1987). Detrended correspondence
analysis (DCA), was used on the total diatom assemblage to summarise
compositional changes in the diatom community over time and
performed using the vegan package in R (Oksanen et al., 2013). Species
richness of the fossil diatom assemblages was estimated using rarefac-
tion analysis (Birks and Line, 1992). pH-values were inferred using



5E. Andrén et al. / Global and Planetary Change xxx (2015) xxx–xxx
AL:PE pH-diatom model (Cameron et al., 1999, WA classical, R2
jack =

0.78, RMSEPjack = 0.37) since it contains closest modern analogues.
The reliability of the pH reconstructions was estimated using the same
statistical approach as with the chironomid-based temperature
reconstruction (see above): (1) goodness-of-fit to pH was evaluated
by passively positioning the fossil samples on a CCA of the modern
training set constrained solely against pH (Heiri and Lotter, 2001);
(2) the modern analogue technique (MAT) was used to detect fossil
samples that lacked good analogues in the modern calibration dataset
using squared chord distance as a measure of dissimilarity (Birks et al.,
1990; Birks, 1995, 1998; Velle et al., 2005) and (3) the significance of
the reconstructions was also evaluated using the palaeoSig package
(Telford, 2011) in R (R Development Core Team, 2013) with 999
random reconstructions. Chord-squared distance was calculated with
the program C2 version 1.7.4 (Juggins, 2007). CCA was performed
using CANOCO 4.5 (ter Braak and Šmilauer, 2002). Species data were
square-root transformed to stabilise species variance and rare species
were downweighted. In the evaluation of goodness-of-fit (4) the CCA
scaling focused on inter-sample distances with Hill's scaling selected
to optimise inter-sample relationships (Velle et al., 2005).

3.5. Geochemistry

Biogenic silica was analysed following the wet chemical digestion
technique described by Conley and Schelske (2001). Results are
presented as wt% SiO2 of total dry weight.

Sediment samples, generally taken at 4-cm intervals, were treated
with 10% HCl to remove potential carbonate material, rinsed with
de-ionised water, freeze-dried, and then sieved using a 500-μm mesh.
Determination of total organic carbon (TOC) and total nitrogen (TN)
contents as well as stable-carbon isotope analyses were performed on
the fine-grained fraction by an elemental analyser interfaced with a
continuous-flow isotope-ratio mass spectrometer (CF-IRMS) at the
University of Waterloo Environmental Isotope Laboratory (UW-EIL).
The results are expressed as δ values, representing deviations in per
mil (‰) from the VPDB standard, such that δ13Csample = 1000[(Rsample /
Rstandard) − 1], where R is the 13C/12C of the sample and standard,
respectively. The uncertainty, based on repeated analyses of samples
from the same level, gives TOC and TN results that are within ±0.1%
and δ13C within ±0.1‰. Based on the cross-plot test of corresponding
TOC and TN data (Talbot, 2001) minor amounts of inorganic N were
detected and corrected for to allow calculation of total organic nitrogen
(TON), as well as atomic C/N ratios. TOC contents are expressed as
dry-weight percentages.

4. Results

4.1. Lithostratigraphy and chronology

Five holes were cored at 427 cm water depth in the centre of the
lake, resulting in three full parallel sediment sequences. The coring
stopped at 865 cm below the water surface without reaching any
underlying minerogenic strata. In the laboratory the most complete
sequence, 423 cm long, was selected for radiocarbon dating and all
Table 1
Radiocarbon determination results from Pechora Lake. Radiocarbon dates were calibrated usin
age ranges at 95% confidence intervals. n.d. = no data.

Lab code Composite depth (cm) Material dated

UBA-8657 557.5–558.5 Bulk sediment
UBA-8658 581.5–582.5 Bulk sediment
UBA-8659 673.5–674.5 Bulk sediment
UBA-8660 749.5–750.5 Bulk sediment
UBA-8661 781.5–782.5 Bulk sediment
UBA-8662 813.5–814.5 Bulk sediment
LuS 6266 863.5–864.5 Bulk sediment
biostratigraphical, geochemical and lithological analyses. The top of
sediment measures 442 cm which means that the uppermost 15-cm
part of the sediment sequence was lost during core retrieval. The
sediments consist of dark brown homogeneous detritus gyttja, abruptly
interrupted at seven levels by macroscopic layers (1–3 cm) of light-
coloured volcanic tephra.

An age–depth model based on seven bulk sediment samples
(Table 1) was produced using Clam version 2.2 applying a smooth
spline of 0.1 (Blaauw, 2010). Tephra layers in Pechora Lake provided
valuable time-stratigraphic markers with nearby Lifebuoy Lake, but
due to the uncertain ages of the tephra layers, they did not contribute
to the Pechora age model (Plunkett et al., in this issue; Solovieva et al.,
in this issue). 14C dates were calibrated using the Northern Hemisphere
calibration curve IntCal13 (Reimer et al., 2013) and all dates are given in
calibrated years before present (AD 1950), cal yrs BP. The sediment
surface was assumed to be of recent age at the time of core collection
(AD 2004 ± 5 (−54 BP)). Tephra layers of N1 cm in thickness were
excised from the age–depth model as slumps, since they represent
abrupt deposition events that interrupted the otherwise smooth
sediment accumulation. The age model gave an age for the base of the
sequence of 10,065 cal yrs BP and sediment accumulation rates between
7 and 38 yr cm−1 (Plunkett et al., in this issue). The agemodel indicates
moderate (22–38 yr cm−1) sediment accumulation up until c.
5800 cal yrs BP, followed by a period of rapid accumulation (7–
20 yr cm−1) to ca. 3900 cal yrs BP and thereafter moderate rate of
accumulation (20–35 yr cm−1). The period with increased sedimenta-
tion rate coincides with maximum primary production as reflected by
low C/N-ratio and high biogenic silica content produced by planktonic
diatoms (Fig. 6).

