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Abstract 25 

Despite greater emphasis on holistic phosphorus (P) management, current nutrient advice 26 

delivered at farm-scale still focuses almost exclusively on agricultural production.  This 27 

limits our ability to address national and international strategies for the delivery of multiple 28 

ecosystem services (ES).  Currently there is no operational framework in place to manage P 29 

fertility for multiple ES delivery and to identify the costs of potentially sacrificing crop yield 30 

and/or quality.  As soil P fertility plays a central role in ES delivery, we argue that soil test 31 

phosphorus (STP) concentration provides a suitable common unit of measure by which 32 

delivering multiple ES can be economically valued relative to maximum potential yield, in $ 33 

ha-1 yr-1 units.  This value can then be traded, or payments made against one another, at 34 

spatio-temporal scales relevant for farmer and national policy objectives.  Implementation of 35 

this framework into current P fertility management strategies would allow for the integration 36 

and interaction of different stakeholder interests in ES delivery on-farm and in the wider 37 

landscape.  Further progress in biophysical modeling of soil P dynamics is needed to inform 38 

its adoption across diverse landscapes.  39 

 40 

Keywords: Phosphorus; Sustainable Management; Soil Fertility; Soil Test Phosphorus; 41 

Ecosystems Services. 42 

 43 

1. Introduction 44 

Agricultural production is driven by economics and the demand to deliver maximum 45 

potential yield: this is often to the detriment of the environment and impacts negatively on 46 

other ecosystem services (ES) and natural capital (Tscharntke et al. 2005).  Recent 47 

international and national strategies, such as the Millenium Ecosystem Services Assessment 48 

(Costanza et al. 2017; MEA, 2005), advocate the balanced delivery of a range of ES to 49 
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stakeholders, and with the appropriate management of trade-offs between different ES 50 

(Costanza et al. 2017; Spake et al. 2017).  However, in practice the implementation of more 51 

integrated ecologically-focused or environmentally-friendly farming strategies focused on 52 

supporting, regulating and cultural ES, at the farm scale, continues to be overlooked in favour 53 

of provisoning ES, most notably as food, fibre and biofuel production (Liebig et al. 2017).  54 

This is in part because many existing farm management practices are not currently designed 55 

to deliver multiple ES, and do not account for the large spatial and temporal heterogeneity in 56 

landscape characteristics underpining ES delivery (Bennett et al. 2009; 2015; Qui and Turner, 57 

2013).  58 

 59 

The importance of phosphorus (P) in the delivery of multiple ES has received increased 60 

attention (Doody et al. 2016; Jarvie et al. 2015; McDonald et al. 2016).  Jarvie et al. (2015) 61 

highlighted the central role that sustainable P management plays in balancing different ES 62 

across the water-energy-food continuum.  McDonald et al. (2016) proposed the P Ecosystem 63 

Services Cascade as a conceptual framework to integrate sustainable P management with key 64 

ES processes and functions from soil to large river basin scale.  Holistic approaches to farm 65 

nutrient management have recently been adopted to provide a greater focus on multiple ES.  66 

For instance, the fertilizer industry has adopted the 4R Nutrient Stewardship Strategy (Right 67 

Rate, Right Time, Right Place and Right Form) to promote more efficient use of fertilizer and 68 

reduce field-scale nutrient export to water (Bruulsema et al. 2009).  In Europe, a 5R approach 69 

to sustainable P management has also been promoted (Re-align P inputs; Reduce P loss to 70 

water; Recycle P; Recover P in wastes; and Redefine P in food systems) that embraces both 71 

field-scale and wider regional P stewardship to reduce dependency on finite reserves of P-72 

rock, and negative impacts on the environment (Withers et al. 2015).  These approaches are 73 
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moving from a paradigm of simply managing nutrient inputs for crop production to one that 74 

considers the sustainable use of resources for other ES.  75 

 76 

Despite this change in emphasis, the majority of P management decisions remain largely 77 

focused on agricultural production because this drives profitability and livelihoods.  For 78 

example, the build-up and maintenance of critical levels of soil P fertility remains the 79 

cornerstone of fertilizer recommendation systems to optimise crop yield and quality across 80 

the world (Syers et al. 2008).  In addition, a range of different and largely historic soil P 81 

testing procedures (soil test P, STP), which were developed and calibrated to crop yield 82 

response, continue to be used to characterise soil P fertility and guide on-farm P use across 83 

widely differing landscapes (Jordan-Meille et al. 2012).  However, soil P fertility also has a 84 

major impact upon ES other than food provision raising potential conflicts in ES delivery.  85 

For example, critical STP concentration thresholds in soils have been set at an elevated 86 

