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Abstract
In this paper, the secrecy performance of cooperative heterogeneous networks with unreliable backhaul over Nakagami-m
fading channels is investigated. To secure the proposed system, a friendly jammer is considered to confuse eavesdroppers.
To transmit the signals from the source to the destination, a two-phase transmitter/relay selection scheme is proposed. The
best transmitter is selected when the signal-to-noise ratio at the relays is maximized. In the second phase, the best relay
is chosen when the jamming signal-to-interference-plus-noise ratio of the eavesdroppers is minimized. To investigate the
system performance, closed -form expressions are derived for the secrecy outage probability, ergodic capacity and non-zero
achievable secrecy rate. In order to gain an insight into the system, asymptotic analysis is also provided. The results show
that the degree of cooperative transmission and backhaul reliability are key parameters in the system and these parameters
determine the secrecy performance.

Keywords Unreliable backhaul · Heterogeneous networks · Physical layer security · Nakagami-m fading channels

1 Introduction

Due to the increasing wireless data traffic demand, future
networks will become more dense and heterogeneous. In
heterogeneous networks (HetNets), macro cells and small
cells will be used to increase the capacity needed for this
rise in traffic demand and to offload traffic. A backhaul link
will connect these small cells with the core network. The
traditional backhaul is wired and can ensure the connection.
However, the cost of the deployment and maintenance is
high, especially when a large number of small cells is
needed to cover dense scenarios. Moreover, small cells may
not need such a highly reliable backhaul as traditional macro
cells do [27]. This is because small cells serve a lower traffic
capacity than macro cells. In this way, wireless backhaul
has emerged as an alternative and attractive approach due
to its low cost and flexibility. However, wireless backhaul
is not as reliable as its wired backhaul counterpart due
to wireless channel impairments such as non-line-of-sight
(nLOS) propagation and channel fading [10].
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The reliability of the backhaul is an important factor in
HetNets and research has been undertaken to investigate
how the backhaul reliability can affect the system perfor-
mance [2, 10–15, 19–22, 31]. In [2], the authors considered
co-channel inter-cell interference (ICI) in HetNets with
unreliable backhaul and coordinated multi-point (CoMP)
transmission was considered to reduce the interference. In
[12–15, 22, 31], the impact of unreliable backhaul on coop-
erative relay systems was investigated. The outage probabil-
ity of finite-sized selective relaying systems with unreliable
backhaul was studied in [15]. A cognitive network with
unreliable backhaul was investigated in [21], and asymp-
totic analysis showed that performance was mainly decided
by backhaul reliability. For all the research mentioned on
unreliable backhaul connections, backhaul reliability is a
key factor in the system performance. Therefore, in a Het-
Net context it is essential for us to investigate backhaul
reliability.

Another aspect that cannot be ignored is security [5].
For a complete study in HetNets system, security needs
to be considered. The traditional way to enhance security
is deploying cryptographic techniques across upper layers.
However, it consumes significant power to encrypt and
decrypt data [25]. In addition, with the development of
quantum computing, key schemes can be broken and the
key infrastructure become insecure [30]. In recent years,
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physical layer security (PLS) has become increasingly
popular to secure wireless communications [9, 26, 28].
The main idea of PLS is that the wireless channels are
random and unpredictable, thus this can be exploited to keep
the information confidential from eavesdroppers. Wyner
proposed that when the main channel has better propagation
conditions than the eavesdroppers’, the communication
between legitimate users could be secure [29]. However,
when the wiretap channel is better, the secrecy rate can
even drop to zero [7]. Various PLS techniques have been
investigated to tackle this problem and enhance the security
of the main channel; one of the main techniques is using
cooperative jamming to generate artificial noise to confuse
eavesdroppers [1, 4, 6, 7, 16, 17, 23, 32]. In [6, 32],
the authors considered PLS and energy harvesting with a
friendly jammer, and the authors in [6] also proposed joint
jammer and relay selection schemes. In related work [16],
a jammer is assumed to be an energy constrained node
with no power of its own and can harvest power from the
source node, but cooperative relaying was not considered
in this work. However, all of the research above ignored
the reliability of the backhaul. As discussed an unreliable
wireless backhaul results in poor performance. It is essential
to consider backhaul reliability when studying PLS in a
small cell HetNet contexts.

Research in [13, 14, 22, 31] has taken into account PLS in
relay systems with unreliable backhaul. In [31], the authors
studied PLS and energy harvesting. In [14], the authors
studied PLS in full-duplex cooperative relay systems. In
[13], multiple eavesdroppers that can wiretap information
from relay and transmitters are considered in a finite-sized
cooperative system. In [22], a friendly jammer was used to
confuse eavesdroppers in single carrier systems.