4.2. Pollen

Pollen and spore percentages of selected taxa are shown in Fig. 3. A
more complete pollen diagram with concentration data can be found
in Klimaschewski (2011). The pollen diagram is, following the models
of zonation and PCA, divided into four pollen assemblage zones (PAZ-
1 to PAZ-4) described as follows:

PAZ-1 (862–836 cm, ca. 10,000–9200 cal yrs BP). The zone is
dominated by pollen of A. viridis, Betula (birch) and spores of
Filicales (ferns), and contains low percentages of herbs as well as
aquatics/marsh plants. Towards the upper part of the zone Betula
pollen and Filicales spore frequencies decrease slightly whereas
A. viridis increases and becomes more dominant towards the upper
boundary. Poaceae (grasses) and Artemisia (mugwort) occur at
moderate frequencies, Salix (willow) and Juniperus (juniper) at
low frequencies and P. pumila pollen are very rare. The concentra-
tion of terrestrial taxa is high at the beginning of sedimentation
and declines towards the top of PAZ-1. The rate-of-change is
relatively low and the average palynological richness within the
zone ranges between 13 and 17 taxa.
PAZ-2 (836–756, ca. 9200–6500 cal yrs BP). Pollen of trees and
shrubs becomemore abundant and there is a clear decline of spores.
g the Northern Hemisphere calibration curve IntCal13 (Reimer et al., 2013) and calibrated

14C SD δ13C Calibrated age 2σ

3461 51 −38.1 3594–3850
3856 33 −34.3 4157–4409
4481 31 −32.7 4980–5289
5517 33 −32.7 6279–6397
6539 38 −36.6 7337–7559
7741 39 −36.3 8434–8590
8960 70 n.d. 9824–10,245



Fig. 3. Relative pollen and spore percentage diagram plotted on a linear age scale (cal yrs BP) and visible tephra layers plotted to the left. Depth scale refers to depth below lake surface in
centimetres. Number of counted pollen (pollen sum), terrestrial pollen concentration, rate-of-change (Chi squared coefficient 2), and palynological richness are plotted to the right. The
stratigraphy has been divided into four pollen assemblage zones; PAZ-1 to PAZ-4.
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A. viridis frequencies are high at the beginning and range between50
and 60% throughout the zone. Betula frequencies remain relatively
constant, Alnus incana-type shows maximum frequencies and
Filicales decreases. The records of P. pumila and Ericaceae show
low but increasing frequencies near to the upper boundary of zone.
Percentages of Salix, Juniperus and Poaceae remain relatively
constant while Cyperaceae (sedges) and Sphagnum increase slightly
at the middle part of the zone. The average palynological richness is
similar to PAZ-1. The notable rise of A. viridis clearly shows in the
total terrestrial concentration. Towards the upper boundary of
PAZ-2 the values decline considerably.
PAZ-3 (756–580 cm, ca. 6500–4200 cal yrs BP). Although this zone
exhibits no substantial changes, it is characterised by gently
diminishing percentages of A. viridis, a slight increase in Ericaceae
and an increase in P. pumila to 15%. The concentration frequencies
of the terrestrial taxa remain relatively constant throughout this
zone. In the upper half of PAZ-3 there are some noteworthy peaks
in the rate-of-change. The average palynological richness is between
15 and 20 taxa.
PAZ-4 (580–440 cm, ca. 4200–300 cal yrs BP) shows slight increases
in the proportions of tree and shrub pollen to the disadvantage of
spores. A remarkable increase in the frequency of P. pumila from
about 15% at the zone boundary to a peak value of 46% at
3300 cal yrs BP was recorded. The frequency of P. pumila remains
high and a corresponding decrease in A. viridis occurs. The total
pollen concentration increases slightly throughout the zone. The
rate-of-change decreases towards the upper boundary. Palynological
richness equals PAZ-3.

4.3. Chironomids and inferred temperature

Chironomid head capsules arewell preserved and abundant through-
out the core, with 62–177 head capsules counted per sample (Fig. 4).
Seventy-two taxa were identified in 59 samples. Glyptotendipes pallens-
type, Polypedilum nubeculosum-type, Paratanytarsus penicillatus-type
and Limnophyes which are generally indicative of relatively warm,
shallow, mesotrophic to eutrophic lakes with abundant aquatic macro-
phytes are common throughout the sequence. Demeijerei rufipes occurs
periodically in the sequence at ca. 10,000, 9400 and 5000 cal yrs BP, at
0.8–1.6% abundance. This species feeds on freshwater sponges and bryo-
zoans and although these organisms occur in many freshwater environ-
ments D. rufipes is rarely recorded as a larval subfossil (Pinder and
Reiss, 1983). The chironomid stratigraphy is divided into three assem-
blage zones (CAZ-1 to CAZ-3) described as follows (Fig. 4):

CAZ-1 (863–675 cm; ca. 10,000–5200 cal yrs BP): The chironomid
fauna at the base of the core is initially dominated by Chironomus
anthracinus-type, Chironomini larvula and Limnophyes. G. pallens-
type, Tanytarsus mendax-type and Zavrelia increase to peak-
abundances between 9500 and 9000 cal yrs BP, and Cricotopus
cylindraceus-type increases in abundance from ca. 9400 cal yrs BP.
These taxa decline from ca. 9000 cal yrs BP and are replaced by in-
creasing abundances of taxa with higher temperature optima such
as P. nubeculosum-type and P. penicillatus-type. Lauterborniella,
which has one of the warmest optima in the modern east Russian
dataset (Nazarova et al., 2014), reaches its peak abundance (3–4%) be-
tween 8200 and 7300 cal yrs BP before declining throughout the re-
mainder of the zone. Sergentia coracina-type increases in abundance
from ca. 8200 cal yrs BP and remains abundant throughout the rest
of the zone.
CAZ-2 (675–537 cm; ca. 5200–3400 cal yrs BP): S. coracina-type and
P. penicillatus-type initially decline and are replaced by taxawith cool-
er temperature optima such as Tanytarsus lugens-type and
C. anthracinus-type.
CAZ-3 (537–445 cm; ca. 3400–450 cal yrs BP): From ca. 4000 cal yrs
BP G. pallens-type and P. nubeculosum-type decrease and are re-
placed by Zalutschia zalutschicola-type together with increasing
abundances of taxa indicative of cooler summer temperatures such
as C. anthracinus-type and Micropsectra insignilobus-type. The zone
boundary at ca. 3400 cal yrs BP ismarked by an increase in the abun-
dance of Corynocera ambigua from 1.4% to 10.9%. Tanytarsus
chinyensis-type which is indicative of warm summer temperatures



Fig. 4. Chironomid biostratigraphy of selected abundant taxa plotted on a linear age scale (cal yrs BP), with abundance, species richness (Hill's N2 index), total number of head capsules
examined and chironomid-inferredmean July air temperatures (C–I TJuly) together with nearestmodern analogues for the fossil samples in the training set data, and goodness-of-fit of the
fossil sampleswith temperature. Vertical dashed lines are used to identify sampleswith no ‘good’ (5%)modern analogues and sampleswith ‘poor’ (0.90) fit with temperature (see text for
details). Depth scale refers to depth below lake surface in centimetres. Visible tephra layers are plotted to the left. The stratigraphy has been divided into three chironomid assemblage
zones; CAZ-1 to CAZ-3.
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in the eastern Russian training set lakes (Nazarova et al., 2014)
occurs briefly at ca. 3000 cal yrs BP and between ca. 1600–
1000 cal yrs BP at up to 4% abundance.