‘insurance’ level to overcome shortfalls in soil P supply caused by landscape heterogeneity, 87 

leading to accelerated P transport in land runoff causing eutrophication and loss of ES related 88 

to water function (e.g., Fischer et al. 2017; Withers et al. 2014).  Additional drivers for 89 

‘insurance’ levels include maintaining soil P fertility to prevent the likelihood of crop 90 

limitation and to ‘bank’ P in soil as a buffer against potential variability in global chemical P 91 

fertilizer prices.  However, environmental concerns over water quality and biodiversity are 92 

drawing attention to the need for more precise management of soil P fertility.  Managing STP 93 

for a wider range of ES will require a common metric to facilitate the prioritisation and trade-94 

offs between them (Costanza et al. 2017).  95 

 96 

Research work has already begun to attribute economic value to many ES (e.g. Dominati et 97 

al. 2014), thus allowing management objectives for single, multiple or bundled ES to be 98 
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compared and traded (Spake et al. 2017).  However, this has yet to be incorporated into 99 

current P fertility management advice delivered on-farm.  Although a wide range of farm 100 

practices and biophysical variables are involved in delivering multiple ES in agricultural 101 

systems, a focus on soil P fertility is strategically essential because this important metric of 102 

natural capital changes only slowly in response to management, and therefore has potential 103 

long-term impacts on future delivery of multiple ES and well-being.  Although previous 104 

research (e.g, Jarvie et al. 2015; McDonald et al. 2016) highlight the link between P and ES, 105 

there is currently no operational framework to consider the trade-offs between delivering ES 106 

and optimum STP levels across diverse cropping systems, including extensive farming 107 

enterprises.  In this paper we:  108 

1) Explore the relationship between STP and the delivery of four key metrics, namely 109 

crop yield as an ES, and P retention (water quality proxy), biodiversity and C-110 

sequestration as indicators of ES. 111 

2) Present a conceptual model for advancing soil P fertility management based on the 112 

delivery of the four key ES or indicators of ES by providing a method of attributing 113 

economic value to ES or indicators of ES influenced by STP concentration. 114 

3) Examine the modifications required to current P fertility strategies for the delivery of 115 

our four key ES or indicators of ES impacted by soil P fertility. 116 

For simplicity, throughout the paper we use the term ES in the context of crop yield, P retention, 117 

biodiversity and C-sequestration, but acknowledge that the last three are indicators of ES rather 118 

than being an ES in their own right (Keeler et al. 2012; MEA, 2005). 119 

  120 
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2. Site heterogeneity in the relationship between STP and the delivery of ES 121 

2.1. Crop yield 122 

The relationship between STP and crop yield is usually described by a rapid increase in yield 123 

with modest increases in STP concentration, followed by a plateau in yield as STP 124 

concentrations further increase (Fig. 1 and 2).  Typical soil P fertility advice advocates for 125 

achieving a critical STP concentration that translates to 95-98% of relative maximum yield; an 126 

agronomic optimum.  However, despite decades of research relating STP concentrations to 127 

crop yield, STP concentrations do not always accurately predict the adequacy of soil P supply 128 

for optimum yield if factors such as soil type, soil pH, soil buffering capacity, crop rooting 129 

depth and the supply of other nutrients are not accounted for.  For example, Schulte and Herlihy 130 

(2007) found that STP concentrations and fertilizer P applications explained on average 34% 131 

of the variation in yield and 73% of the variation in herbage P in 32 grassland sites representing 132 

eight different soil series.  Furthermore, Fig. 3 illustrates that more than half of UK study sites, 133 

as reported by Johnston et al. (2014) and Morris et al. (2017), actually require less than the 134 

recommended agronomic STP concentration for optimum wheat and barley yield.  Clearly, 135 

advice based on STP interpretation could vary significantly without taking site specific factors 136 

into account. 137 

 138 

2.2. P retention (water quality proxy) 139 

The potential for P loss from land to fresh water (via surface runoff or sub-surface flow) 140 

increases linearly, or exponentially, with increasing STP concentration (Fig. 4).  The 141 

relationship between soil P and P loss in runoff is a function of a soils ability to retain P, as 142 

determimed by its geochemical, biological and hydrological characteristics (Kleinman, 2017). 143 

