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Highlights 

• Neuron-specific knockin of human BACE1 age-dependently affects the brain metabolome 

• More brain metabolites were significantly altered in ‘old’ PLB4 mice than ‘young’ 

• Leucine, creatinine, putrescine, various acylcarnitines and phospholipids were affected  

• Compared with other AD models (e.g. APP/PS1) fewer metabolites were affected  

• Oligomer versus plaque Aβ pathology may have divergent effects on some metabolites   
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Abstract 

Beta secretase 1 (BACE1) is an enzyme involved in the pathogenesis of Alzheimer’s disease (AD). PLB4 

mice is a neuron-specific human BACE1 knockin mouse model characterised by the accumulation of 

extracellular Aβ and an AD-like phenotype. In this investigation brain hemispheres from ‘young’ (4-6 

months) and ‘old’ (8 months) female PLB4 mice and age-matched wild-type littermates underwent 

targeted LC-MS/MS metabolomic profiling. Powdered lyophilized brain tissue was extracted in 

ethanol:PBS 85%:15% (v/v)) and a total of 187 metabolites were quantified using a targeted 

metabolomics methodology. Multivariate statistical analysis produced models that distinguished PLB4 

from wild type (WT) mice regardless of their age group. Univariate analysis (t-test) found that more 

brain metabolites were perturbed in ‘old’ PLB4 mice than ‘young’. Carnosine and 8 

phosphatidylcholine species were significantly decreased (p<0.05) in ‘young’ PLB4 mouse brain. In ‘old’ 

PLB4 mice a total of 21 metabolites were perturbed including: leucine, creatinine, putrescine and 

species of acylcarnitines, lysophosphatidylcholines, phosphatidylcholines and sphingomyelin. Within 

the PLB4 genotype there were a range of age-dependent increases in metabolites.  This study indicates 

that gender-specific responses occur in models of AD-like pathology, but importantly, when changes 

in PLB4 mice (where Aβ oligomers predominate) are compared with APP/PS1 mice (where Aβ plaques 

predominate) there are consistent and also divergent effects on the brain metabolome.  
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FIA, flow injection analysis; LysoPCs, lysophosphatidylcholines; MRM, multiple reaction monitoring; 

NFTs, neurofibrillary tangles; OPLS-DA, orthogonal projection to latent structures-discriminant 

analysis; PCA, principal component analysis; PCs, phosphatidylcholines; PITC,  phenylisothiocyanate; 

PLA2, Phospholipases A2; PS1, presenilin 1; ROC, receiver operating characteristic; SPHs, 

sphingomyelins; VIP, Variable importance in projection; WT, wild type.  

 

Introduction 

Alzheimer’s disease (AD) remains the most common form of dementia suspected to cause 60-80% 

of all dementia cases (Prince et al., 2014). AD is a progressive and fatal neurodegenerative disorder 

clinically characterised by progressive memory loss, mood changes and cognitive problems. The 

condition is typified by the pathological accumulation of extracellular amyloid-beta (Aβ) which leads 

to the formation of amyloid plaques in the brain. It is also known that abnormally phosphorylated tau 

protein filaments occur in neurons which leads to the formation of neurofibrillary tangles (NFTs) 

(Blennow et al., 2006; Selkoe, 2004; Skovronsky et al., 2006).  

Given the high prevalence and poor prognosis of the disease the development of animal models 

has become a high research priority. Many of the transgenic models developed are based on the 

amyloid cascade hypothesis (Elder et al., 2010). They chiefly have involved the insertion or 

manipulation of mutations in the amyloid precursor protein (APP) and/or the presenilins, both of 

which are genes causal for familial AD (Elder et al., 2010). Although, transgenic models cannot fully 

replicate the human disease they have improved our understanding of the pathophysiology of Aβ 

toxicity, particularly with respect to the effects of different Aβ species and the possible pathogenic 

role of Aβ oligomers. The APP/PS1 models are important and well established (e.g. 

