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e–mail: {hien.ngo, h.tataria, m.matthaiou}@qub.ac.uk, jinshi@seu.edu.cn, and erik.g.larsson@liu.se

Abstract—We consider an uplink time–division duplex cell–
free massive multiple–input multiple–output (MIMO) system in
which many user equipments (UEs) are simultaneously served by
many access points (APs) via simple matched filtering processing.
The propagation channel is modeled via the Ricean distribution,
which includes a dominant line–of–sight component on top of
diffuse scattering. The Ricean K–factor of each link varies with
the UE location (relative to the locations of the APs). The system
performance in terms of the spectral efficiency is investigated
taking into account imperfect channel knowledge. Power and AP–
weighting control is exploited to maximize the lowest spectral
efficiency across all UEs. This optimization problem can be
efficiently solved via the bisection method by solving a sequence
of linear feasibility problems together with the generalized eigen-
value problem. We show that by optimally selecting the power
control and AP–weighting coefficients, the per–UE throughput
increases significantly. Furthermore, we propose an AP selection
scheme to reduce the backhaul requirements in a cell–free
massive MIMO system, with slight compromise in performance.

I. INTRODUCTION

In recent times, cell–free massive multiple–input multiple–
output (MIMO) systems have stemmed from the amalgamation
of contemporaneous massive MIMO with network MIMO
systems [1]. In such a system, a large number of access
points (APs) are geographically distributed, and connected to
a central processing unit (CPU) via a fronthaul network. The
APs coherently serve a smaller number of user equipments
(UEs) within the same time–frequency resource. Since channel
acquisition can be performed locally at each AP by leveraging
the time–division duplex (TDD) reciprocity, cell–free massive
MIMO systems can be considered as a scalable way to realize
conventional network MIMO with joint processing [1]. By
now, several studies have investigated the performance of cell–
free systems with linear processing, imperfect channel esti-
mation, and optimal resource allocation to maintain uniform
service to each UE, see e.g., [1–5].

Despite these advancements, all of the above studies restrict
the analyses and performance evaluations of cell–free systems
to uncorrelated Rayleigh fading channels. This assumption is
not realistic in practice, since the idea is to scale–up the num-
ber of APs relative to the total number of UEs in a given area.
Consequently, the distance between APs and UEs decreases,
leading to a significant increase in the probability of UEs
experiencing dominant propagation paths from multiple APs.
In such situations, line–of–sight (LOS) components dominate
the channel impulse response, in addition to diffuse scattering.

This results in channel heterogeneity, since the LOS levels on
multiple links are likely to vary depending on the UE location
relative to the AP [6]. This does not only impact the resulting
spectral efficiency of cell–free systems, but also has a direct
consequence on the design of channel estimators, power con-
trol techniques, and AP selection schemes. Cell-free massive
MIMO with Ricean fading was studied in [7]. The paper [7]
focused on the performance comparison between minimum
mean-square error (MMSE) and least-square estimators used
in the uplink training phase, without any resource allocations,
and under the assumption that the pilot sequences are assigned
from a given set of orthogonal pilots. By contrast, in this work,
we investigate the throughput of cell–free massive MIMO
under Ricean fading channels with max-min power control
and AP selection schemes. In addition, the pilot sequences in
the training phase are assumed to be arbitrary.

Contributions. We evaluate the uplink spectral efficiency of
cell–free massive MIMO with Ricean fading propagation. In
doing so, we utilized a detailed model for the Ricean K–factor
and link attenuation based on the probability of LOS and the
link distance between a given AP and UE. We formulate and
solve an optimization problem which selects power control
and AP–weighting control coefficients in order to maximize
the smallest spectral efficiency across all UEs. Precisely, we
leverage the bisection method together with the generalized
eigenvalue problem (described further in the text). Finally, an
AP selection method is proposed to reduce the backhaul load,
which shows a small spectral efficiency degradation.

II. SYSTEM MODEL

The uplink of cell–free massive MIMO is considered where
the K UEs simultaneously transmit signals to M APs in the
same frequency band. All APs and UEs are equipped with
single–antennas, and are distributed in a large area. As in [1],
all APs are connected to a CPU via perfect backhaul links.