For example, significant variation in P retention occurs due to differences in soil Al- and Fe-144 

oxide concentrations, organic matter, pH, texture and redox potential in soil (e.g., Cade-Menum 145 
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et al. 2017; Hart and Cornish, 2012), and in management systems that concentrate P at the soil 146 

surface (e.g., no-tillage, permanent grassland (Haygarth et al. 1998; Jarvie et al. 2017)).  In 147 

general, the assumption has been that the potential for enhanced P loss to water occurs only 148 

above the agronomic optimum STP concentration, whereafter  increased P saturation of binding 149 

sites in the soil (i.e. via adsorption & precipitation) results in progressively lower P retention 150 

and increased loss in runoff (Kleinman, 2017). However, increasingly it is being recognised 151 

that site specific factors, that impact on P retention, result in significant P loss to water even 152 

below the agronomic optimum STP level.  For example soils low in P-sorbing Al- and Fe-153 

oxides can desorb significant quantities of P in runoff even at low STP concentrations, whilst 154 

microbially catalysed mobilisation of P can also contribute to soil P loss (Glæsner et al. 2013).  155 

Furthermore, P loss can also occur at low soil STP due to wetting and drying cycles that 156 

mobilise Fe-bound P due to changes in redox potential (e.g., Cassidy et al. 2016; Scalenghe et 157 

al. 2002).  McDowell et al. (2003) demonstrated that Olsen P thresholds in soils, required to 158 

protect water quality, ranged from 5-51 mg kg-1 in a number of different soil types in New 159 

Zealand.  Hence, economic optimum STP concentrations to deliver ES relating to water quality, 160 

could be significantly different to agronomic optimum concentrations required for crop yield, 161 

if variation in P retention is not taken into account (e.g., Duncan et al. 2017). 162 

 163 

2.3. Biodiversity 164 

Severely impoverished ecosystems are characterised as having low biodiversity, which 165 

increases rapidly toward a plateau as soil P accumulates, beyond which biodiversity declines 166 

as more dominant species prevail (Fig. 1).  For example, higher clover content in grass swards 167 

increases biodiversity and provides a crop quality response through improved protein 168 

concentration in the forage (Fig. 2). The precise relationship between STP level and species 169 

biodiversity is likely to vary depending on the particular plant species required. Ceulemans et 170 
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al. (2014) examined the impact of soil P fertility on grassland biodiversity at 501 sites across 171 

Europe, and found that plant species richness was negatively correlated with STP (Olsen P) 172 

concentration.  They observed a similar relationship between STP concentration, measured as 173 

Olsen P, and species richness in three categories of grassland: lowland hay meadows, 174 

calcareous grasslands and Nardus grasslands.  However, the STP concentration (Olsen P) at 175 

which there was no further decline in species richness varied, with species richness stabilising 176 

at 12.5 species quatrat-1 at a STP concentration of 105 mg kg-1 in the Nardus grassland; 17.2 177 

species quatrat-1 at a STP concentration of 128 mg kg-1 in the calcareous grassland; and 9.8 178 

species quatrat-1 at a STP concentraton of 124 mg kg-1 in the lowland hay meadows (Ceulemans 179 

et al. 2014).   180 

 181 

Dorrough et al. (2006) explored the interaction between extractable soil P, tree cover and 182 

livestock grazing on native and exotic plant species richness in central Victoria, Australia.  The 183 

study highlighted that low levels of native plant species biodiversity were associated with high 184 

intensity grazing and fertilizer additions, whereas exotic species richness remained largely 185 

unchanged.  Moreover, at low levels of STP, total species richness declined with increased 186 

grazing frequency (Dorrough et al. 2006).  This highlights the importance of sustainable 187 

grazing practices, particularly at low STP levels, to deliver on native plant species biodiversity 188 

management.  Therefore for robust soil fertility advice to account for biodiversity, regional if 189 

not local scale variation in plant species response may have to be considered.   190 

 191 

Increased plant diversity, as part of intercropping in agriculture, has also been shown to 192 

increase yield productivity through organic-P mobilization.  Organic-P stores in soil represent 193 

a substantial, untapped pool of P and crop species (such as legumes) that are capable of 194 

mobilizing such stores offer benefits to both themselves and to their interplanted species not 195 
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capable of soil P-mobilization (Li et al. 2014).  This highlights the exciting potential offered 196 

by exploiting plant functional traits for the dual benefits of soil fertility, P availability and 197 

improved use efficiency, as well as for ES delivery (Darch et al. 2018; Faucon et al. 2017).  198 

Soil microbial communities are also important drivers of soil ES linked to terrestrial 199 

biodiversity and crop productivity (van der Heijden et al. 2008) and control soil P cycling.  STP 200 

concentrations can influence microbial biodiversity by altering the ratio of fungal to bacterial 201 

organisms in soils, and consequently mechanisms of nutrient capture and resilience to 202 

environmental stress (Cruz et al. 2009; de Fries and Shade, 2013).  However, the heterogeneity 203 

in the relationships between STP and soil microbial diversity are poorly defined. 204 