The chironomid-inferred mean July air temperatures (C–I TJuly) were
similar to present-day (ca. 10 °C) between 9900 and 8900 cal yrs BP,
before warming by approximately 1.3 °C between 8200 and
7300 cal yrs BP (Fig. 4). From ca. 6700 to 3600 ka C–I TJuly show a
gradually declining trend although individual values fluctuate between
9.3 and 11.3 °C, possibly indicating a period of unstable summer temper-
atures. Chironomid-inferred July temperatures decline by approximately
0.5 °C from 3800 cal yrs BP, to values similar to present-day.
4.4. Diatoms and inferred pH

Diatom assemblages were enumerated at 69 levels and ca. 700–320
valves were counted at each level. A total of 312 diatom taxa were iden-
tified and found to be excellently preserved. The diatom assemblages
Fig. 5.Diatom stratigraphy of selected taxa in relative percentages plotted on a linear age scale (
diatom-inferred pH (D–I pH) togetherwith nearestmodern analogues for the fossil samples in th
used to identify samples with no ‘good’ (5%) modern analogues and samples with ‘poor’ (0.90
layers are plotted to the left. The stratigraphy has been divided into six diatom assemblage zon
are dominated by planktonic freshwater taxa within the genus
Aulacoseira and freshwater periphyton within the genus Fragilaria
(Fragilaria sensu lato, consisting of the genera Fragilaria, Pseudostaurosira,
Staurosira and Staurosirella). Most taxa are rare and only 22 taxa occur at
frequencies exceeding 2% at two or more stratigraphic levels (Fig. 5).
There are some clear trends in the diatom stratigraphy, and cluster
analysis divides the diagram into six diatom assemblage zones (DAZ-1
to DAZ-6), which are confirmed by visual inspection:

DAZ-1 (862–848 cm, ca. 10,000–9600 cal yrs BP) is dominated by a
diverse (maximum species richness) periphytic assemblage with
Staurosira elliptica in the lowermost part of the zone along with
other fragilaroid taxa, such as Staurosira venter, Staurosirella pinnata,
Fragilaria exigua and Pseudostaurosira brevistriata. There are also
maximum frequencies of Discostella stelligera, Stauroneis anceps
var. gracilis and Sellaphora pupula.
DAZ-2 (848–826 cm, ca. 9600–8900 cal yrs BP) shows a clear shift
from a periphytic to a plankton dominated assemblage. The
cal yrs BP) with number of valves counted, summary of diatom life forms, species richness,
e training set data, and goodness-of-fit of the fossil sampleswith pH. Vertical grey lines are

) fit with pH. Depth scale refers to depth below lake surface in centimetres. Visible tephra
es; DAZ-1 to DAZ-6.
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planktonic species Aulacoseira subarctica has a peak and reaches ca.
85% simultaneously with a very low abundance, b10%, of Fragilaria
taxa. The shift results in a very low species richness and a high
species turnover, as shown by the DCA axis 1 graph (Fig. 6).
DAZ-3 (826–762 cm, ca. 8900–6800 cal yrs BP) is dominated by
periphytic taxa within Fragilaria (S. venter, S. pinnata, F. exigua and
P. brevistriata), and an overall increasing species richness.
DAZ-4 (762–677 cm, ca. 6800–5200 cal yrs BP). A. subarctica
dominates the zone but planktonic Cyclotella/Discostella taxa, such
as Discostella pseudostelligera, Cyclotella tripartita and Cyclotella
comensis exhibit maximum frequencies. Species richness decreases
as planktonic taxa reach maximum frequencies in the middle part
of the zone.
DAZ-5 (677–560 cm, ca. 5200–3900 cal yrs BP) is totally dominated
by A. subarctica with over 90% in the middle part and accordingly
very low percentages of periphytic taxa as well as low species
richness.
DAZ-6 (560–446 cm, ca. 3900–500 cal yrs BP) is still dominated by
A. subarctica but also by other Aulacoseira taxa, most of them
planktonic, such as A. distans, A. perglabra, A. lacustris and A. lirata.
The planktonic species Asterionella formosa shows a frequency
maximum but also periphytic taxa contribute to a more diverse
assemblage with e.g., S. venter, F. exigua and P. brevistriata. In general
the species richness is relatively high within the zone.

The diatom-inferred pH (D–I pH) show little change throughout the
sediment record fluctuating between a circumneutral pH of 6.3 and 7.2
(Fig. 5). The lower part of the section (DAZ-1 to DAZ-5) show a D–I pH
of about 7 whereas the uppermost assemblage zone, DAZ-6 shows a
slightly more acidic pH of around 6.6.

4.5. Geochemistry

Biogenic silica (BSi) concentrations range between 3.2 and 17.8 wt.%
SiO2 (Fig. 6). Most concentrations range between 10 and 15 wt.% SiO2

and are close to the mean (12.1%) for lakes in general (Frings et al.,
Fig. 6. Chironomid DCA, pollen PCA and diatomDCA axis 1 sample scores divided into assemblag
genera Fragilaria (Fragilaria sensu lato, consisting of the genera Fragilaria, Pseudostaurosira, Staur
biogenic silica, total organic carbon (TOC) content, C/N ratio and δ13C. The grey lines represent
and climate change (production refers to lake primary production).
2014). The low concentrations of 3.2 to 6.4 wt.% are recorded in connec-
tion to visible tephras.

