
Pilot Power Control for Cell-free Massive MIMO

Mai, T. C., Ngo, H. Q., Egan, M., & Duong, T. Q. (2018). Pilot Power Control for Cell-free Massive MIMO. IEEE
Transactions on Vehicular Technology, 67(11), 11264 - 11268. https://doi.org/10.1109/TVT.2018.2867606

Published in:
IEEE Transactions on Vehicular Technology

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2018 IEEE.
This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Open Access
This research has been made openly available by Queen's academics and its Open Research team.  We would love to hear how access to
this research benefits you. – Share your feedback with us: http://go.qub.ac.uk/oa-feedback

Download date:26. May. 2024

https://doi.org/10.1109/TVT.2018.2867606
https://pure.qub.ac.uk/en/publications/396a05ee-9075-4aec-ad7e-e07e2e196384


1

Pilot Power Control for Cell-free Massive MIMO
Trang C. Mai, Hien Quoc Ngo, Malcolm Egan, and Trung Q. Duong, Senior Member, IEEE,

Abstract—In this paper, we consider a cell-free massive MIMO
system where access points (APs) serve a much smaller number
of users under the time-division duplex operation. The APs first
estimate the channels via the uplink training phase. Then these
channel estimates are used to detect desired symbols in the
uplink and precode the transmit symbols in the downlink. Non-
orthogonality of pilot sequences and AP selection (e.g. received-
power-based selection or largest-large-scale-fading based selec-
tion schemes) are taken into account. To reduce the effect of pilot
contamination, we propose a pilot power control design which
chooses the pilot power control coefficients to minimize the mean-
squared error of the channel estimation. This is achieved via the
sequential convex approximation method. By using pilot power
control in training phase, the system performance is considerably
improved. In addition, we derive closed-form expressions for
the uplink and downlink achievable rates with arbitrary power
data/pilot control coefficients and any AP selection schemes.

Index terms— Cell-free massive MIMO, channel estima-
tion, pilot power control.

I. INTRODUCTION

Cell-free massive MIMO systems, where a large number of
access points (APs) serve a much smaller number of users in
the network simultaneously, in the same frequency resource,
have attracted significant attention as they provides uniformly
good service to all users as well as handover-free [1], [2].
Moreover, by using multiple antennas at APs, cell-free massive
MIMO inherits the important benefit, i.e. channel hardening,
from massive MIMO [3].

In cell-free systems, all channels estimated in the training
phase are used for precoding in the downlink data transmission
and decoding in the uplink data transmission. In the training
phase, each user should ideally be assigned a pilot sequence
which is mutually orthogonal to other users’ pilot sequences.
However, when the coherence interval is short or/and the
number of users in the system is large [4], non-orthogonal pilot
sequences have to be used by the users. As a consequence,
at each AP, the pilot signal transmitted from a given user
will be interfered by the pilot signal transmitted from other
users. This effect, known as pilot contamination, reduces the
system performance significantly [5], [6]. To mitigate pilot
contamination, pilot assignment and data power controls can
be used [1], [7].

In previous works on cell-free massive MIMO, all pilot
signals are transmitted with full power during the training
phase [1], [3], [7]–[9]. It may happen that a user with poor
channels can be strongly contaminated by users with strong
channels during the training phase. This significantly degrades
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the performance of the user, and hence, reduces the total
performance of the systems. In addition, [7] shows that, it
is not optimal to use all APs to serve all users in both uplink
and downlink data transmission phases, especially when taking
into account the capacity limitation of backhaul load [9] and
the hardware impairments [8]. Therefore, in this work we
propose to allocate pilot power for each user to improve the
channel estimation quality. We consider a cell-free massive
MIMO system as in [1], but the APs are equipped with
multiple antennas. In particular, the power control and AP
selection are exploited during the training phase. In general,
we should assign the pilot sequences, allocate the pilot powers,
and select the number of serving APs per user to maximize
the system performance. However, this is a multi-objective
optimization problem and finding the corresponding optimal
solutions is a challenging task. Therefore, in this work we
focus on allocating the pilot powers, assuming that pilot
assignments are designed in advance. Cell-free massive MIMO
utilizes channel state information that is estimated rather than
assumed and hence the accuracy of channel estimation is very
important.