 205 

2.4. Soil C-sequestration  206 

The P retention capacity of the soil, as discussed in section 2.2, can be considered a limiting 207 

factor for C-sequestration, where continued application of C-rich biosolids or manures is 208 

prohibited because of the increase in STP and greater risk of P loss to water.    However, the 209 

relationship between STP and C-sequestration is more complex that just an environmental STP 210 

threshold limiting the application of C-sources. In general, the addition of P and nitrogen 211 

fertilizer to low P soils increases C-sequestration through enhanced crop production and return 212 

of P-rich biomass to the soil (Jones and Donnelly, 2004).  The increase in C-sequestration is 213 

accelerated when transitioning from a cropping system that removes most plant biomass to one 214 

that removes a smaller portion and/or boosts yield.  For example, declines in C-stocks as a 215 

result of the use of a continuous arable rotation (10% per 10 years) are ameliorated by the use 216 

of a regularly fertilized grassland ley (Bowman et al. 1990) or permanent pasture.   However, 217 

increases in C-sequestration under any constantly-managed system (e.g. permanent pasture) 218 

plateaus as new limiting factors arise.  Some authors even argue that in the long-term, subtly 219 

changing a constant system that does not focus on the limiting factor (or further limits it) can 220 
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deplete C-stocks, particularly if P or nitrogen levels are limiting (Schipper et al. 2007).  In a 221 

long-term study of manure addition to grassland, Fornara et al. (2016) demonstrated that the 222 

type and rate of organic fertilizer applied to grassland soil impacted upon C-sequestration, with 223 

cattle slurry containing higher concentrations of organic matter such as lignocelluloses, 224 

resulting in greater C-sequestration compared to other forms of livestock manure.  Therefore, 225 

in contrast to the other ES discussed, STP concentrations may play a less significant role in C-226 

sequestration compared to other limiting factors in productive agricultural systems.  227 

Nevertheless, Peñuelas et al. (2013) highlights that if projected future shortages of phosphate 228 

rock eventuates, crop growth and C-sequestration will be impaired, and in-turn atmospheric 229 

CO2 concentrations and climate change.  230 

 231 

3. Attributing economic value to ES influenced by STP concentration 232 

Estimating the total economic value (TEV) of ES at farm-scale requires an assessment of the 233 

direct costs of their delivery, as well as to any value attributed to their environmental or cultural 234 

benefits (i.e sum of the direct, indirect and non-use values) (de Groot et al. 2010).  However, 235 

obtaining this information on a farm-by-farm basis is not realistic, and a more pragmatic metric 236 

to assess the economic trade-off of ES related to soil fertility management is required.  One 237 

such metric is the opportunity cost ( i.e the benefits a farmer misses out on when choosing one 238 

option over another) of delivering a specific ES when compared to the potential profit ( $ ha-1) 239 

for food production from the same area of land.  In relation to nutrient management, a key and 240 

well established concept and tool for guiding fertilizer input costs for maximum crop yield is 241 

the economic optimum ( i.e the yield at which further inputs to the system does not increase the 242 

$ ha-1 profit a farmer will achieve)  (e.g., Sylvester-Bradley and Kindred, 2009; Williams et al. 243 

2007).  In principle, this approach can also be applied to the impact of soil P fertility on a wide 244 

range of ES provided there is an ES response relative to changes in STP concentration.   245 
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 246 

The application of an economic optimum approach to the management of multiple ES is 247 

illustrated conceptually in Fig. 1: a hypothetic yield response curve, with profit ($ ha-1) as a 248 

function of STP (mg kg-1): applicable to all STP tests.  Braat & ten Brink (2008) presented the 249 

relationship between land-use intensity and multiple ES delivered by biodiversity, and 250 

similarly Fig. 1 illustrates the theoretical relationship between STP and agronomic yield, P 251 

retention (water quality proxy), biodiversity and C-sequestration, with each ES functionality 252 

peaking at a hypothetical optimum or threshold STP concentration.  In addition, Fig. 1 presents 253 

a theoretical profit curve i.e $ ha-1 profit per unit increase in STP that a farmer can achieve.  254 

This is calculated based on the additional profit a farmer can achieve when taking into account 255 

the cost of inputs (e.g fertilizer, lime, transport etc) and resulting commodity prices a farmer 256 

will receive post-harvest (note: while the curve types presented in Fig. 1 are based on current 257 

understanding of the relationship between STP and each ES, the characteristics of these curves 258 

i.e. slope, magnitude, maximum etc, and position relative to the profit curve is hypothetical and 259 

will vary based on the factors outlined in section 2). For example in a livestock grazing system, 260 

restriction on manure application above a certain STP threshold, will result in a reduction in 261 

profits due to the requirement to transport manure off-farm to another location.  This profit 262 

curve will be farm specific and vary depending on inter alia crop, soil, farm type and intensity.  263 