APPswe/PS1deltaE9) containing mutations in the gene for APP and presenilin 1 (PS1). Our group have 

recently performed longitudinal metabolomic profiling of APP/PS1 which revealed that AD-like 

pathology affects greatly on both the brain and blood metabolomes (Pan et al., 2016).  
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A recent study described mouse models (PLB4) of AD-like pathology involving the overexpression 

of BACE1 in the absence of mutant APP expression. The PLB4 mice examined in this study were 

developed using a targeted knock-in strategy that directed the insertion of the human BACE1 (hBACE1) 

transgene to the HPRT locus, a permissive site on the X chromosome (Plucinska et al., 2014). BACE1 

enzymatically cleaves APP at the N-terminus, generating C-terminal fragments (CTF) which are later 

cleaved by γ-secretase generating the Aβ peptides (Selkoe, 2001). In PLB4 mice BACE1 activity is only 

subtly higher (approximately 2-fold higher than endogenous), however, APP processing is clearly 

shifted toward the amyloidogenic pathway, which results in Aβ accumulation and age-associated 

behavioural changes consistent with cognitive impairment (Plucinska et al., 2014). Behaviourally, the 

motor activity of PLB4 transgenic animals is largely intact at 3 months of age but by 6 months it is 

significantly altered. PLB4 mice displayed deficits in habituation to a novel environment and semantic-

like memory (social transmission of food preference) at 3-4 months of age. The cognitive and spatial 

deficits, such as spatial learning and reference memory (water maze), and spatial working memory (Y-

maze), manifested at around 6 months, and were independent from reductions in locomotor activity 

and anxiety (Plucinska et al., 2014). Complete deletion of BACE1 in APP mutant mice prevents Aβ 

production, neuron loss and amyloid pathology related cognitive deficits (Laird et al., 2005; Ohno et 

al., 2007). 

Additionally, BACE1 has also been demonstrated to play an important role in glucose metabolism. 

The BACE1 knock out mouse showed improvement in glucose metabolism, insulin sensitivity and 

protection from diet-induced obesity (Meakin et al., 2012). The metabolic disturbance was observed 

in PLB4 mice with increased BACE1 level in the central neuronal system which induced hypothalamic 

dysregulation, endoplasmic reticulum stress, and Aβ and lipid accumulation (Plucinska et al., 2016). 

The aim of this study was to employ a targeted quantitative metabolomic methodology to 

measure brain metabolite changes occurring in the PLB4 transgenic model.  The intention was to 
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monitor the biochemical responses of the brain to the initial amyloidogenic insult caused by elevated 

BACE1 activity and understand how this progresses with the neuropathology. 

Material and methods  

Brain tissue from PLB4 mice  

PLB4 mice expressing hBACE1 have recently been described and characterised in detail (Plucińska 

et al. 2014). Homozygous female mice (4-6 months (herein referred to as ‘young’): WT: n=8, PLB4: n=7; 

8 months (herein referred to as ‘old’): WT: n=7, PLB4: n=7) from the University of Aberdeen colony 

were fasted overnight. Animals were culled and whole brains were rapidly removed and snap frozen 

in liquid nitrogen, and stored at minus 80C. Brain hemispheres were transported to Queen’s 

University Belfast on dry ice and stored at minus 80C prior to processing. 

Brain tissue extraction 

Mouse brain samples were collected into individual tubes to avoid cross-contamination, then 

lyophilized and cryogenically milled to a fine dry powder.  Powdered post-mortem brain tissue (25 mg 

± 0.5 mg) was extracted in 300 µL in a solvent (85% ethanol and 15% PBS buffer) as previously 

described (Pan et al. 2016) using an optimised methodology for brain metabolite profiling (Urban et 

al. 2010). The samples were sonicated (5 min), vortexed (30 sec), centrifuged at (10,000 g; 4°C; 5 min) 

and the supernatant retained for analysis.  