The total organic carbon (TOC) content of the sediments decreases
from just below 30% to a low around 18% during the initial millennium,
followed by a rise to above 30% during the subsequent ca. 1500 years
(Fig. 6). Thereafter, a generally decreasing trend was recorded,
stabilising around 18% from ca. 5000 cal yrs BP, but with pronounced
lows in the range of 4–9% coinciding with visible tephra horizons.
After ca. 3800 cal yrs BP a further decrease to below 15% and slightly
more fluctuating TOC values were recorded.

Atomic C/N ratios show variations in the range of 16–21 (Fig. 6).
Following an initial decrease, a sequence minimum was recorded at
about 9000 cal yrs BP. Distinctly rising trends occurred at ca. 9000–
6500 and 3400–1500 cal yrs BP, while relatively low C/N ratios were
recorded around 5900 and at ca. 5100–4500 cal yrs BP.

The δ13C record shows a decreasing trend with some variations in
the range of −30.5 to −32‰ during the first two millennia, followed
by a persistent rise to above −30‰ at ca. 8400–6500 cal yrs BP
(Fig. 6). The remaining part of the record shows minor variations
centred around −30‰ but with a general increase during the last four
millennia.

5. Interpretations and discussion

5.1. Catchment and lake development and relation to climate change

The overall changes in the diatom and chironomid stratigraphies are
not isochronous in Pechora Lake in early Holocene (see assemblage
zones in Fig. 6) suggesting that they are not responding to the same
external drivers, in opposite of Lifebuoy Lake situated only ca 20 km
south of Pechora Lake (Solovieva et al., in this issue). From about
5000 cal yrs BP however, changes in aquatic ecosystem occur more or
less simultaneously. The seemingly non-isochronal development could
be a response to the different seasonality of the various proxies. The
major changes in diatom composition in Pechora Lake may be
characterised byfluctuations betweenperiphyton (mainly in the genera
Fragilaria sensu lato) and plankton (mainly Aulacoseira and Cyclotella/
Discostella) dominated assemblages (Fig. 5). Diatoms, although not
e zones (CAZ, PAZ, DAZ) and plotted on a linear age scale (cal yrs BP) togetherwith diatom
osira and Staurosirella),Aulacoseira, Cyclotella (includingDiscostella) and the geochemistry;
visible tephra layers. To the right a column showing the summary of major environmental
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responding directly to fluctuations in water or air temperature, are
sensitive to changes in variables controlled by climate as water
turbulence, light conditions and nutrient availability (Anderson,
2000). The shifts in diatom life form in Pechora Lake seem to be mainly
controlled by indirect climate impact, i.e., ice-cover, windiness and
length of growing season which influence available substrates, and
correlates with simultaneous changes in aquatic primary production
manifested as increased BSi, low C/N-ratio and δ13C (Fig. 6). To clarify
the drivers of water chemistry changes in the lake, diatom-inferred pH
reconstruction was carried out. Changes in pH may reflect export of
dissolved organic carbon from the catchment in response to changes
in vegetation or soils (Reuss et al., 2010), or direct and indirect effects
of deposition of volcanic ash (Harper et al., 1986). Theuppermost recon-
structed pH (6.6 about 500 cal yrs BP) is close to themeasured pH in the
lake (6.7), thus giving certain confidence in the pH reconstruction. But
only about a quarter of the fossil samples also have good analogues in
the training set (i.e., in DAZ-5 between 674 and 570 cm, about 5200
and 4100 cal yrs BP) with a D–I pH of about 7. However, the results of
pH reconstruction from the bottom of the core until 5200 cal yrs BP
and from 4100 to 500 cal yrs BP should be interpreted with caution
due to the absence of good analogues in the modern training set. The
fossil diatom assemblages show a poor fit-to-pH in CCA and the
Telford–Birks test also showed that the pH reconstructions were not
statistically significant although the test may not provide a robust
estimate of reconstruction reliability for the periods with little change
in reconstructed variables (Self et al., 2015; Telford and Birks, 2011).

Although the chironomid assemblages show a good fit-to-
temperature in CCA, the percentages of taxa absent or rare in the
training set are high throughout the sequence with no good analogues
present in the modern training set between 8700 and 7200 cal yrs BP
and intermittently at other time in the record until 3200 cal yrs BP.
Due to the low amplitude of fluctuations in the C–I TJuly record all the
inferred values are within the sample specific errors of prediction of
the inference model. Analysis using the Telford and Birks (2011)
method also indicated the C–I TJuly reconstructions were not significant.
The Telford–Birks test determines whether the reconstruction explains
a larger proportion of the variance in the fossil data than 95% of 999
reconstructions of random environmental variables. If the magnitude
of temperature fluctuations is low, the associated variability in the
chironomid assemblages may be insignificant in comparison with the
natural variability in the training set. Therefore the testmay not provide
a reliable estimate of reconstruction reliability for timeperiodswith low
amplitude climate variability (Self et al., 2015). However, in view of the
lack of good analogues, the C–I TJuly record should be interpreted with
caution particularly for the early part of the sequence between 10,000
and 7000 cal yrs BP.

Using the subdivision of the Holocene as proposed by Walker et al.
(2012), the development in the Pechora Lake area can be described as
follows.