By locating the optimum STP, for the delivery of a specific ES, on the profit curve, the 264 

opportunity cost to the farmer can be estimated.  While this does not provide the TEV of 265 

delivering a specific ES, it does provide a suitable common unit of measure to faciliate 266 

comparison and trade-offs between ES delivery across spatial ($ ha-1) and temporal ($ ha-1 yr-267 

1) scales in the context of P fertility advice being provided to farmers, and the wider industry 268 

goals of sustainable P use.  The hypothetical curves for all four ES metrics, depicted in Fig. 1, 269 

will vary spatially and temporally depending on inter alia soil type, soil health, farming 270 
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intensity, farm inputs, landscape characteristics, legacy soil P and seasonal influences on the 271 

interactions between soil, crop and environment; there is a research need to model such 272 

interactions across spatio-temporal scales.   273 

 274 

An example, depicted in Fig. 2 shows long-term fertilizer field trial data under irrigation for 275 

pasture production at Winchmore, mid-Canterbury, New Zealand.  A grassland case-study was 276 

selected as it incorporates data for the delivery of our four key ES impacted by soil P fertility.  277 

The trial was located on a Lismore stony silt loam soil; mean annual rainfall of 745 mm (Smith 278 

et al. 2012).  After normalising the indicators a farmer may set an objective in STP 279 

concentration to achieve 98% of relative yield (often seen as an agronomic optimum), which 280 

equates to an STP concentration of 20 mg kg-1 or greater (Fig. 2).  Whereas a STP concentration 281 

of approximately 15 mg kg-1 or less may be considered the STP target for meeting water quality 282 

objectives.  No profit curve is available for the study in Fig. 2, so instead, by away of example, 283 

if the values of 20 mg kg-1 and 15 mg kg-1 are extrapolated from the x-axis to hypothetical 284 

profit curve in Fig. 1, the 5 mg kg-1 reduction in STP would result in an approximately a 28% 285 

reduction in $ ha-1 the farmer can achieve.  In this example, similar trade-offs can be made for 286 

% carbon and % clover (as proxy for biodiversity in this particular pasture based system) and 287 

the resulting opportunity costs traded between stakeholders or payments made to farmers to 288 

incentivise or compensate for reductions in profit margins.  Note that, in this example, clover 289 

(comprising white, Montgomery red and subterranean species - Mt. Barker and Tallarook) was 290 

selected as a surrogate for desired species, which supports nitrogen-fixation, and increased 291 

ryegrass production.    The conceptural model proposed in this paper is applicable to all 292 

cropping systems and is also inclusive of extensive enterprises.  Of note is that differing crop 293 

species will have different STP requirements, and the STP concentration appropriate for 294 
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multiple ES delivery will be depend on the species being cultivated or the management regime 295 

being implemented. 296 

 297 

4. Barriers and actions for change 298 

Implementing an economic optimum approach to STP mamagement, that optimises the 299 

delivery of multiple ES, will require significant changes to current soil sampling and testing 300 

procedures, interpretation guidance, and management of inorganic and organic P inputs.  301 

Many of the barriers and actions required to meet a desired outcome are listed in Table 1.  A 302 

central tenet to change is the calibration and integration of existing soil test procedures for 303 

multiple ES delivery, thus moving current P fertility advice beyond maximum yield and/or 304 

quality, and ‘insurance’ level applications.  Adaptations to deliver increased soil data 305 

resolution, by incorporating subsoil sampling at depth in the soil profile, coupled with 306 

expanded sampling efforts in critical source areas and improved temporal resolution, would 307 

help to reduce uncertaincy and improve predictions in actual and modeled systems.  Sampling 308 

the subsoil at depth will enhance understanding of soil P cycling, storage and loss potential 309 

beyond the rooting zone.  Incorporation of soil P buffering capacity metrics to better define 310 

soil P release offers dual benefits in terms of improved precision on fertilizer inputs for crop 311 

uptake and yield (for example,  Fischer et al. 2017; van Rotterdam et al. 2013).  A study by 312 