Targeted metabolomics 

Metabolites in both control and PLB4 mouse brain samples were profiled using the Biocrates 

AbsoluteIDQ p180 (BIOCRATES, Life Science AG, Innsbruck, Austria), as previously described (Nkuipou-

Kenfack et al., 2014; Roemisch-Margl et al., 2012). The samples were analysed on a triple-quadrupole 

mass spectrometer (Xevo TQ-MS, Waters Corporation, Milford, USA) operating in the multiple 

reaction monitoring (MRM) mode according to the manufacturer’s instructions. The data were 

recorded in a 96-well format with 7 calibration standards and 3 human EDTA plasma quality control 
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samples were integrated in the kit. Briefly, 10 µL of brain extract (prepared as described above) was 

used for targeted metabolomics analysis. Metabolites (amino acids and biogenic amines) were 

derivatised using phenylisothiocyanate (PITC), followed by separation using a UPLC (I-Class, Waters 

Corporation, Milford, USA) and quantified using a triple-quadrupole mass spectrometer (Xevo TQ-MS, 

Waters Corporation, Milford USA) by MRM. The flow injection analysis tandem mass spectrometry 

(MS/MS) method was used to quantify all the remaining metabolites. Metabolite concentrations were 

calculated and expressed as µmol/mg tissue.  

Statistical analysis 

Concentration data for 187 metabolites were appropriately reformatted and exported to Simca 

15 (Umetrics, Umea, Sweden) for multivariate analysis. Data were log transformed, pareto-scaled and 

grouped into PLB4 and WT prior to analysis by principal component analysis (PCA), to identify any 

potential outliers, and then orthogonal projection to latent structures-discriminant analysis (OPLS-DA). 

The validity of the model was evaluated based on the residuals (R2X, R2Y) and the model predictive 

ability parameter (Q2) determined through the default leave-1/7th-out cross validation. The number 

of components for the OPLS-DA model was optimized using y-table permutation testing (n = 200) and 

an ANOVA based on the cross-validated predictive residuals (CV-ANOVA) (Eriksson et al., 2008). For 

CV-ANOVA assessment of significance, a p-value less than 0.05 was considered as significant. Data 

were then grouped by age and reanalysed by OPLS-DA to highlight significant metabolites explaining 

the maximum amount of variation between the groups. Univariate analyses consisted of a Student’s 

t-test for metabolites exhibiting a normal distribution or the Wilcoxon Mann-Whitney test for 

metabolites exhibiting non-normal distributions (Metaboanalyst Version 3.5; (Xia et al., 2015). False 

discovery rates (FDR, referred to as a q-value) were also calculated using the in-built function in 

Metaboanalyst in order to account for multiple comparisons.  A p-value<0.05 and q<0.8 was 

considered significant. Receiver operating characteristic (ROC) curves and heat map visualisations 

were developed for the metabolites short-listed based from the univariate analysis.    
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Results  

Multivariate analysis of metabolomic data 

Multivariate analysis was used to build models differentiating all four groups. Figure 1A shows an 

unsupervised PCA scores plot (R2≤0.537; Q2≤0.311) which moderately separated the groups but with 

age being a greater discriminating factor than genotype. OPLS-DA model (Figure 1B) made it possible 

to visibly discern brain samples from young WT, young PLB4, old WT and old PLB4 mice. Using 2 latent 

and 5 orthogonal components the data produced a discriminant model with a 69 % fit and predictive 

power of 51 %. To assess the reliability of the OPLS-DA model, we applied CV-ANOVA which gave a p 

value of 0.047. The model was also validated using a permutation analysis in Simca P v.15 as 

demonstrated Figure 1C. The principle of this validation is to assess the correlation coefficient of the 

goodness of fit (R2 and Q2) between the original y-variable and the permuted y-variable while the X-

matrix has been kept intact (Eriksson et al., 2006). The results were fitted using a regression line and 

the Y-axis intercepts of R2 and Q2 were at 0.63 and − 0.42, respectively, which suggest that the OPLS 

model is valid and does not show over-fit since the regression line of the Q2-points intersect below 

zero (Eriksson et al., 2006).  OPLS-DA was then applied to each age group to assess how accurately 

models predicted class membership (Q2 cumulative). Models constructed from data from ‘young’ 

mice had weak predictive ability of 58%. Models based on data from ‘old’ mice were only moderately 

better with the predictive ability of 66%. Variable importance in projection (VIP) plots were created to 

identify the top 15 metabolites responsible for the observed separation between groups (Table 3).   