5.1.1. Early Holocene: 10,000–8200 cal yrs BP
As the minerogenic substrate was not reached during the coring, it

can only be suggested that sedimentation in the lake was established
by about 10,000 cal yrs BP. Our pollen record indicates a relatively stable
terrestrial vegetation during the early Holocene, although A. viridis
increased slightly at about 10,000–8500 cal yrs BP at the expensemainly
of Betula and Filicales (Fig. 3). The diatom record indicates that the lake
from the onset of the record had a diverse flora dominated by small
benthic Fragilaria species, which are opportunistic and pioneering taxa
associated with cold periods and extensive ice-cover (Smol et al.,
2005; Rühland et al., 2008). They are also competitive during phases
of rapid environmental change (Lotter et al., 2010), and have for
example been used as indicators of isolation of lake basins from the
sea (Stabell, 1985). Small-celled diatoms have a competitive advantage
at low nutrient conditions and taxa within the genus Fragilaria form
blooms and out-compete larger forms with slower growth rates
(Lotter et al., 2010). Small Fragilaria often dominate the diatom
assemblage in shallow lakes, especially in mountain and tundra regions
having short growing seasons (Lotter et al., 2010), and their presence
could indicate high availability of shallow benthic habitats (Bennion
et al., 2010). The chironomid assemblage was initially dominated by
C. anthracinus-type and Chironomini larvulae. The taxonomy of the
Chironomini larvula was based on Brooks et al. (2007) which does not
differentiate between larvulae from different Chironomini genera.
From the core results there is no clear relationship between increases
in larvula and any particular Chironomini morphotype. Although the
larvula are probably Sergentia or Chironomus species they could be
Polypedilium nubeculosum-type or Glyptotendipes pallens-type which
are also present in the core and found as early instars in sediment
cores. Chironomus have a high oxy-regulatory capacity and are able to
tolerate periods of oxygen depletion under ice (Brodersen et al., 2004;
Brodersen and Quinlan, 2006). The relatively high TOC content, C/N ra-
tios and δ13C values at this stage may indicate a transition from an ini-
tially high supply of detrital organic matter from the surrounding
catchment, while the primary production in the lake was relatively
low. This is further supported by the occurrence of D. stelligera, which
is indicative of low nutrient conditions, while Fragilaria are poor indica-
tors of lake trophic status (Bennion et al., 2010).

Around 9600 cal yrs BP there was a transient shift in the lake lasting
for about 700 years indicating less ice-cover and more wind-mixed,
turbulent conditions, which resulted in elevated primary production
in the lake, especially by diatoms as indicated by an increase in BSi
content of the sediments, as well as by decreasing C/N-ratios and δ13C
values. Increases in the relative abundances of Glyptotendipes and
Cricotopus species at the time may also be indicative of increasing lake
productivity (Brodersen and Quinlan, 2006). This development was
probably related to increased catchment runoff during relatively moist
climatic conditions as indicated by elevated pollen percentages of
Filicales and supported by a decreasing trend in δ18O obtained from
the same sediment sequence (Hammarlund et al., in this issue). The
increased runoff provided the lake with abundant nutrients in the
formof 13C-depleted dissolved inorganic carbon (DIC),which promoted
aquatic productivity and led to increased proportions of algal organic
matter in the sediments. The dominating diatom life form also indicates
a shift towards plankton dominance in response to increased nutrient
availability and increased primary production (Bennion et al., 2010).
Diatoms benefit from turbulent mixing and their abundance is correlat-
ed to changes in the thermal–physical dynamics of the water column
(Winder et al., 2009). Species of Aulacoseira are heavily silicified,
forming colonies that require turbulence-induced resuspension to
remain in the photic zone (Rühland et al., 2008; Lotter et al., 2010).
Aulacoseira species are an indirect palaeoenvironmental indicator of
the persistence of strong seasonal wind stress and resultant turbulent
water column mixing and nutrient upwelling conditions (Wang et al.,
2008) and typically dominate in early spring, blooming under the ice
(Solovieva et al., 2005). A. subarctica, the overall dominating species in
Pechora Lake, occurs in cool and well-mixed water columns. An
advantage for the survival of A. subarctica is its ability to form resting
cells to tolerate nutrient limitation and periods of hypoxia, and
sediments could act as refugia (Lepskaya et al., 2010). A study of a
lake in southern Kamchatka revealed that A. subarctica thrived during
years when thermal stratification was delayed by cold and windy
weather but in the absence of extensive ice-cover (Lepskaya et al.,
2010). Although Chironomus spp. remain abundant, increases in taxa
with lower oxy-regulatory capacity such as T.mendax-typemay indicate
a reduction in the duration of ice-cover and hypoxic period (Brodersen
and Quinlan, 2006).

The rapid short-term 8.2 ka event was caused by a massive outflow
of freshwater from the glacial lakes Agassiz and Ojibway slowing the
North Atlantic deep water formation (Barber et al., 1999). There is
evidence that this event was global in nature (Walker et al., 2012 and
references therein), but it seems to be superimposed on a more long-
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term climate deterioration ca. 8500–8000 cal yrs BP which relates to
fluctuations in solar input and impact of atmospheric circulation rather
than the North Atlantic deep water formation (Rohling and Pälike,
2005). Although manifested by single samples only, our proxy records
show some indications of a transient climate response at about
8200 cal yrs BP, visible in the pollen PCA and diatomsDCA axis 1 sample
score graphs (Fig. 6) as increased taxa turnover. The pollen data record a
single sample peak to c. 6% frequency of P. pumila at ca. 8200 cal yrs BP
(Fig. 3) indicating a brief period of thicker and more persistent snow-
cover, which is consistent with Rohling and Pälike (2005) stating that
the 8.2 event is sharp and more evident in winter-biased proxies. In
the diatom stratigraphy there are increases in A. subarctica and
F. exigua (Fig. 5) as well as in biogenic silica (Fig. 6). This indicates a
slightly elevated primary production in the lake and cold and windy
climate conditions. From the chironomids it appears to be part of a
longer-term cooling (cf. Rohling and Pälike, 2005) rather than amarked
short-term cold spell. The chironomid P. penicillatus-type, which is a
warm indicator, declines from 18% to 7% and S. coracina-type, which is
a cold stenotherm, increases from 3% to 6% between ca. 8450 and
8200 cal yrs BP (Fig. 4).

5.1.2. Middle Holocene: 8200 to 4200 cal yrs BP
Previously published pollen records from the Kamchatka Peninsula

exhibit vegetation conditions suggesting a continuous period with
relatively warm climate assigned to the Holocene thermal maximum
(HTM) 8900–5000 cal yrs BP in central areas and between 7000 and
5800 cal yrs BP at coastal sites (Dirksen et al., 2013 and references
therein). However, a study of regional glacier fluctuations suggests
that the HTM lasted between ca. 6800 cal yrs BP and 4500 cal yrs BP
(Barr and Solomina, 2014). None of these studies is based on data
from as far north as Pechora Lake but a wider discussion about the
HTM in the region is carried out in Brooks et al. (in this issue). In Pechora
Lake A. viridis and Betula dominated the vegetation, while ferns,
Cyperaceae and Sphagnum were also important components of the
local vegetation cover. The frequency of P. pumila rose slowly but
show persistently low values whereas a continuous decline of A. viridis
is visible.