Burkitt et al. (2002), emphasises the value of adopting a simple soil buffering capacity index 313 

as a standard soil test parameter to determine plant P bioavailability in Australian soils; 314 

benefits included increased accuracy in P fertilizer recommendations and use efficiency, thus 315 

maintaining yield and mitigating against P losses.   316 

 317 

Enhanced understanding regarding the impacts of STP on all ES in terms of spatio-temporal 318 

scales (Bennett et al. 2005; Qui and Turner, 2013), and knowledge exchange between key 319 
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agri-food stakeholders to this effect, are imperative to improving soil test interpretation for 320 

the delivery of precision P fertility advice.  The management and governance of ES tends to 321 

occur at multiple scales ranging from the field and farm scale, to sub-watershed and 322 

watershed based initiatives, to regional and global strategies such as the United Nations 323 

Sustainable Development Goals (Qiu et al. 2018; U.N. 2015).  The conceptual model 324 

proposed in Fig. 1 is predominantly a farm-scale tool designed to inform field scale 325 

management decisions, but is also applicable at the regional scale in relation to informing 326 

trade-offs between food production and environmental objectives.  It could be used to guide 327 

where sustainable intensification should occur, or to identify farming enterprises that ought to 328 

be economically supported to deliver on supporting, regulating and cultural ES, as dictated by 329 

landscape characteristics (Qiu et al. 2018).  However, as noted by Melland et al. (2018), 330 

policy makers must recognise that long-term investment is required in strategies, such as soil 331 

P fertility management for ES delivery, were it can take up to 20 years or more to detect 332 

improvement in water quality due to lag and legacy effects.  The robustness of hypothetical 333 

curves presented in Fig. 1 should also be modelled to account for additional factors such as 334 

climatic extremes.  335 

 336 

Inorganic fertilizers are currently used for yield response and most are highly water soluble, 337 

and vulnerable to loss (Hart et al. 2004).  Exploring the bioavailability and nutrient retention 338 

capacities of alternative inorganic and organic fertilizer sources remains a priority area in 339 

relation to ES delivery.  Furthermore, precision farming techniques, such as variable rate 340 

application technologies, novel fertilizers, P placement and foliar P applications offer 341 

targeted P applications that link more precisely to variation in soil P supply and crop 342 

requirement, therefore also reducing the risk of P loss to water (McLaughlin et al. 2012; 343 

Withers et al. 2014 ).  Crop type, rotations and intercropping also offer scope for ES delivery 344 
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through the identification of varieties or cultivars that are P efficient or capable of mobilizing 345 

organic-P legacy stores (Li et al. 2014; Rowe et al. 2015; Simpson et al. 2014; Vance et al. 346 

2003).  Adaptations to current soil P fertility management protocols to account for all ES 347 

requirements can be simple, such as modifying sampling depths to better estimate P loss or 348 

C-sequestration, or complex such as refining fertilizer advice based on profit and linking to 349 

other ES functions.  Existing soil P tests require reform to take account of biological 350 

functioning for biodiversity, or to simultaneously predict crop yield and the risk of P loss in 351 

runoff (Fischer et al. 2017; Rubæk, 2015).  Furthermore, new innovative technologies such as 352 

diffusive gradients in thin films (DGT) may offer improved data resolution and 353 

bioavailability assessment of soil chemical fluxes in some circumstances (Blackburn et al. 354 

2016; Zhang and Davison. 2015). 355 

 356 

Measurements of both ES and STP vary spatio-temporally (Bennett et al. 2005).  Such 357 

variation will always challenge the interpretation of ES indicators and STP concentrations.  358 

For example, Jordan-Meille et al. (2012) noted that current European fertilizer 359 

recommendation systems do not generally take account of soil type differences in P supply, 360 

nor localised environmental pressures that might constrain P use.  Through the concept of 361 

Functional Land Management, Schulte et al. (2014) highlighted the importance of 362 

understanding and managing for specific soil function, if society is to achieve the objective of 363 

deliverying multiple ES from agricultural landscapes.  Soil fertility and function are 364 

intricately linked and consequently many on-farm practices need to be modified to take 365 

account of the spatial and temporal variability in soil and landscape characteristics that define 366 

which suite of ES are best delivered in different land parcels. 367 

 368 



17 
 

More research on the measurement of ES indicators and soil testing protocols for STP 369 

measurement will improve their accuracy and precision.  However, due to spatial and 370 

temporal variation, advice on current tests and indicators needs to be calibrated at a local (e.g. 371 

on a field-by-field basis) or regional scale (e.g. on a watershed level) and over a long-enough 372 

time period so that relationships between ES and STP measurements become statistically 373 

robust (Costanza et al. 1997; de Groot et al. 2012).  Not only will accounting for spatio-374 

temporal variation ensure that robust soil P fertility advice is given to inform stakeholder 375 

decisions, estimates of P application rates could be tallied against national strategies for ES 376 

delivery.  Nevertheless, the costs associated with such advances to increase data resolution 377 

and precision, reduce uncertainty, and account for landscape heterogeneity in terms of ES 378 

delivery (Mitchell et al. 2015; Spake et al. 2017), will be challenging in practical terms and 379 

the potential for modelled systems must be assessed to deliver on cost-effectiveness 380 