Metabolites significantly altered by the PLB4 genotype 

A total of 9 metabolites (carnosine and 8 PCs) were affected in ‘young’ mice, and all in all cases 

these were lower in PLB4 mice (Table 1 and Figure 2). A total of 21 metabolites were affected in ‘old’ 

mice (Table 2 and Figure 2). There were 5 metabolites that were lower in PLB4 mice (putrescine, 

dodecanedioylcarnitine and 3 PCs); and 16 metabolites that were higher in PLB4 mice (leucine, 

creatinine, 4 acylcarnitines, 5 lysophosphatidylcholines (LysoPCs), 4 PCs and 1 SPH). Only 3 
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metabolites were commonly affected in both age groups. PC aa C40:1 was reduced 1.46-fold 

(p<0.00006; q<0.06) in young PLB4 mice and 1.19-fold (p<0.03; q<0.35) in old PLB4 mice.  PC aa C42:1 

was reduced 1.86-fold (p<0.00009; q<0.02) in young PLB4 mice and 1.57-fold (p<0.0001; q<0.009) in 

old PLB4 mice.  PC aa C42:2 was reduced 1.53-fold (p<0.001; q<0.08) in young PLB4 mice and 1.19-

fold (p<0.03; q<0.3) in old PLB4 mice. Overall PC aa C42:1 was the most profoundly affected metabolite 

(Figure 3), but all 3 showed considerable potential as biomarkers with ROC AUC values ranging from 

0.80 to 0.98.  

Metabolites significantly altered by age in the PLB4 genotype 

A total of 14 metabolites (4 acylcarnitines, 9 PCs and 1 sphingomyelin (SM)) differed between 

young and old PLB4 mice which were did not differ between young and old WT (Table 4).  These 

shortlisted metabolites showed considerable potential as biomarkers with ROC AUC values ranging 

from 0.84 to 1.0. Furthermore, all these metabolites increased with advancing age which the 

exception of PC aa C36:0 which decreased 2.31-fold (p=0.009; q<0.07). Two of the metabolites that 

increased (PC ae C36:3 and PC ae C42:2; 1.35-1.40-fold; p<0.0001; q<0.02)) also increased in old PLB4 

compared with WT mice. 

Discussion 

BACE1 has been demonstrated to be the key enzyme in amyloidosis and its subsequent 

pathologies, and the inhibition of this enzyme is a promising therapeutic strategy through lowering 

cerebral Aβ concentrations in Alzheimer’s disease (Yan and Vassar, 2014). The aim of this investigation 

was to identify the specific brain metabolite changes resulting from neural specific overexpression of 

BACE1. BACE1 overexpression (achieved by knock-in of hBACE1 in the PLB4 model) leads to the 

development of an AD-like pathology (including elevations of oligomeric Aβ assemblies, including 

Aβ*56 and hexameric Aβ) and it also causes an age-dependent decline in cognitive performance 

(Plucinska et al., 2014). We selected mice of two different age groups. Firstly, ‘young’ (4-6 months old) 

mice where changes in pathology are minimal and changes in behaviour and cognitive function are 
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not overt. Secondly, ‘old’ (8 months) mice where the pathology is more progressed with heightened 

levels of inflammation (gliosis) in several brain regions (dentate gyrus, hippocampal area CA1, piriform 

and parietal cortices) and significant impairments in spatial learning and working memory (Plucinska 

et al., 2014). 

The use of a targeted, quantitative and reproducible metabolomics kit makes it possible to 

directly compare the results with other studies where this kit has also been applied (Graham et al., 

2018). Compared with our group’s previous study on the metabolites disturbance of the APP/PS1 mice 

(Pan et al., 2016), the disturbances observed here are less widespread and less severe than observed 

in the APP/PS1 model. All 8 significantly altered PCs were lower in ‘young’ PLB4 mice. This is in stark 

contrast to APP/PS1 mice which showed 28 PCs are significantly higher in APP/PS1 brain at 8 months. 