A. Propagation Model

We consider Ricean fading channels, which consist of a
dominant LOS component on top of a Rayleigh–distributed
component modeling the scattered multipath. The channel
from the m–th AP and to the k–th UE is modeled as

gmk =
√
ζmk

(√
Kmk

Kmk + 1
h̄mk +

√
1

Kmk + 1
h̃mk

)
, (1)



where ζmk denotes the large–scale fading coefficient, Kmk is
the Ricean K–factor, h̄mk and h̃mk correspond to the LOS and
non–LOS components, respectively. We assume that h̃mk ∼
CN (0, 1), and h̄mk = ejωmk where ωmk denotes the phase of
a random arrival angle. For simplicity, we denote

ḡmk =
√
ζmk

√
Kmk

Kmk + 1
h̄mk, βmk =

ζmk
Kmk + 1

.

Then, (1) can be rewritten as

gmk = ḡmk +
√
βmk h̃mk. (2)

We consider scenarios where users are fixed or move slowly,
but there are movements of objects around them. In these
scenarios, it is reasonable to assume that ḡmk changes slowly
with time, ad is known a priori. In addition, βmk is also
assumed to be known a priori.

B. Transmission Protocol

The transmission between the users to the APs is done in
a TDD fashion. Precisely, each coherence interval is divided
into three phases: uplink training, uplink data transmission,
and downlink data transmission. Since our focus is on uplink
transmission, we neglect the downlink data transmission phase.

1) Uplink Training: A part of the coherence interval of
length τc symbols will be used for the uplink training phase
to estimate the channels. During the training phase, all K UEs
simultaneously send pilot sequences to the APs. Let τp be the
length of the training duration, and √τpϕϕϕk ∈ Cτp×1, where
‖ϕϕϕk‖2 = 1, be the pilot sequence transmitted from the kth
user, k = 1, 2, . . . ,K. Then, the τp × 1 received pilot vector
at the m–th AP is

yp,m =
√
τpρp

K∑
k=1

gmkϕϕϕk + wp,m, (3)

where ρp represents the normalized signal–to–noise ratio
(SNR) of each pilot symbol, and wp,m ∼ CN

(
0, Iτp

)
is the

additive noise vector at the m–th AP. Denote by y̌p,mk the
projection of yp,m onto ϕϕϕHk , i.e. y̌p,mk = ϕϕϕHk yp,m. Then,
given y̌p,mk, the MMSE estimate of gmk is [8]

ĝmk = ḡmk + cmk (y̌p,mk − ¯̌yp,mk) , (4)

where ¯̌yp,mk = E {y̌p,mk} =
∑K
k′=1

√
τpρp ḡmk′ ϕϕϕ

H
k ϕϕϕk′ , and

cmk ,
√
τpρp βmk

τpρp
∑K
k′=1 βmk′

∣∣ϕϕϕHk ϕϕϕk′ ∣∣2 + 1
.

Let εmk = gmk − ĝmk be the channel estima-
tion error. Then, from the MMSE estimation property,
ĝmk and εmk are uncorrelated. In addition, ĝmk ∼
CN (ḡmk, γmk) , and εmk ∼ CN (0, βmk − γmk) , where
γmk =

τpρpβ
2
mk

τpρp
∑K

k′=1
βmk′ |ϕϕϕH

k ϕϕϕk′ |2+1
.

C. Uplink Data Transmission

All K UEs simultaneously send their data to the APs.
Denote by

√
ηkqk, where E

{
|qk|2

}
= 1 and 0 ≤ ηk ≤ 1,

the signal transmitted by the k–th UE. Here, qk represents
the data symbol and ηk represents the corresponding power
control coefficient. Then, the m–th AP receives

yu,m =
√
ρu

K∑
k=1

gmk
√
ηkqk + wu,m, (5)

where ρu is the normalized uplink SNR, and wu,m ∼ CN (0, 1)
denotes the additive noise at the m–th AP.

As in [3], to detect qk, the received signal at the m–th
AP will be first multiplied with the conjugate of its channel
estimate, ĝmk, and an AP–weighting coefficient αmk, and then
the so–obtained quantity αmkĝ∗mkyu,m will be sent to the CPU
via a backhaul network. The combined signal at the CPU is
given by

ru,k =

M∑
m=1

αmkĝ
∗
mkyu,m. (6)

Then, qk is detected from ru,k. Without loss of generality, we
assume that

∑M
m=1 |αmk|2 ≤ 1.