The objective in this paper is to minimize the channel
estimation error. More precisely, we propose a simple pilot
power control problem which can improve the net throughput
via minimizing the variance of the MMSE channel estimation
error. The main contributions of this paper are as follows

• We derive closed-form expressions for both uplink and
downlink achievable rates of a cell-free massive MIMO
system taking into account the channel estimate errors,
AP selection schemes, multiple antennas at the APs, and
pilot/data power controls. Our result is a generalization
of the result in [1] in which pilot power control, multiple
antennas at the APs, and AP selection were not consid-
ered.

• We propose a pilot power control problem which aims at
minimizing the mean-squared channel estimation errors,
subject to a pilot power constraint. The proposed opti-
mization problem is not convex, but it can be changed to a
convex problem by using the second-order Taylor approx-
imation. As a result, its solution can be approximately
determined by solving a sequence of convex programs.

II. SYSTEM MODEL AND SPECTRAL EFFICIENCY

We consider a cell-free massive MIMO system where M
geographically distributed APs jointly serve all K users in the
same time-frequency resource of the network. Each user is
served by a subset of APs. Let Ak be the set of APs serving
the k-th user and Um be the set of users served by the m-th
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AP. 1 The system operates in TDD mode and exploits channel
reciprocity. The channels estimated at the APs can be used to
decode the signals transmitted from the users in the uplink,
and precode the downlink symbols. Each AP has L antennas,
while each user is equipped with a single-antenna. The channel
vector, gmk ∈ CL×1, between the k-th user and the m-th AP
is modeled as the combination of the large-scale fading βmk
and the vector of small-scale fading hmk ∈ CL×1:

gmk = β
1/2
mkhmk. (1)

We assume that {hmk}, k = 1, . . . ,K, m = 1, . . . ,M ,
are independent and identically distributed (i.i.d.) CN (0, IL)
random variable (RV) vectors, and βmk are known a priori.

For each coherence interval, the transmission occurs in three
phases: uplink training, uplink data transmission, and downlink
data transmission. The system model is similar to the one in
[1]. The main difference appears in the training phase. More
precisely, in [1] the users transmit with full powers during the
training phase, while here in our work, the pilot signals will be
weighted by the power control coefficients. The power control
is done at the CPU. As in previous works [1], we assume that
the power control coefficients are sent to the APs perfectly via
dedicated channels. Note that this is done for each large-scale
fading realization which changes very slowly.

A. Uplink Training Phase

For each coherence interval of length τc (symbols), a
duration of length τ (symbols) is used for the uplink training.
Let
√
τηkϕϕϕk ∈ Cτ×1, where ‖ϕϕϕk‖2 = 1, be the pilot sequence

of user k. Here, ηk, where 0 < ηk ≤ 1, be the corresponding
power control coefficient. Then, the m-th AP receives

Yp,m =
√
τρp

K∑
k=1

gmkη
1/2
k ϕϕϕHk + Wp,m, (2)

where ρp is the normalized (with respect to noise power)
signal-to-noise ratio (SNR) of each pilot symbol, Wp,m is
the L × τc additive noise matrix that their elements are i.i.d.
CN (0, 1) RVs. After projecting Yp,m onto ϕϕϕHk , the MMSE
estimate of gmk is

ĝmk = E
{
gmky̌

H
p,mk

} (
E
{
y̌p,mky̌

H
p,mk

})−1
y̌p,mk

= cmky̌p,mk, (3)

where y̌p,mk , Yp,mϕϕϕk, and

cmk ,
√
τρpβmkη

1/2
k

τρp
∑K
k′=1 βmk′ηk′

∣∣ϕϕϕHk ϕϕϕk′ ∣∣2 + 1
. (4)

γmk denotes the l-th component’s mean-square of the esti-
mated channel vector ĝmk, can be calculated as

γmk , E
{
|[ĝmk]l|

2
}

=
√
τρpβmkη

1/2
k cmk, (5)

where [.]l denotes l-th component of the vector [.].

1AP selection is applied to reduce the requirement for backhaul connection.
In a special case where Ak = {1, 2, . . . ,M}, for all k, we have the same
system model as the one in [1]. The AP selection can be done by some
criterion such as received-power-based selection or largest-large-scale-fading-
based selection schemes in [7].

B. Uplink Data Transmission

All K users share the same time-frequency resource. The
received signal at the m-th AP is modeled as

yu,m =
√
ρu

K∑
k=1

gmk
√
ηukqk + wu,m, (6)

where qk, E
{
|qk|2

}
= 1, is the symbol of the k-th user, ηuk ,

0 ≤ ηuk ≤ 1, is the data power control coefficient, ρu is the
normalized uplink SNR, and wu,m ∼ CN (0, 1) is the additive
noise.