In this study the brain levels of PC aa C40:1, C42:1 and C42:2 were all significantly lower in PLB4 mice 

than WT – both in young and old mice brain. The PC aa 40:1 is also altered in APP/PS1 mice. In contrast, 

this PC is higher in 8 month old APP/PS1 mice, and not affected at 6, 10, 12 or 18 months (Pan et al., 

2016). Furthermore, there are two PCs, PC ae 32:1 and PC ae 42:2, showing elevation in both ‘old’ 

PLB4 mice and APP/PS1 mice at 8 months. In PLB4 mice elevations of PC ae 42:2 were age-dependent 

and were not observed in the WT. The APP/PS1 transgenic mouse model expresses both mutated APP 

and PS1 genes which leads to an overproduction of full-length APP and monomeric Aβ. Contrastingly, 

PLB4 mice have pronounced expression of oligomeric Aβ species (12-meric *56, 6-mer, 4-mer, and 3-

mer). Furthermore, APP/PS1 mice develop Aβ plaques as early as 5-6 months of age (Volianskis et al., 

2010), whereas mature and aggregated Aβ plaques are sparse in PLB4 mice even by 12 months of age 

(Plucinska et al., 2014). However, both APP/PS1 and PLB4 mice show cognitive deficits at 6 months 

old, although the cognitive deficits in PLB4 mice may not result from Aβ plaque deposition (Plucinska 

et al., 2014; Xiong et al., 2011).  

It is evident that the differing Aβ species present in APP/PS1 and PLB4 can result in different 

metabolite responses. For example, a polyamine molecule was the most significantly altered 
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metabolite in the present study (p=8x10-8; q=1x10-5). Putrescine is the precursor of other polyamines 

including spermine and spermidine, all of which have previously been associated with AD (Inoue et al., 

2013; Trushina et al., 2013). Here, putrescine was reduced 1.31-fold in ‘old’ PLB4 brain and 

impressively generated a ROC AUC of 1.0 – marking it as a highly discriminating metabolite between 

PLB4 and WT littermates. However, in APP/PS1 mice putrescine is not reduced but raised, not only in 

brain but also in plasma (Pan et al., 2016). It has been demonstrated that intracerebroventricular 

infusion of pre-aggregated Aβ25–35 significantly decreases putrescine levels the prefrontal cortex of 

rats (Bergin et al., 2015). Contrastingly, Aβ1–41 upregulates of polyamine uptake and increases 

ornithine decarboxylase activity, which leads to increased polyamine levels in cultured neurons (Yatin 

et al., 2001). Therefore, the differing levels of oligomer Aβ species of the PLB4 and APP/PS1 models 

may explain the deviating polyamine response.  

Glycerophospholipids and sphingolipids contribute to lipid bilayer asymmetry (Farooqui et al., 

2010). It has been demonstrated both APP and APP-cleaving secretases are transmembrane proteins 

and even the cleavage of CTFα and CTFβ by γ-secretase mainly take place in lipid rafts resulting in the 

secretion of Aβ (Ehehalt et al., 2003; Walter and van Echten-Deckert, 2013). Furthermore, 

glycerophospholipids are also precursors of signalling molecules (diacylclycerol), inflammatory 

molecules and neurotransmitters (choline). LPCs are the hydrolysis products of PCs by Phospholipases 

A2 (PLA2). PLA2 enzymes have been demonstrated to directly correlate to AD pathology, not only 

because the PLA2 involve in the changing membrane physical properties (such as permeability and 

fluidity), resulting in the disturbance of Aβ production and aggregation (Evangelisti et al., 2014); but 

also some byproducts of PLA2 hydrolysis act as second messenger and metabolites that contribute to 

neuroinflammation and propagation of neuronal injury (Ong et al., 2015).  

PC is the major subclass of glycerophospholipid, which is the component of biological membranes 

and also involved in intraneuronal signal transduction (Bazan, 2005; Yadav and Tiwari, 2014). In ‘young’ 

PLB4 mice the brain PCs which were significantly altered were of both main types (diacyl and acyl-
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alkyl), and in all cases these were lower in concentration compared with WT. However, in ‘old’ PLB4 

mice, only the diacyl PCs which were lower than the WT mice, whereas acyl-alkyl PCs are all higher in 

concentration. Additionally, all affected lysoPCs were higher in ‘old’ PLB4 mice than WT. The alteration 

of diacyl-PCs and acyl-alkyl PCs have been widely reported in AD patients and AD transgenic animal 

models (Fabelo et al., 2012; Fonteh et al., 2013; Grimm et al., 2011; Kosicek and Hecimovic, 2013; 

Naudi et al., 2015). Nonetheless these observations have frequently been inconsistent and inter-study 

variability is common. This may arise in part due to technical and methodological factors, but also it 

may reflect the transient metabolic responses which likely occur in a phased manner and are 

dependent on the actual extent of the neurodegeneration (Pan et al., 2016).  