Remark 1. In some cases, the signal received at the m–th
AP contains very strong interference plus noise (relative to the
desired signal). This may happen when the k–th UE is very
far from the m–th AP or/and the other UEs are very close
to this AP. For such cases, the AP–weighting coefficient αmk
should be small. Otherwise, the interference will be amplified,
degrading the system performance. In Section IV, we discuss
how to optimally select the values of αmk.

III. SPECTRAL EFFICIENCY ANALYSIS

In this section, we provide a closed–form expression for
the uplink spectral efficiency, via the use–and–forget bounding
technique from [9]. With this technique, the spectral efficiency
of the k–th UE is given by

Rk =
τc − τp
τc

log2

(
1 +

|DSk|2

BUk +
∑K
k′ 6=k UIkk′ + ANk

)
. (7)

where DSk, BUk, UIkk′ , and ANk represent the effects of
the desired signal, the beamforming gain uncertainty, the
interference from user k′, and noise, respectively, given by

DSk ,
√
ρuηk E

{
M∑
m=1

αmkgmkĝ
∗
mk

}
, (8)

BUk , ρuηk Var

{
M∑
m=1

αmkgmkĝ
∗
mk

}
, (9)

UIkk′ , ρuηk′ E


∣∣∣∣∣
M∑
m=1

αmkĝ
∗
mkgmk′

∣∣∣∣∣
2
 , (10)

ANk , E


∣∣∣∣∣
M∑
m=1

αmkĝ
∗
mkwu,m

∣∣∣∣∣
2
 . (11)



Using a similar methodology as in [7], we obtain the
following rigorous closed–form expression for the spectral
efficiency of the k–th UE:

Rk =
τc − τp
τc

log2 (1 + SINRk) , (12)

where, SINRk represents the uplink SINR, given by

SINRk = (13)

ρuηk
∣∣aHk γ̄γγk∣∣2

ρu
∑K
k′=1 ηk′ξkk′+ρu

∑K
k′ 6=k ηk′ωkk′

∣∣ϕϕϕHk ϕϕϕk′ ∣∣2+aHk Γ̄ΓΓkak
.

In (13), ak = [α1k, . . . , αMk]T , γ̄γγk = [γ̄1k, . . . , γ̄Mk], γ̄mk =
γmk + |ḡmk|2,

ξkk′ = aHk Rk′ΓΓΓkak + aHk ΓΓΓkḠk′ak + aHk Rk′Ḡkak

+ (1− δkk′)
∣∣aHk bkk′

∣∣2 , (14)

and

ωkk′ =
∣∣aHk dkk′

∣∣2 + 2aHk dkk′Re
{
aHk b∗kk′

}
, (15)

where δkk′ = 1 when k = k′ and 0 otherwise,
Rk = diag{β1k, . . . , βMk}, ΓΓΓk = diag{γ1k, . . . , γMk}, Ḡk =
diag{|ḡ1k|2, . . . , |ḡMk|2}, bkk′ = [ḡ∗1kḡ1k′ , . . . , ḡ

∗
MkḡMk′ ],

dkk′ =
[
γ1k

β1k′
β1k

, . . . , γMk
βMk′
βMk

]T
, and Γ̄ΓΓk ,

diag{γ̄1k, . . . , γ̄Mk}.
Remark 2. Similar to the case of uncorrelated Rayleigh

fading channels, the performance of cell–free massive MIMO
is limited by the pilot contamination since the second term
of the denominator in (13) scales with the same rate as the
numerator (i.e. with M2) when M increases. To see the effect
of the LOS components, we consider a simple scenario where
αmk = 1, and ϕϕϕHk ϕϕϕk′ = 0, for k 6= k′. The inter–user
interference term can be rewritten as

ξkk′ =

M∑
m=1

(βmk′γmk + γmk|ḡmk′ |2 + βmk′ |ḡmk|2)

+ (1− δkk′)