(Costanza et al. 2017). 381 

 382 

A large number of agronomic trials have been carried out across a range of soil type and 383 

geoclimatic zones, and form the basis of current P fertility advice in many countries (Bai et al. 384 

2013; Syers et al. 2008; Valkama et al. 2011).  Some studies have also examined the 385 

relationship between STP and water quality (McDowell et al. 2003; Vadas et al. 2005; Withers 386 

et al. 2017), and to a lesser extent C-sequestration and biodiversity (Ceulemans et al. 2014).  387 

Individual studies with good data resolution enable the determination of the economic optimum 388 

STP for the delivery of each ES, but only over a limited range of conditions.  In order to 389 

implement this approach to P fertility management, the relationships between ES, STP and $ 390 

ha-1, need to be transferred over a wide geographical area, and on to farms where data 391 

availability, resources and logistics constrain the direct valuation of ES on a site-specific basis.  392 

However, biophysical models describing the physical, chemical and biological P dynamics and 393 
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interactions in soils, the numerous factors affecting these dynamics, and their relationship to 394 

ES delivery are generally poorly developed and disjointed (Vereecken et al. 2016).  Detailed 395 

mechanistic mathematical models are being developed to help refine fertilizer P inputs (e.g., 396 

Heppell et al. 2016), and more simplified one/two soil P compartment models have been used 397 

to predict residual soil P supply (e.g., Sattari et al. 2012), but these models currently lack the 398 

capability to include synergistic P capture afforded by innate plant P mechanisms for 399 

mobilising soil P or sequestering C (Mollier et al. 2008).  If an STP economic optimum 400 

approach to the management of ES is to be implemented, further progress in biophysical 401 

modelling of soil P dynamics is urgently needed to inform this implementation across diverse 402 

landscapes.  403 

 404 

5. Conclusions 405 

National and international strategies have established ambitious objectives for the delivery of 406 

multiple ES within the context of agriculture against a backdrop of sustainable 407 

intensification.  However, the practicality of balancing the trade-offs between these ES at the 408 

farm-scale has not yet been adequately addressed.  While this paper has focused on P fertility 409 

management, we acknowledge that a wide range of farm practices and biophysical variables 410 

are involved in the delivery of multiple ES in agricultural systems.  Changes to many other 411 

farm practices, that influence the delivery of ES, also warrant attention.  Although soil P 412 

fertility is only one contributing factor in ES delivery, effective nutrient management is 413 

integral to the success of such strategies and sustainable farming.  However, there is currently 414 

no operational framework in place to manage P fertility for multiple ES and to identify the 415 

costs of potentially sacrificing crop yield and/or quality.  We propose the use of an economic 416 

optimum approach to P fertility management by which different ES can be assessed and 417 

traded against one another.  This approach facilitates the monetisation of ES strategy at the 418 
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farm-scale through evaluation of their impact on farm profits.  The approach accounts for 419 

both local level variation in biophysical varaibles, and farm performance, to ensure temporal 420 

robustness.  This can then be benchmarked against regional or national strategy to facilitate 421 

stakeholder engagement and negotiations.  A key step in the adoption of our conceptual 422 

framework into policy is to produce and collate datasets, and case-study examples that 423 

demonstrate the curves depicted in Fig. 1 over a wide range of conditions and farming 424 

enterprises.  How such an approach can be incorporated into existing frameworks of Payment 425 

for ES is an area warranting further consideration.  426 
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751 

Fig. 1.  Hypothetical relationship between different ES (yield [orange line], species diversity 752 

[grey line], C-sequestration [blue line] and P retention (a proxy for water quality) [red line]), 753 

and profit ha-1 [green dashed line], presented as a relative impact on potential profit and STP 754 

concentration.  755 
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 756 

Fig. 2.  Long-term fertilizer field trial data under irrigation at Winchmore, mid-Canterbury, 757 

New Zealand (from Condron et al. 2012; McDowell and Condron, 2012; Rickard and 758 

McBride, 1986) shows pasture yield production, the potential for P loss in subsurface 759 

drainage (as estimated by 0.01M CaCl2-P), plant species richness (as % clover comprising 760 

white, Montgomery red and subterranean species (Mt. Barker and Tallarook)), C-761 

sequestration rates (as % org C) and STP measured as Olsen P concentration.  762 
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 763 