Climate warming results in increased thermal lake stratification and
reduced nitrogen/phosphorous-ratios, which in turn leads to an altered
diatom community structure favouring small-sized, fast-growing plank-
ton, such as Cyclotella/Discostella (Winder et al., 2009). Cyclotella/
Discostella has a competitive advantage during strong stratification com-
pared to heavy and thickly silicified Aulacoseira and small Fragilaria spe-
cies (Lotter and Bigler, 2000; Rühland et al., 2008). There is a significant
link between an increase in Cyclotella species and the 20th century cli-
mate warming trend both in Arctic and Alpine settings and at temperate
latitudes (Rühland et al., 2008). At Pechora Lake there is a clear peak in
Cyclotella taxa (including Discostella) at ca. 6300–5200 cal yrs BP,
reaching almost 30% during the first 500 years, which could be
interpreted as a thermally stratified lake and accordingly warmer
water temperatures (Fig. 6). In the chironomid record S. coracina-type
reaches peak frequencies between 7700 and 4900 cal yrs BP.
S. coracina-type is typically a cold stenotherm (Brodin, 1986). The
weighted average (WA) temperature optimum of this taxon in the
eastern Russian dataset is 8.8 °C, which is one of the lower temperature
optima (Nazarova et al., 2014). Its increasing abundance in parallel
with increasing abundances of more thermophilic, littoral taxa may
also reflect increased thermal stratification in the lake.

As demonstrated by the generally high C/N ratios, the organicmatter
content of the sediments is probably dominated by terrestrial organic
detritus, although periods of lowered C/N ratios signify temporary
increases in aquatic productivity and dilution by lacustrine organic
matter. This hypothesis is supported by the negative correlation be-
tween BSi content and C/N ratio (Fig. 6). Similarly, increasing δ13C
values, which are also negatively correlated with BSi content (Fig. 6),
represent primarily elevated proportions of terrestrial organic matter
in the sediments, possibly in response to increased forest density
around the lake. Hence, the trends towards higher C/N ratios and δ13C
values at ca. 9000–6500 cal yrs BP reflect a successively decreased
importance of algal production as compared to terrestrial organic
matter supply to the lake. This probably occurred in combination with
diminished dissolved inorganic carbon (DIC) supply due to decreased
runoff in a generally drier climate as compared to the earliest part of
the record, which is further supported by the δ18O record obtained on
aquatic cellulose from the same sediment sequence (Hammarlund
et al., in this issue).

The establishment of a slightly warmer and drier climate after ca.
6300 cal yrs BP as indicated by the increase in Cyclotella taxa in
combination with maxima in C/N ratio and δ13C is broadly consistent
with the onset of the HTM as inferred from regional pollen data
(7000–5800 cal yrs BP, Dirksen et al., 2013) and glacier status data (little
evidence of advances at 6800–4500 cal yrs BP, Barr and Solomina,
2014). Reconstructed sea surface temperatures show a slight warming
trend in the western Bering Sea and a cooling in the NW Pacific and
the Sea of Okhotsk during the last 7000 years (Max et al., 2012;
Harada et al., 2014). From ca. 6500 cal yrs BP the atmospheric pressure
pattern started to approach present-day conditions with a south-
westerly mode of the Aleutian Low, resulting in north-easterly winds
over the Sea of Okhotsk and a more westerly extension of sea ice
(Katsuki et al., 2010).

5.1.3. Late Holocene: 4200 to 400 cal yrs BP
The transition into the Late Holocene at 4200 cal yrs BP is connected

to a global climatic reorganisation proposed as the mid/low-latitude
aridification event (Walker et al., 2012). The climate became generally
drier and cooler, and the Asian monsoon weakened or failed, which
coincided with the onset of the modern El Niño Southern Oscillation
regime (Fisher et al., 2008; Walker et al., 2012 and references therein).
A period of increased sea-ice extent in both the Okhotsk Sea and the
Bering Sea at about 4000–3000 cal yrs BP seems to correlate with
intensified winter–spring storms in the Gobi Desert and corresponding
changes in the intensity and position of the Aleutian Low and the
Siberian High (Harada et al., 2014). At Pechora Lake the pollen record
indicates a significant change of the vegetation composition around
4200 cal yrs BP dominated by a remarkable increase in the frequency
of P. pumila (Fig. 3). Probably P. pumila expanded across large parts of
the area, while A. viridis became less abundant. However, birches,
grasses, sedges and ferns remained important in the vegetation until
the present. P. pumila covers huge areas in the Russian Far East from
sea level to above the alpine treeline and its northern limit is located
approximately at the 12 °C mean July isotherm in Russia (Andreev,
1980) and 10 °C mean August isotherm in Japan (Yanagimachi and
Ohmori, 1991). In Kamchatka it occurs on the lower mountain ranges
in the north and grows in most areas of the volcanic belts down to
Cape Lopatka in the south. P. pumila is an important component in the
primary succession (Krestov, 2003). It grows in thickets andhas a signif-
icant ability to withstand extreme environmental conditions such as a
short growing seasons, low winter temperatures, wind abrasion and
desiccation. With the first frost in autumn the dwarf shrub drops its
branches onto the ground and during the winter season they are
protected by a deep snow cover (Krestov, 2003; Anderson et al.,
2010). The ability to withstand cold conditions may have allowed the
survival of P. pumila during the last glacial maximum at isolated sites
in many areas of its modern distribution range (Kremenetski et al.,
1998). P. pumila expanded in northern Kamchatka at ca. 4200–
4000 cal yrs BP (Pechora Lake, Fig. 3; Lifebuoy Lake, Solovieva et al., in
this issue). Compared to available pollen records from other parts of
Kamchatka (e.g., Dirksen et al., 2013 and references therein; Self et al.,
in this issue) the expansion of P. pumila occurred rapidly at Pechora
Lake, from 5 to 30% within ca. 300 years. The expansion phase may be
linked to a climatic shift resulting in thicker and more persistent
snow-cover, as P. pumila is known to have a competitive advantage
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over other species in the region under such climatic conditions (Krestov,
2003). This interpretation is supported by stable oxygen isotope data
from Pechora Lake where a depletion in 18O is attributed to cooling
and increased winter precipitation (Hammarlund et al., in this issue).
The timing of the P. pumila expansion coincides with the onset of the
Neoglaciation at ca. 4500 cal yrs BP as inferred from the formation of nu-
merousmoraines indicating extensive advances ofmountain glaciers on
the peninsula (Barr and Solomina, 2014). It has been argued for the ex-
istence of several small scattered glacial refugia in Kamchatka where
P. pumila survived the ice age (Khotinsky, 1977) and from which the
shrub pine thickets started to spread after the last glacial maximum.
P. pumila thickets may have been growing in the Pechora Lake catch-
ment throughout the Holocene, either at low abundances or producing
only restricted amounts of pollen. It most likely spread from glacial
refugia located on the Kamchatka Peninsula rather than from the main-
land of Russia, and then spread slowly and possibly erratically across the
peninsula, constrained by soils, topography, and perhaps volcanism.
However, it is not possible to exclude colonisation of the northern
areas of Kamchatka from the mainland of Russia via Priokhot'ye or
Chukotka. After the P. pumila expansion the compositional turnover of
vegetation in the catchment of Pechora Lake became low towards the
present.