∣∣∣∣∣
M∑
m=1

ḡ∗mkḡmk′

∣∣∣∣∣
2

. (16)

If ωmk′ = ωmk + nπ, where n is an integer, then

ḡ∗mkḡmk′ =
ζmkKmkζmk′Kmk′

(Kmk + 1)(Kmk′ + 1)
ej(ωmk′−ωmk)

=
ζmkKmkζmk′Kmk′

(Kmk + 1)(Kmk′ + 1)
. (17)

As a result, the last term of (16) scales as M2 when M
increases. The spectral efficiency is upper-bounded by a finite
value when M goes to infinity. This implies that, beside
the pilot contamination effect, in the case where we have
strong alignment of two distinct LOS responses, the inter-user
interference persists even when M is infinity. To reduce this
effect, user scheduling and power control need to be done.

IV. RESOURCE ALLOCATION

A. Max-Min Power and AP-Weighting coefficient Control

In this section, we investigate an optimization problem
which selects the power coefficients {ηk} together with the
AP–weighting coefficients {ak} to maximize the smallest
spectral efficiency of all UEs. Mathematically, the max–min
power and AP–weighting control problem can be formulated
as follows:

(P) :


max
{ak,ηk}

mink=1,··· ,K Rk

subject to 0 ≤ ηk ≤ 1, k = 1, ...,K,

‖ak‖2 ≤ 1, k = 1, ...,K.

(18)

Since log(·) is an increasing function, problem P can be
rewritten as

(P) :


max
{ak,ηk}

mink=1,··· ,K SINRk

subject to 0 ≤ ηk ≤ 1, k = 1, ...,K,

‖ak‖2 ≤ 1, k = 1, ...,K.

(19)

Remark 3. Problem P is not jointly convex with respect to
{ak} and {ηk}. However, we will show later that problem P

can be reformulated to convex problem with respect to ak (if
ηk is fixed) or ηk (if ak is fixed). Therefore, we can decouple
problem P into two sub-problems: (P1)–solving ηk with fixed
ak; and (P2)-solving ak with fixed ηk. These sub–problems
are alternately solved to obtain the total solution for P.

1) Problem P1: Problem P1 is obtained from P when ak
is fixed. Thus, we have

(P1) :

{
max
{ηk}

mink=1,··· ,K SINRk

subject to 0 ≤ ηk ≤ 1, k = 1, ...,K,
(20)

which can be equivalently reformulated as

(P1) :


max
t,{ηk}

t

subject to t ≤ SINRk, k = 1, ...,K,
0 ≤ ηk ≤ 1, k = 1, ...,K.

(21)

From (13), we have

(P1) :



max
t,{ηk}

t

s.t. ρu
K∑
k′=1

ηk′ξk′ + ρu
K∑
k′ 6=k

ηk′ωk′
∣∣ϕϕϕHk ϕϕϕk′ ∣∣2

+aHk Γ̄ΓΓkak ≤ 1
t ρuηk

∣∣aHk γ̄γγk∣∣2 , k = 1, ...,K,
0 ≤ ηk ≤ 1, k = 1, ...,K,

(22)

For a given t, all inequalities involved in (22) are linear, and
hence, the program (22) is quasi–linear. As a consequence,
problem (22) can be efficiently solved by using the bisection
method and solving a sequence of linear feasibility problems.

2) Problem P2: The optimization problem P2 is

(P2) :

{
max
{ak}

mink=1,··· ,K SINRk

subject to ‖ak‖2 ≤ 1, k = 1, ...,K.
(23)



To solve (23), we rewrite the SINR as follows:

SINRk =

aHk (ρuηkγ̄γγkγ̄γγ
H
k )ak

aHk

(
ρu

K∑
k′=1

ηk′ΛΛΛkk′ + ρu
K∑
k′ 6=k

ηk′ΞΞΞkk′
∣∣ϕϕϕHk ϕϕϕk′ ∣∣2 + Γ̄ΓΓk

)
ak

,

(24)

where ΛΛΛkk′ = Rk′ΓΓΓk+ΓΓΓkḠk′+Rk′Ḡk+(1−δkk′)bkk′bHkk′ ,
and ΞΞΞkk′ = dkk′d

H
kk′ + 2dkk′Re {bkk′}H .