To detect the symbol transmitted from the k-th user, the
m-th AP which belongs to the subset Ak sends ĝ∗mkyu,m to
the CPU through the backhaul network. The received signal
at the CPU is

ru,k =
∑
m∈Ak

L∑
l=1

[ĝmk]
∗
l [yu,m]l . (7)

Following the same technique in [1], we first decompose the
received signal ru,k as

ru,k = DSk · qk + BUk · qk +

K∑
k′ 6=k

UIkk′ · qk′ + N, (8)

where

DSk ,
√
ρuηuk E

{ ∑
m∈Ak

L∑
l=1

[ĝmk]
∗
l [gmk]l

}
,

BUk ,
√
ρuηuk

∑
m∈Ak

L∑
l=1

[ĝmk]
∗
l [gmk]l−DSk,

UIkk′ ,
√
ρuηuk′

∑
m∈Ak

L∑
l=1

[ĝmk]
∗
l [gmk′ ]l,

and N ,
∑
m∈Ak

L∑
l=1

[ĝmk]
∗
l [wu,m]l.

Then by treating the sum of the second, third, and fourth terms
in (8) as effective noise and using the worst-case Gaussian
noise argument [10], we obtain the spectral efficiency of the
k-th user as follows:

Su,k =
1− τ/τc

2
×

× log2

(
1 +

|DSk|2

E {|BUk|2}+
∑K
k′ 6=k E {|UIkk′ |2}+ E {|N|2}

)
.

(9)

Following the derivation in Appendix A, we can obtain the
closed-form expression for the uplink spectral efficiency (9)
as given in (13), shown at the top of the next 2 pages.

C. Downlink Data Transmission

In the downlink, the APs belonging to the set Ak aim
to send symbol qk, where E

{
|qk|2

}
= 1, to user k, k =

1, . . . ,K. As a result, m-th AP will aim to send symbols to
the users in the set Um. The vector of transmitted signals from
the m-th AP, which uses maximum ratio precoding scheme
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based on its local channel estimates to precode the transmitted
symbols, is

xm =
√
ρd
∑
k∈Um

√
ηdmkĝ

∗
mkqk, (10)

where ρd is the normalized downlink SNR, ηdmk are the
downlink power control coefficients chosen to satisfy the
power constraint at each AP E

{
‖xm‖2

}
≤ ρd, and hence,

∑
k∈Um

ηdmkγmk ≤
1

L
, ∀m. (11)

The received signal at the k-th user is

rd,k =
√
ρd

M∑
m=1

∑
k′∈Um

√
ηdmk′g

T
mkĝ

∗
mk′qk′ + wd,k, (12)

where wd,m ∼ CN (0, 1) is additive noise at the k-th user.
Following a similar methodology as the derivation of the

uplink spectral efficiency in Section II-B, we obtain closed-
form expression for the downlink spectral efficiency as given
by (14), shown at the top of the next page.

III. PILOT POWER CONTROL

The cell-free massive MIMO system operates in TDD mode
and the channels are estimated at each AP based on the pilot
signals sent from the users during the training phase. Due to
the non-orthogonality among pilot sequences, the estimate of
the channel corresponding to a given user will be impaired by
the pilots transmitted from other users. This effect is known as
pilot contamination effect. This effect is very serious in cell-
free massive MIMO systems, where we aim to serve many
users simultaneously, in the same time-frequency resource.
Therefore, pilot contamination mitigation is crucial task in
cell-free massive MIMO. To reduce the pilot contamination
effect, we propose to design the pilot power coefficients to
improve the channel estimation accuracy during the training
phase. Since we aim at providing uniformly good service for
all users in the network, we propose a min-max optimization
problem which minimizes the largest of all user normalized
mean-squared errors (normalized by its large-scale fading
coefficient) as follows

min
{ηk}

max
k=1,··· ,K

∑
m∈Ak

varmk
βmk

(15)

subject to ε ≤ ηk ≤ 1, ∀k = 1, . . . ,K,

where Ak is again the set of APs chosen to serve the k-th
user, ε is very small and > 0 (this guarantees that all required
channels are estimated in the training phase), and varmk is the
mean-squared error of MMSE estimation for [gmk]l given by
[11]

varmk = βmk − γmk = βmk

(
1− γmk

βmk

)
. (16)