Cooperative jamming in the presence of wireless
backhaul over Nakagami-m fading channels has not been
studied yet. In this research, we investigate the cooperative
jamming in a small cells HetNet context with unreliable
backhaul over Nakagami-m fading channel. In our system
model, an outage occurs when the system is either
not reliable or not secure, hence we assess the secrecy
outage probability as a performance parameter. Our main
contributions are summarized as below:

– We investigate the secrecy performance of cooperative
systems by exploiting cooperative relay and jamming
signals in the presence of unreliable backhaul links
between macro-cells and small-cells over Nakagami-m
fading channels.

– A two-phase transmitter/relay selection scheme is pro-
posed. The achievable SNR at the relays is maximized
by applying the best small cell transmitter selection in

the first phase. The relay selection scheme is deployed
in the second phase to minimize the instantaneous
signal-to-interference-plus-noise ratio (SINR) at the
eavesdroppers.

– Analytical expressions to evaluate the secrecy outage
probability, non-zero achievable secrecy rate, and
ergodic capacity are derived in closed-form. The
asymptotic secrecy expressions are also attained to gain
full insights into the impact of backhaul reliability
on the network secrecy performance in the high SNR
regime.

– The effect of the number of small-cell transmitters,
relays, eavesdroppers and backhaul reliability on the
system performance is investigated.

The remainder of the paper is organized as follows.
System and channel models are described in Section 2.
Derivation of the SNR distributions in the proposed system
is obtained in Section 3. The closed-form expressions for
outage probability, ergodic capacity and symbol error rate as
well as the asymptotic analysis are carried out in Section 4,
while numerical results are presented in Section 5. Finally,
the paper is concluded in Section 6.

Notation: P [·] is the probability of occurrence of
an event. For a random variable X, FX(·) denotes its
cumulative distribution function (CDF) and fX(·) denotes
the corresponding probability density function (PDF).
max (·) and min (·) denote the maximum and minimum of
their arguments, respectively.

2 Systemmodel

We consider a HetNet system with a macro base station, S,
K small cells, T{1,··· ,K}, M relays, R{1,··· ,M}, a jammer, J ,
N eavesdroppers, E{1,··· ,N} and a destination, D, as shown
in Fig. 1. S is connected to Tk via wireless backhaul. We
assume that there is no direct link between Tk and D because
of the poor channel condition. Tk sends information to D

with the help of Rm. A single J transmits jamming signals in
the system, and we assume that the jamming signals can be
nulled out at D [6]. En wiretaps the information transmitted
from Rm. All of the nodes are equipped with single antenna
and operate in half-duplex. We assume that all the channels
are Nakagami-m fading, and the channel power gains are
gamma distributed. The cumulative distribution function
(CDF) and probability density function (PDF) of the random
variable X can be written as

FX (x) = 1 − exp
(
− x

θX

)mX−1∑
i=0

1
i!
(

x
θX

)i

. (1)
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fX (x) = xmX−1

�(mX)θ
mX
X

exp
(
− x

θX

)
. (2)

Where �(·, ·) is the incomplete gamma function [8, Eq.
(8.352.6)].

Backhaul reliability is modeled as a Bernoulli process Ik
with success probability sk where P(Ik∗ = 1) = sk and
P(Ik∗ = 0) = 1 − sk . This indicates that Tk is participating
in the transmission if the message is successfully delivered
over its dedicated backhaul with probability sk whereas it
defers its transmission with probability 1 − sk .

We assume the global channel state information (CSI) is
available, which is a common assumption in PLS [22]. The
CSI of the eavesdroppers can be known when eavesdroppers
are active in the network and their status can be monitored
[3].

In the first hop, the received signals at Rm are of the form

yR =
√
Pt α

k,m
T hTkRmIkx + z, (3)

where Pt is the transmit power at Tk and hTkRm is the
channel coefficient of the link Tk − Rm, x is the unit power
transmitted symbol and z is the complex additive white
Gaussian noise (AWGN) with zero mean and variance σ ,
i.e., z ∼ CN(0, σ ). The path loss component corresponding
to hTkRm is denoted as α

k,m
T , respectively.

In the second hop, the received signals at D are of the
form

yD =
√
Prα

m
DhRmDx + z, (4)

where Pr is the transmit power at relays and hRmD is the
channel coefficient of the link Rm − D. The path loss
component corresponding to hRmD is represented by αm

D ,
respectively.

Similarly, the received signals at E are of the form

yE =
√
Prα

m,n
E hRmEnx +

√
Pjα

n
J hJEn + z, (5)

where Pj is the transmit power at the jammer, hRmEn is
the channel coefficient of the link Rm − En and hJEn is
the channel coefficient of the link J − En. The path loss
component corresponding to hRmEn and hJEn are denoted as
α

m,n
E and αn

J , respectively.
We assume that the unreliable backhaul links are

independent from the indices of the K transmitters, i.e.,
sk = s, ∀k.

3 SNR distributions

In this section, SNR distributions are derived firstly which
are necessary for system secrecy performance analysis in
the next section.