We also examined whether phospholipids disturbances observed here in female mice were 

consistent with those reported previously in male PLB4 mice (Plucinska et al., 2014). Lower brain levels 

of PC ae C30:0 (previously referred to as PC(O-30:0)) occurred in both male and female PLB4 mice of 

similar age. A further four lysoPCs were consistently affected in both male and female PLB4 mice. 

These were:  lysoPC a C 16:0 (PC 16:0), lysoPC a C 18:1 (PC18:1), PC ae C34:1 (PC (O-34:1)) and PC ae 

C42:2 (PC (O-42:2)). Interestingly, PC ae C42:2 also elevated in the APP/PS1 mouse brain at 8 old 

month’s age (Pan et al., 2016). It should be noted that a large number of phospholipid changes were 

not reproduced and diverging metabolic responses, based on gender, have the potential to confound 

findings in metabolomic studies unless accounted for (Krumsiek et al., 2015).  

In this study, only one sphingomyelin molecule was affected. Brain levels of SM(OH)C22:2 were 

higher in ‘old’ PLB4 mice. This same sphingomyelin molecule was also elevated in the brain of 8 month 

old APP/PS1 mice (Pan et al., 2016). Sphingomyelin is a type of sphingolipid derived from ceramide. 

Most studies consistently find elevated ceramide levels in human AD brain (Bandaru et al., 2009; 

Filippov et al., 2012; Han et al., 2002; He et al., 2010). This may be due an upregulation of enzymes 

involved in sphingomyelin/ceramide metabolism during AD pathology (He et al., 2010; Panchal et al., 

2014). Ceramide has also been demonstrated to stabilize BACE1 and promote the Aβ biogenesis (Patil 
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et al., 2007; Puglielli et al., 2003). In contrast, sphingomyelin levels in human AD brain were reported 

to be either increased (Bandaru et al., 2009; Pettegrew et al., 2001) or decreased (Cutler et al., 2004; 

He et al., 2010) depending on the brain region examined and the extent of the neuropathology.  

 

Conclusion 

This study uncovered several brain metabolite alternations occurring in female PLB4 mice with 

knockin of human BACE1. The majority of these metabolites increased with advancing age. Based on 

data in the literature we can deduce that certain metabolites are commonly affected in both in male 

and female PLB4 mice, however, gender-specific responses are also evident. This underlines the 

importance of conducting gender-specific metabolomic investigations in animal models. Furthermore, 

the kit-based nature of the approach used here made it possible to directly compare changes in PLB4 

mice (where Aβ oligomers predominate) with other AD models such as APP/PS1 (where Aβ plaques 

predominate). This demonstrated that each model affected the brain metabolome differently. The 

divergent response of putrescine was a very notable example of this, perhaps indicating a differential 

effect on brain levels of ornithine decarboxylase activity. In general though the brain metabolism of 

PLB4 mice was much less disturbed than that of APP/PS1.  

Several phospholipids are consistently affected in both of the above models and these may reflect 

a common, more generalised response to upregulated Aβ production in the brain. The need to 

pathologically stratify AD cases is becoming clearer in post-mortem human studies. Therefore, it now 

seems timely that systematic, longitudinal and controlled metabolomic studies are undertaken across 

a range of well characterised models. This will enable us to unpick the differing downstream effects 

of Aβ pathologies on brain metabolism. 
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Table 1: Brain metabolites altered in ‘young’ PLB4 mice 

 Metabolite ↑/↓ Fold-change p-value q-value ROC (AUC) 

1 Carnosine ↓ 1.29 0.005847 0.21401 0.875 

2 PC aa C30:0 ↓ 1.39 0.003618 0.16550 0.911 

3 PC aa C34:4 ↓ 1.32 0.014078 0.42936 0.857 

4 PC aa C40:1 ↓ 1.46 0.000660 0.06042 0.910 

5 PC aa C40:2 ↓ 1.19 0.044784 0.79793 0.803 

6 PC aa C42:1 ↓ 1.86 0.000097 0.01766 0.964 

7 PC aa C42:2 ↓ 1.53 0.001297 0.07912 0.946 

8 PC ae C30:0 ↓ 1.23 0.025710 0.67213 0.821 

9 PC ae C42:1 ↓ 1.21 0.045724 0.79793 0.768 

PC-phosphatidylcholine; aa- diacyl; ae-acyl-alkyl. 