Fig. 3.  Critical STP (Olsen P) concentrations for 98% of maximum yield vary widely across 764 

different sites, different seasons and when insufficient nitrogen is applied.  Data are from UK 765 

sites reported by Johnston et al. 2014 and Morris et al. 2017.  (Closed symbols represent wheat 766 

and open symbols barley).  Over 50% of sites require less than the recommended STP for 767 

optimum yield, reflecting the current insurance-based approach to soil P fertility management.  768 

(Index 0 to 3 represents soil classification indices based on Olsen P as follows: Index 0: 0-9 769 

mg l-1; Index 1: 10-15 mg l-1; Index 2 (2- and 2+): 16-25 mg l-1; Index 3: 26-45 mg l-1).  The 770 

currently recommended range in the UK is Index 2.  771 
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 772 

Fig. 4.  Variation in the concentrations of dissolved reactive P (DRP) with increasing STP 773 

(Olsen P) across six sites, in New Zealand, of varying soil P soprtion capacity from very low 774 

(Rosemaund) to high (Waikiwi).  Data are from McDowell et al. 2003.  775 
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Table 1.  Barriers and actions required to achieve outcomes for P fertility management for multiple ES delivery. 
 

Factor Barriers Action Outcome 
Soil Test  Current soil tests only calibrated for crop yield response 

 Large number of different soil tests used in different 
regions 

 Lack of precision leads to large variability in results and 
uncertainty 

 Improve exisiting soil tests or develop new tests that 
are calibrated for other ES (e.g. include P buffering 
capacity, capacity for biological turnover)  

 

Specific soil tests identified for 
different ES delivery calibrated 
back to STP for yield for trade-off 
analysis 

Soil Sampling  Only partially linked to system management (e.g. single 
sampling depth) 

 No separate sampling of field runoff zones (e.g. for 
assessing critical source areas for eutrophication control 
management) 

 Timing linked to crop cycles only (e.g. infrequent 
rotational sampling) 

 Upgrade sampling precision to fit system 
management (e.g. stratified or gridded sampling) 

 Adjust sampling regime according to site conditions 
and ES delivery (e.g. timing of sampling may differ 
for different ES) 

 

Specific guidelines on sampling 
resolution, timing and depth to 
match different management 
systems and ES delivery  

Interpretation of 
Soil Test Results 

 Interpretation varies across regions and confounded by 
lack of site specific information  

 Lack of understanding about the impacts of STP on other 
ES (e.g. for soil biodiversity or C-sequestration) 

 Change from agronomic optimum to economic 
optimum approach (e.g lower critical STP levels) 

 Generate data to support nutrient decisions for 
delivery of ES other than crop productivity 

 Precision based fertilizer recommendations moving 
beyond current ‘insurance-based’ approaches 

On-farm decision support tools 
deliver improved precision in 
optimizing nutrient inputs for ES 
delivery 

Fertilizer Source  Historic preference for using inorganic fertilisers for 
yield response 

 Lack of confidence in nutrient value of different 
bioresources 

 Lack of data on effect of fertilizer source on ES delivery 

 Identify appropriate fertilizer sources to match ES 
delivery (e.g. bioresources for C-sequestration) 

 Develop improved database on bioresource 
bioavailability (e.g. struvite) 

 Develop tools to assess temporal variability in 
bioresource nutrient bioavailability 

 Optimize fertilizer advice based on profit ha-1 

Use of recycled and recovered P 
optimized and improved 
prediction of source 
bioavailability for different ES 
functions 

Fertilizer 
Placement/Timing 

 Timing of P inputs not geared to critical source areas 
(e.g. single application timing) 

 Lack of data on effect of source timing on other ES 
 Farming infrastructure not geared to precision targeting 

of P (e.g. placement) 

 Advance precision farming technologies (e.g. to 
support variable rate application as routine) 

 Develop decision support technologies to provide 
farmers with real time information on soil and crop 
nutrient supply  

 Improve nutrient use efficiencies and profit ha-1 

Targeted P application to 
optimize P use efficiency to 
improve yield and reduce risk of 
P loss to water 
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Crop type  Crop type used only for P inputs to match crop P offtake 
 Varietal variation in soil P acquisition and utilization 

efficiency largely unexplored 
 Lack of data on crop rotation sequences to optimize ES 

delivery 

 Explore impact of soil-crop-fertilizer interactions on 
ES delivery (e.g. optimizing rhizosphere processes) 

 Identify P efficient varieties as part of agro-
engineering  

Guidelines on crop type and crop 
rotation design for optimizing 
delivery of different ES 

 