Remark 4. Since SINRk depends only on ak (does not
include ak′ for k′ 6= k), the solutions of (23) can be obtained
by solving K optimization problems, separately. In the k–
th problem, we will find ak which maximize SINRk, for
k = 1, . . .K. We can see that the SINRk given by (24)
is a generalized Rayleigh quotient whose maximum value is
equal to λmax, which corresponds to the largest eigenvalue of
the generalized eigenvalue problem. The optimal ak is the
eigenvector corresponding to λmax. Note that ak has to be
normalized so that ‖ak‖2 = 1.

Combing Problems P1 and P2, we can obtain the optimal
solution for P as summarized in Algorithm 1.

Algorithm 1 (Iterative algorithm to solve P):

1. Initialization: set n = 1, choose the initial value of
ak. Define a tolerance ε and the maximum number
of iterations NI.

2. Iteration n:
- solve (22) using bisection algorithm. Let η∗k be the
solution.
- set ηk = η∗k, solve (23) via solving the generalized
eigenvalue problem. Let a∗k be the solution.

3. If
∣∣∣∑K

k=1

(
ṫ∗k − ṫ

(n)
k

)∣∣∣ < ε or n = NI → Stop and
set a∗k = a∗k/‖a∗k‖. Otherwise, go to step 4.

4. Set n = n+ 1, update ak = a∗k, go to step 2.

B. AP Selection

To detect the signal transmitted from the k–th UE, all
M APs forward the processed signals αmkĝ

∗
mkyu,m, for

m = 1, . . . ,M , to the CPU via the backhaul. This induces
a huge backhaul burden. To reduce this backhaul requirement,
we propose a new AP selection scheme where the m–th
AP processes and forwards its received signals only if αmk
(obtained from Algorithm 1) is greater than a threshold. The
details of our proposed AP selection are as follows.

- Step 1. Perform Algorithm 1.
- Step 2. If |αmk| ≤ αth, then set αmk = 0. Here αth

denotes a pre-defined threshold.
- Step 3. With the new {αmk} given in Step 2, solve

(22) using bisection algorithm. The optimal ηk, for k =
1, · · · ,K, will be determined.

V. NUMERICAL RESULTS

We assume that all M APs and K users are located at
random in a square of 1 × 1 m2. Wrapped-around technique
is used to imitate a network with an infinite area. The Ricean
K–factors and large–scale fading coefficients vary depending
on the locations of users and APs. To model this, we use the
following formulation as in [10]

Kmk =
PLOS(dmk)

1− PLOS(dmk)
, (25)

where dmk is the distance between the m–th AP and the k–
th user, PLOS(dmk) is the LOS probability depending on the
distance dmk. For the LOS probability, we use the model from
the 3GPP–UMa as [11]

PLOS(dmk) = min

(
18

dmk
, 1

)(
1− e−

dmk
63

)
+ e

−dmk
63 , (26)

where dmk is in meters. In addition, the large–scale fading
coefficient ζmk is modeled as in [1]. More precisely, large–
scale fading is the product of the geometric attenuation with
shadow fading. The attenuation follows the three–slope model
and the shadowing follows log–normal distribution. In addi-
tion, the attenuation and shadow fading also depend on the
LOS probability in (26).

A. Parameters and Setup

Most of the network parameters are the same as the ones
in [1]: τc = 200, τp = 20, carrier frequency = 1.9 GHz,
bandwidth B = 20 MHz, noise power N0 = −90 dBm, and
ρp = ρu = 0.2/N0. Furthermore, random pilot assignment is
used, and LOS phase ωmk is uniformly distributed between
0 and 2π. To make a strong connection between Ricean
and large–scale fading model, the attenuation exponent and
shadowing standard deviation are chosen as follows:

- If dmk > 70 m (which corresponds to PLOS(dmk) < 0.5),
the attenuation exponent is 3.5, and shadowing standard
deviation is 8 dB.

- If 1 < dmk ≤ 70 m (which corresponds to PLOS(dmk) ≥
0.5) the attenuation exponent is 2, and shadowing stan-
dard deviation is 3 dB [12].

- If dmk ≤ 1 m, the attenuation exponent is 0, and there
is no shadowing, since the propagating wavefront is in
transition from near to far–field.