DCA axis 1 sample scores for the chironomid assemblages decline
rapidly after 3900 cal yrs BP indicating a period of high species turnover
(Fig. 6) as taxa indicative of warm, productive lakes decline and are
replaced by species typical of cooler summer temperatures.

There is a gradual transition between the two uppermost diatom
assemblage zones (DAZ-5 and 6), where periphytic taxa, especially in
the genus Fragilaria, increase on expense of the planktonic taxa
(Figs. 5–6). This change, could indicate colder conditions and an
increase in winter ice-cover (Smol et al., 2005) and coincides with the
significant change in vegetation at about 4200 cal yrs BP attributed to
a colder and more snow-rich climate (Hammarlund et al., in this
issue). The general decrease in TOC content and the relatively low BSi
content of the sediments indicate lowered aquatic productivity, most
likely in response to colder and/or shorter ice-free seasons (Douglas
and Smol, 2010) during the Late Holocene, although indirect effects of
the P. pumila expansion on the lake ecosystem, such as acidification,
cannot be excluded. The diatom-inferred pH reconstruction (Fig. 5),
although interpreted with caution due to lack of analogues, show a
slightly more acidic pH with a decrease from about 7 to 6.6 which
could indicate acidification of the lake. The successive increases in C/N
ratio and δ13C represent direct effects of increased incorporation of
terrestrial organic matter in the sediments, initially as a result of
Table 2
Visible tephras in the Pechora Lake stratigraphy and possible correlation to recorded environm

Depth
(cm)

Tephra age from
age model
(cal yrs BP)

Thickness
(cm)

Response to tephra deposition events record

557–559 3844 2 Diatoms: coincides with a diatom assemblag
response in elemental geochemistry except

674–676 5154 2 Diatoms and geochemistry: coincides with a
species richness and increase in plankton/Au
production (maximum BSi, low C/N-ratio, lo
Delay in increases in the abundance of later
decrease.

746–749 6311 3 Diatoms and geochemistry: increase in plan
production. Chironomids: Both the concentr
increase in Poaceae.

768–769 6984 1 Diatoms and geochemistry: very slight incre
and δ13C. Chironomids: Peak in the abundan
richness decrease.

776–778 7287 2 Diatoms: very slight increase in BSi indicatin
832–833 9083 1 No sample between the tephras so change n
836–837 9207 1 Diatoms: increase in Fragilaria and decrease

primary production as recorded by lowered
abundance of Corynocera ambigua, very shor
increased forest density around the lake, and perhaps more recently in
response to soil degradation.

5.2. Environmental impacts of tephra deposition events

There does not seem to be any prominent influences of volcanic
eruptions on the vegetation in the catchment of Pechora Lake (Fig. 3).
However, a minor increase in Poaceae was recorded above one of the
tephra horizons (Table 2), whichmight indicate short-lived vegetation-
al impacts to ashfall, but the resolution of our data does not allow any
detailed analysis. Urrutia et al (2007) found considerable increases in
Poaceae pollen frequencies in response to tephra deposition, which
can be explained by the short life cycle of grasses and their rapid
profiting from nutrients supplied by volcanic eruptions. A pollen and
macrofossil study of peat sequences with numerous tephra layers in
the Kamchatka River lowlands recorded only slight influences at the
most of ashfalls on the local vegetation (Andreev and Pevzner, 2001).
The original vegetation probably recovered quickly during the subse-
quent succession as described, for example, by Hotes et al. (2004).

Diatom communities commonly respond abruptly to ashfall, both in
terms of abundance and diversity (e.g., Barker et al., 2003). Responses to
tephras seem to be stronger among diatoms compared to other
palaeolimnological proxies, possibly due to their short life cycles,
which allow them to respond quickly to environmental change
(Urrutia et al., 2007). Tephra layersmay also lead to enhanced preserva-
tion of diatom frustules (Harper et al., 1986). In addition, macrophyte
growth is inhibited by ashfall as plants become coated with silt, which
reduces the area of plant habitat available to epiphytic diatoms
(Harper et al., 1986). Planktonic and epipelic (growing on the sediment
surface) diatoms show themost rapid responses to tephra input but the
proportion of epiphytic species (growing on plants or other algae)
decreases, which suggests that their habitats of submergedwaterweeds
can be partly destroyed by ash deposition (Harper et al., 1986). Labora-
tory experiments show that epipelic diatoms buried by a 5 cm ash layer
migrated up to the surface and are thus likely to be less affected by
tephras than epiphytic diatoms (Harper et al., 1986). In the Pechora
Lake diatom record the responses to tephra deposition are manifested
as occasionally recorded shifts in diatom species composition and
generally increased production (Table 2). The two uppermost tephras
correspond to diatom assemblage zone boundaries and thus significant
changes in species composition (Fig. 6). The most prominent shift in
diatom assemblages following a tephra input is the sharp transition
from DAZ-4 to DAZ-5 at ca. 5150 cal yrs BP (Table 2), which resulted
in diatom life forms completely dominated by plankton and a high
ental change and impact on different proxies.