Table 2: Brain metabolites altered in ‘old’ PLB4 mice 

 Metabolite ↑/↓ Fold-change p-value q-value ROC (AUC) 

1 Leucine ↑ 1.23 0.039570 0.36206 0.734 

2 Creatinine ↑ 1.34 0.007248 0.18642 0.897 

3 Putrescine ↓ 1.31 0.00000008 0.00001 1.000 

4 C0-AC ↑ 1.19 0.010260 0.18642 0.908 

5 C12-DC ↓ 1.36 0.008990 0.18642 0.918 

6 C14-AC ↑ 1.24 0.010711 0.18642 0.857 

7 C16-AC ↑ 1.27 0.005925 0.18642 0.918 

8 C5-OH (C3-DC-M) ↑ 1.37 0.036881 0.35522 0.816 

9 lysoPC a C16:0 ↑ 1.21 0.013243 0.18642 0.857 

10 lysoPC a C18:0 ↑ 1.08 0.005597 0.18642 0.918 

11 lysoPC a C18:1 ↑ 1.23 0.024669 0.30097 0.857 

12 lysoPC a C20:3 ↑ 1.22 0.021810 0.28509 0.897 

13 lysoPC a C20:4 ↑ 1.22 0.013203 0.18642 0.857 

14 PC aa C40:1 ↓ 1.19 0.034570 0.35146 0.816 

15 PC aa C42:1 ↓ 1.57 0.000095 0.00878 0.979 

16 PC aa C42:2 ↓ 1.19 0.027634 0.31607 0.836 

17 PC ae C32:1 ↑ 1.19 0.010114 0.18642 0.918 

18 PC ae C34:1 ↑ 1.12 0.033835 0.35146 0.836 

19 PC ae C36:3 ↑ 1.11 0.011563 0.18642 0.918 

20 PC ae C42:2 ↑ 1.22 0.046399 0.40433 0.816 

21 SM (OH) C22:2 ↑ 1.42 0.006474 0.18642 0.897 

AC-acylcarnitine, DC-dioylcarnitine; lysoPC-lysophosphatidylcholine; PC-phosphatidylcholine; SM-

sphingomyelin; a-acyl ; aa- diacyl; ae- acyl-alkyl.  
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Table 3 – Highest Ranking metabolites from Variable Importance Projection (VIP) plots for ‘young’ and ‘old’ mice. Metabolites are listed in order of 

their importance in the model.  

A. ‘young mice’ 
 

B. ‘old’ mice 

Var ID (Primary) M4.VIP[1] 1.89456 * 
M4.VIP[1]cvSE 

 

Var ID (Primary) M5.VIP[1] 1.89456 * 
M5.VIP[1]cvSE 

PC aa C42:1 3.86693 0.873218 
 

PC aa C42:1 2.83949 1.94445 
PC aa C42:2 3.01688 1.30194 

 

SM C26:1 2.39372 2.79335 

PC aa C40:1 2.8872 0.85695 
 

Putrescine 2.3367 0.524129 
SM C20:2 2.65764 3.18491 

 

SM (OH) C22:2 2.27157 1.14677 
PC aa C30:0 2.58203 1.0028 

 

C12-DC 2.11689 1.4664 
SM (OH) C24:1 2.32894 3.05933 

 

Creatinine 2.04104 0.960955 
PC aa C34:4 2.25864 1.24086 

 

SM C20:2 1.99892 2.75372 
Carnosine 2.24662 1.23569 

 

C5-AC 1.97399 0.997821 
C3-OH-AC 2.07247 2.17419 

 