An equivalent form of (15) is

min
{ηk},t

t (17a)

subject to

t ≥
∑
m∈Ak

(
1− τρpβmkηk

τρp
∑K
k′=1 βmk′ηk′

∣∣ϕϕϕHk ϕϕϕk′ ∣∣2 + 1

)
, ∀k,

(17b)
ε ≤ ηk ≤ 1, ∀k. (17c)

This is a non-convex problem. To solve this, we use the
successive approximation technique with first order Taylor
approximation for the convex function 1

xy with x, y > 0 as
follows

1

xy
≥ 3

x0y0
− x

x20y0
− y

x0y20
. (18)

We apply the approximation in (18) for each fraction in the
right-hand side of (17b), where xmk = 1

τρpβmkηk
and ymk =

τρp
∑K
k′=1 βmk′ηk′

∣∣ϕϕϕHk ϕϕϕk′ ∣∣2 + 1 with ∀k = 1, . . . ,K and
m ∈ Ak. The solution of problem (17) can be upper bounded
by solution of a problem

min
{ηk},t

t (19)

subject to

t ≥
∑
m∈Ak

(
1− 3

xmk0ymk0
+

xmk
x2mk0ymk0

+
ymk

xmk0y2mk0

)
, ∀k,

ε ≤ ηk ≤ 1, ∀k.

Finally, problem (15) can be determined by solving a sequence
of the convex problem (19). The details are shown in Algo-
rithm 1.

Algorithm 1
1) Initialization: Set i = 1, select the initial point of

η
(0)
k for ∀k. Compute x(1)mk0 = 1

τρpβmkη
(0)
k

and y
(1)
mk0 =

τρp
∑K
k′=1 βmk′η

(0)
k′

∣∣ϕϕϕHk ϕϕϕk′ ∣∣2 +1. Define a tolerance θ
and the maximum number of iterations KI .

2) Iteration i: Solve problem (19) with xmk0 = x
(i)
mk0 and

ymk0 = y
(i)
mk0. Let (η

(i),∗
k , t(i),∗, x

(i),∗
mk0, y

(i),∗
mk0) be the

solution.
3) With i ≥ 2, if |t(i−1),∗ − t(i),∗ < θ| or i = KI then →

Stop. Otherwise, go to step 4.
4) Update x(i+1)

mk0 = x
(i),∗
mk0 and y(i+1)

mk0 = y
(i),∗
mk0 . Set i = i+1,

go to step 2.

Convergence Analysis: The convergence analysis follows
the general framework in [12]. An optimal solution of (19) is
also feasible to (15) as the result of convex bounds in above
successive approximation technique. Therefore, Algorithm 1
yields a non-increasing sequence of objectives. Moreover, due
to the power constraints, the objective of (19) is bounded from
below. Thus the objective of Algorithm 1 is guaranteed to
converge.
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Su,k =
1− τ/τc

2
log2

1 +
L2ρuη

u
k

(∑
m∈Ak

γmk
)2

L2ρu
∑K
k′ 6=k η

u
k′ |ϕϕϕHk ϕϕϕk′|

2

(∑
m∈Ak

γmk

√
η′
k
ηk

βmk′
βmk

)2

+ Lρu
∑K
k′=1 η

u
k′
∑
m∈Ak

γmkβmk′ + L
∑
m∈Ak

γmk

 ,

(13)

Sd,k =
1− τ/τc

2
log2

1 +
L2ρd

(∑
m∈Ak

√
ηdmkγmk

)2
L2ρd

∑K
k′ 6=k

∣∣ϕϕϕHk′ϕϕϕk∣∣2(∑m∈Ak′

√
ηdmk′γmk′

√
ηk
ηk′

βmk
βmk′

)2

+ Lρd
∑K
k′=1

∑
m∈Ak′

ηdmk′γmk′βmk + 1

 ,

(14)

IV. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we compare per-user net throughputs of our
proposed pilot power control method with the ones with full
pilot power. In all examples, max-min power control in the
data transmission phase proposed in [1] is applied. We choose
M = 100 and K = 40. For simplicity, we use the largest-
large-scale-fading-based selection scheme in [7] to choose the
set of APs Ak, and denote by N = |Ak|. Furthermore, random
pilot assignment is used, i.e., each user randomly selects a pilot
sequence from a predefined set of orthogonal pilot sequences.