ed by different proxies

e zone boundary (DAZ-5 and 6) but is a more gradual change, a succession. No visible
a slight increase in BSi.
diatom assemblage zone boundary (DAZ-4 and 5). A sharp transition with reduced
lacoseira taxa and decrease in periphyton/Fragilaria taxa. Increase in diatom
w δ13C). Chironomids: high abundances of Ablabesmyia and Chironomini larvulae.
instar Chironomus. Both the concentration of head capsules and species richness

kton, especially Cyclotella taxa. Decrease in C/N ratio and δ13C indicating increased
ation of head capsules and species richness decrease. Pollen: possible transient

ase in BSi indicating increased diatom production. No apparent responses in C/N ratio
ce of Corynocera ambigua. Both the concentration of head capsules and species

g increased production. No apparent responses in C/N ratio and δ13C.
ot possible to separate from tephra below
in Aulacoseira taxa but this is probably part of a natural succession. Possible increased
C/N ratio and δ13C but not evident in the BSi record. Chironomids: Peak in the
t duration.
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production (Fig. 5). Similar sharp transitions occur elsewhere in the
diatom stratigraphy in the absence of tephras, e.g., at the two lowermost
zone boundaries (Fig. 5). Furthermore, diatom-inferred pH showed
unexpectedly none or only very slight change following tephra deposi-
tion events, but we need to take into account the varying quality of the
reconstruction and the resolution in the data. Not all tephras resulted in
diatom assemblage changes, probably as the chemical composition of
the tephras determined whether they acted as fertilisers of the lake
ecosystem, and as epiphytic taxa only constituted amarginal proportion
of the assemblage. In a palaeolimnological study of Lifebuoy Lake
situated ca 20 km south of Pechora Lake more substantial impact of
tephra input is visible affecting the trophic state of the lake, occasionally
acting as fertiliser and the opposite when an ash-layer sealed nutrients
in the sediments (Solovieva et al., in this issue).

In the chironomid stratigraphy (Fig. 4) peaks in the frequency of
C. ambigua at 8900 and 6800 cal yrs BP occur shortly after tephra
deposition events and may indicate short-lived perturbations of the
lake ecosystem. However, the highest frequency of C. ambigua at ca.
3700 cal yrs BP postdates the deposition of tephra by approximately
500 years andwas probably not related to tephra deposition. The lower-
most chironomid zone boundary coincides with a tephra layer and was
initially followed by high frequencies of Ablabesmyia and Chironomini
larvulae (Fig. 4). Increases in the frequency of later instars of Chironomus
are delayed and less prominent, which may indicate high early instar
mortality. This could be due to environmental change, such as lowered
dissolved oxygen concentrations or increased minerogenic input to the
lake. Early instars are also more sensitive to heavy metals than later
instars (Timmermans et al., 1992) so the former may be more severely
impacted by heavymetals derived from tephra deposition. Urrutia et al.
(2007) found generally decreasing concentrations of head capsules just
after tephra deposition events but no related changes in chironomid
diversity. In Pechora Lake both concentration of head capsules and
chironomid species richness decrease in the sample following
deposition of the tephras at about 5150, 6300 and 7000 cal yrs BP
(Fig. 4). The tephra at 6300 cal yrs BP is the thickest in the sequence,
and no change is apparent in concentration of head capsules or diversity
following deposition of thinner tephras at 3800, 7000, 9000 and
9200 cal yrs BP.

The effects of tephra deposition on lake ecosystems seem to be tran-
sitory and once the tephra input ends, the ecosystem re-establishes, and
the conditions that prevailed prior to the ashfall commonly return
(Urrutia et al., 2007). Responses of diatom communities to thin tephra
deposits appear to be more short-lived, about 150–200 years, and the
most long-lasting impacts occur when tephras make significant contri-
butions to the catchment silica pool and/or disrupt the internal recycling
of phosphorous (Telford et al., 2004). Harper et al. (1986) found that
above ash layers the absolute abundance of diatoms increases, with
greater effects of thicker tephras, sometimes lasting up to 300 years.
This seem to be consistent with the results from Pechora Lake where
the most visible tephra impact are recorded after the 3-cm thick tephra
at about 6300 cal yrs BP and the 2-cm tephra at 5150 cal yrs BP
(Table 2). At Pechora Lake the duration of the responses to tephra depo-
sition is short, a few hundred years at themost, and the low resolution of
our biological proxy records precludes definite separation of tephra-
related responses from the simultaneous overprint by climate change.
6. Conclusions

Climate change is the major driving force of the recorded environ-
mental changes at Pechora Lake. Some short-lasting perturbations of
the aquatic ecosystem can be attributed to tephra deposition events,
however, recurrent ashfall did not seem to affect the long-term lake
evolution, which is in agreement with previous studies (Barker et al.,
2003; Telford et al., 2004). Our interpretation of the climatic develop-
ment in north-eastern Kamchatka based on biological and geochemical
proxy records obtained from Pechora Lake can be summarised as
follows:

• During the first 400 years of the 10,000-year sediment record the
catchment was characterised by poor soils and a vegetation dominat-
ed by shrub alder and birches. The climate was relatively cold and the
lake exhibited extensive ice-cover during winter and a relatively low
primary production.

• At ca. 9600–8900 cal yrs BP the climate remained cold butmoist, with
reduced ice-cover and strong seasonal wind stress, which resulted in
turbulent mixing, increased nutrient availability and enhanced
primary production.

• After 8900 the forest density increased around the lake, runoff
decreased in a generally drier climate resulting in decreased primary
production in the lake until ca. 7000 cal yrs BP.

• A short-term perturbation, which may be attributed to the 8.2 ka
event, was recorded at ca. 8200 cal yrs BP, with indications of relative-
ly windy climatic conditions, increased snow cover, decreased dura-
tion of ice-cover and slightly elevated primary production in the
lake. Also individual chironomid taxa support a slightly cooling.

• The diatom record indicates strong thermal stratification about 6300–
5800 cal yrs BP. The diatom and geochemical proxy records indicate a
dry and slightly warmer climate which could be assigned to the
Holocene thermal maximum, resulting in a thermal stratified lake
with high primary production.

• At about 4200 cal yrs BP a notable shift in the catchment vegetation
was recorded in Pechora Lake as an increase in Siberian dwarf pine,
P. pumila, indicating a shift to a cooler climate with a thicker and
more long-lasting snow cover. The change in the catchment occurred
simultaneously with corresponding shifts in diatom and chironomid
assemblages also indicative of colder climate and more extensive
ice-cover.
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