C4:1-AC 1.8981 1.71474 

Histamine 1.94128 3.35882 
 

C5-OH-AC (C3-DC-M) 1.86448 1.42254 
PC ae C30:0 1.89953 0.922159 

 

C16-AC 1.86445 1.00371 
C16-OH-AC 1.88638 1.6346 

 

C18:1-OH-AC 1.7547 1.41658 
lysoPC a C26:1 1.86163 1.95737 

 

C14-AC 1.75462 1.26952 
lysoPC a C24:0 1.8341 1.21027 

 

lysoPC a C18:0 1.73691 0.625649 
PC aa C36:6 1.81703 0.677252 

 

lysoPC a C20:3 1.64207 0.462891 
AC-acylcarnitine, DC-dioylcarnitine; lysoPC-lysophosphatidylcholine; PC-phosphatidylcholine; SM-sphingomyelin; a-acyl ; aa- diacyl; ae- acyl-alkyl.  
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Table 4: Metabolites significantly altered with age in PLB4 which were not altered in WT mice.  

Values were obtained by comparing ‘young’ and ‘old’ PLB4 mice and by cross-referencing against an 

identical comparison in WT mice. AC-acylcarnitine, PC-phosphatidylcholine; SM-sphingomyelin; aa- 

diacyl; ae- acyl-alkyl. 

 

 

 

 

  

 Metabolite ↑/↓ Fold-change p-value q-value ROC (AUC) 

1 PC ae C36:3 ↑ 1.35 5.95E-05 0.002677 1 

2 PC ae C34:2 ↑ 1.35 7.02E-04 0.014047 0.94 

3 PC ae C42:2 ↑ 1.40 0.001655 0.024887 0.98 

4 C18:1-OH-AC ↑ 1.67 0.003957 0.046937 0.90 

5 PC ae C38:1 ↑ 1.31 0.004501 0.046937 0.90 

6 PC ae C40:2 ↑ 1.37 0.004694 0.046937 0.90 

7 C3-OH-AC ↑ 1.52 0.005984 0.056691 0.90 

8 PC ae C42:1 ↑ 1.28 0.006933 0.062394 0.88 

9 SM (OH) C22:1 ↑ 1.91 0.008095 0.065566 0.88 

10 PC aa C36:0 ↓ 2.31 0.009474 0.06821 0.88 

11 C16-AC ↑ 1.24 0.01815 0.1252 0.88 

12 PC aa C38:0 ↑ 1.19 0.01878 0.1252 0.84 

13 C14-AC ↑ 1.21 0.024135 0.15516 0.88 

14 PC ae C44:4 ↑ 1.26 0.044972 0.25351 0.84 
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Figure Legends 

Figure 1. Multivariate statistical models arising from targeted metabolomics data.  (A) Unsupervised 

PCA scores plot (R2≤0.537; Q2≤0.311)and (B) OPLS-DA scores plot (R2≤0.69; Q2≤0.51) classifying brain 

samples from young WT (open circles), young PLB4 (closed circles), old WT (open triangles) and old 

PLB4 (closed triangles) mice. Data were normalised by log-transform and pareto-scaled. (C) 

Permutation plot (n = 999) for the OPLS-DA model built for brain samples from young WT, young PLB4, 

old WT and old PLB4 mice (R2 = green circles, Q2 = blue squares). 

Figure 2. Heat-map of top 10 affected metabolites in female PLB4 mice. Data were normalised by 

log-transform and pareto-scaled and heat maps were created using Metaboanalyst (Distance Measure: 

Euclidean). The top 10 metabolites affected (as selected by t-test p-value) were shortlisted for (A) 

young and (B) old mice. 

Figure 3. Concentrations of PC aa C42:1 significantly differ in both young and old PLB4 mice. Three 

brain PCs were commonly affected in both young and old PLB4 mice, of these PC aa C42:1 was the 

most profoundly affected. Figures show the brain concentrations of PC aa C42:1 in (A) young mice (B) 

old mice presented as box and whisker plots (n=7-8). (C) Receiving operator characteristic (ROC) 

curves constructed individually for young (open circles; WT vs PLB4) and old (open triangles; WT vs 

PLB4). Figures were produced using GraphPad Prism (version 6.03).  
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Figure 3 
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