A. Parameters and Setup

The paper metrics and setup resemble those of [1]. More
precisely, APs and users randomly locate on a square, and
wrapped around technique is applied to imitate a network
with an infinite area. The large-scale fading coefficient βmk
is modeled by the path loss and uncorrelated log-normal
shadowing. We use three-slope model to generate the path
loss. Then, the per-user net throughput, which is considered
as the quality metric of the system, is given by

TCh,k = BSCh,k, (20)

where Ch ∈ {u, d} corresponds to uplink or downlink, respec-
tively, and B is the spectral bandwidth. Numerical results are
obtained by 500 random realizations of AP and user locations.

B. Results and Discussions

We first examine the convergence behavior of Algorithm 1.
Figure 1 shows the normalized mean-squared error (the ob-
jective function of (15)) versus the number of iterations with
different τ and N , for an arbitrary snapshot of large-scale
fading realization. We can see that our algorithm converges
very fast, just after 5 iterations.

Next, we evaluate the effectiveness of proposed pilot power
control. Note that our proposed method is based on the suc-
cessive approximation technique in Algorithm 1, and hence,
it yields sub-optimal results. Figures 2 and 3 show the cumu-
lative distribution (CD) of the per-user uplink net throughputs
for τ = 5 and τ = 10. While Figures 4 and 5 show the
corresponding CD of the per-user downlink net throughputs.
In our pilot power control algorithm, we choose ε = 0.01,
θ = 0.005, and KI = 15. Note that the “no power control”

curves correspond to the cases where the users transmit with
full power during the training phase [1].

Numerical results show that our pilot power control al-
gorithm outperforms the previous method of [1] in both
uplink and downlink transmissions, especially for 95%-likely
throughputs. Compared to [1], our proposed method offers
more performance improvement in the cases that τ and N
are small, i.e. τ = 5 and N = 5. As shown in Figure 2 and
Figure 4, our proposed method offers over 20% improvement
in the uplink net throughput and over 25% improvement in
the downlink net throughput with N = 5 serving APs per
user and τ = 5. The reason comes from the fact that at low
τ and N , the system suffers more pilot contamination. Our
proposed scheme can reduce this pilot contamination effect.

With a fixed number of serving APs per user, if τ is small,
longer time per coherence interval is spent for the data trans-
mission, but the performance of channel estimation is poor as
it suffers more pilot contamination. By contrast, if τ is large,
the performance of channel estimation is better but smaller
time per coherence interval is spent for data transmission.
However, regardless of τ , the system performance with pilot
power control always outperforms the case without pilot power
control.

Numerical results also show that the system throughput
improves when we increase the number of serving APs per
user as well as the number of antennas per AP. However,
the system performance need to be traded off among some
parameter constraints such as the capacity of backhaul load,
energy efficiency, and throughput of the system. We leave this
problem for the future work.
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Fig. 1. User nomalized mean-squared error vs number of iterations.
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Fig. 2. CD of the per-user uplink net throughput with τ=5.

Fig. 3. CD of the per-user uplink net throughput with τ=10.

Fig. 4. CD of the per-user downlink net throughput with τ=5.
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V. CONCLUSION

Typically, in cell-free massive MIMO, the users transmit
with full power during the training phase. In this paper we

exploited how much would the performance improve if the
pilot powers is optimally chosen. We proposed to design
the pilot power control coefficients to improve the channel
estimation quality, and hence, reduce the effect of pilot
contamination. Compared to the case without pilot power
control, our proposed method offered a noticeable throughput
improvement in both uplink and downlink. We also found that
the proposed pilot power control scheme is preferable for high-
mobility environments (i.e. τc is small).

APPENDIX

A. Derivation of (13)
Following the same technique in [1], we have

DSk = L
√
ρuηuk

∑
m∈Ak

γmk, (21)

E
{
|BUk|2

}
= Lρuη

u
k

∑
m∈Ak

γmkβmk, (22)

and

E
{
|UIkk′ |2

}
= L2ρuη

u
k′

∣∣ϕϕϕHk ϕϕϕk′∣∣2
( ∑
m∈Ak

γmk

√
η′k
ηk

βmk′

βmk

)2

+ Lρuη
u
k′

∑
m∈Ak

γmkβmk′ . (23)

Finally, (13) is obtained by substitution of (21), (22) and (23)
into (9).
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