B. Results and Discussions

We consider the per–UE throughput which takes into ac-
count the channel estimation overhead and the system band-
width, defined as Sk = B × Rk (bit/s). From our numerical
results (were not shown here), Algorithm 1 converges very
fast, within about 2 or 3 iterations. Thus, hereafter we choose
NI = 3 for Algorithm 1.

First, we examine the effectiveness of using power and
AP–weighting coefficient control provided in Algorithm 1 as
well as the AP selection scheme proposed in Section IV-B.
Figure 1 shows the cumulative distribution of the per-user
throughput for four cases: full power and AP–weighting
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Fig. 1. Cumulative distribution of the per-user throughput. Here M = 100,
K = 40, and τp = 20.

coefficients (ηk = 1 and αmk = 1), optimal power control
but no optimal weighting coefficient control (αmk = 1,
ηk is optimally chosen), optimal power and AP–weighting
coefficient control (Algorithm 1), and optimal power and AP–
weighting coefficients with AP selection. For the AP selection
scheme, we choose αth = 1/M . We can see that max–
min power and AP–weighting control improves the system
performance significantly. In particular, compared with the
case where ηk = 1 and αmk = 1, the power control can
improve the 95%–likely per–UE throughput by a factor of
3, while the power control together with the AP–weighting
control can improve the 95%-likely per–UE throughput by a
factor of 5.4. In addition, we can see that with our proposed AP
selection scheme, the throughput is slightly reduced compared
to the case without AP selection. But the backhaul requirement
reduces noticeably. From the numerical results, on average
only about 70 (over 100) APs need to forward the processed
signals to the CPU.

To further see the benefit of our AP selection scheme, we
plot the per–user throughput as the function of the backhaul us-
age. The backhaul usage is defined as BU =

∑K
k=1Mk

MK ×100%,
where Mk is the number of selected APs which used to detect
qk. See Figure 2 with K = 40, and different M , for one
snapshot of the large-scale fading realization. We can see that
our proposed AP selection scheme reduces the backhaul re-
quirements substantially with small reduction in performance.
In particular, with our AP selection scheme, we need only
about 60% and 75% backhaul usages for M = 200 and
M = 100, respectively, to obtain 85% the throughput where
all APs are used. Finally, we compare the performance of cell–
free massive MIMO with Rayleigh and Ricean channels. For
Rayleigh fading, we use the results in [1]. Figure 3 shows the
cumulative distribution of per–UE throughput under Rayleigh
and Ricean channels for different K. Here, max–min power
and AP–weighting control is taken into account. The Ricean
channel offers better throughput than Rayleigh channel does.

10 20 30 40 50 60 70 80 90 100

backhaul usage (%)

6

8

10

12

14

16

p
e
r-

u
s
e
r 

th
ro

u
g
h
p
u
t

 no AP selection, M=200

 AP selection, M=200

 no AP selection, M=100

 AP selection, M=100 K=40

Fig. 2. Per-user throughput versus the backhaul usage. Here K = 40, D =
1 km, and τp = 20.

10 12 14 16 18 20 22

per-user throughput (Mbit/s)

0

0.2

0.4

0.6

0.8

1

c
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti
o
n

Ricean

Rayleigh

M=100, 

K=40

M=100,

K=20

Fig. 3. Cumulative distribution of the per-user throughput for Rayleigh and
Ricean channels, with max-min power and AP-weighting control.

VI. CONCLUSION

This paper considered a TDD cell-free massive MIMO sys-
tem under Ricean channels which include a LOS component
plus a non-LOS component. The Ricean K–factor of each
link varies with the UE and AP locations. The LOS phases
were assumed to be known a priori. The performance of this
system with imperfect channel estimation is analyzed in terms
of per-user spectral throughput. In particular, simple max-min
power and AP–weighting control together with AP selection
algorithms were proposed to improve the system performance.
The results showed that the proposed algorithms improve the
user throughput and reduce the backhaul requirements in cell-
free massive MIMO significantly. Future work may include
studying the scenarios where the LOS phases are unknown.
We hypothesize that these scenarios are more realistic since
the phases change very quickly and are hard to be estimated.
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