From Eq. 3, the SNR from Tk and Rm can be given as

SNRTkRm = Pt α
k,m
T |hTkRm |2

σ 2
n

Ik = α̃R|hTkRm |2Ik
= λk,m

Ik, (6)

where α̃R = Pt α
k,m
T

σ 2
n

. λk,m ∼ Ga(mR, θR).

Similarly, according to Eqs. 4 and 5, the SNR between
Rm and D and the SINR between Rm and En can be
obtained as

SNRRmD = Prα
m
D|hRmD|2
σ 2

n

= α̃D|hRmD|2 = λm
D, (7)

SINRRmEn = Prα
m,n
E |hRmEn |2

σ 2
n + Pjα

n
J |hJEn |2

= α̃E |hRmEn |2
1 + α̃J |hJEn |2

= λm,n

1 + λn
J

, (8)

where α̃D = Prα
m
D

σ 2
n

, α̃E = Prα
m,n
E

σ 2
n

and α̃J = Pj αn
J

σ 2
n

. λm
D ∼

Ga(mD, θD), λm,n ∼ Ga(mE, θE) and λn
J ∼ Ga(mJ , θJ ).

In order to achieve a high performance of the con-
sidered system, our selection scheme is to maximize the
performance at the relays and destination and minimize the
performance at the eavesdroppers.

3.1 Distribution of the link Tk∗ − Rm

In the first hop, each relay selects a small cell that can
achieve the best performance of the link Tk − Rm. In this
way, the best small cell is selected as

k∗ = arg max
k=1,...,K

SNRTkRm, (9)

Corresponding CDF of SNRTK∗Rm is given as

FSNRTk∗Rm
(x) = 1 +

K∑
k=1

k∑
ω1,...,ωmR

(
K

k

)(
k!

ω1!...ωmR
!
)

(−1)ksk

∏mR−1
t=0 (t !(θR)t )ωt+1

×x
∑mR−1

t=0 tωt+1e−kx/θR . (10)

The proof is given in Appendix A.

3.2 Distribution of the link Rm − En∗

In the second hop, the eavesdropper is selected when the
SINR between Rm and En is maximum to enhance its
performance,

n∗ = arg max
k=1,...,K

SINRRmEn . (11)
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Fig. 1 A cooperative
heterogeneous network with
multiple small cell transmitters,
relays and a friendly jammer in
the presence of eavesdroppers
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Corresponding CDF of SINRRmEn∗ can be derived
according to Appendix B.

3.3 Distribution of the link Rm∗ − En∗

The relay is selected when the SNR of the link Rm − En∗ is
minimized. It can be formulated as

m∗ = arg min
m=1,...,M

SINRRmEn∗ , (12)

corresponding PDF of SINRRm∗En∗ can be derived accord-
ing to Appendix C and corresponding CDF of SINRRm∗En∗
can be obtained as

FSINRRm∗ En∗ (x) =
∫ x

0
fSINRRm∗ En∗ (t) dt . (13)

3.4 Distribution of the end-to-end SNR

The relays use decode-and-forward (DF) protocol for its
high system performance. This is because the interference
is lower in DF protocol compared with amplify-and-
forward (AF) protocol [31]. In this way, the end-to-end
SNR of the considered system at the destination is given
by

SNRDF = min(SNRTk∗Rm∗ , SNRRm∗D), (14)

where SNRTk∗Rm∗ is the SNR from the selected small cell
transmitter to the selected relay, and SNRRm∗D is the SNR
from the selected relay to the destination.

Corresponding CDF of the end-to-end SNRDF can be
obtained as

FSNRDF (x) = 1 − [1 − FSNRTk∗Rm∗ (x)]
×[1 − FSNRRm∗D (x)]. (15)

According to Eq. 15 and by applying binomial and
multinomial theorems, the CDF of the end-to-end SNR
obtained at D can be given as

FSNRDF (x) = 1 +
K∑

k=1

mD−1∑
q=0

k∑
ω1,...,ωmR

(
K

k

)(
k!

ω1!...ωNR
!
)

×(−1)ksk 1

q!∏mR−1
t=0 (t !(θR)t )ωt+1

(
1

θD

)q

×x
∑mR−1

t=0 tωt+1+qe(−k/θR+1/θD)x . (16)

4 Secrecy performance analysis

This section derives the performances of secrecy outage
probability, non-zero achievable secrecy rate and ergodic
capacity utilizing the SNR distributions obtained in the
previous section. Towards deriving these performances,
secrecy rate is required to be defined first. Secrecy capacity
is equal to the difference between main channel and the
wiretap channel, which is given by [31]

CS = 1

2

[
log2(1+SNRDF )−log2(1+SINRRm∗En∗ )

]+
,

(17)

where [x]+ = max(x, 0). In addition, log2(1 + SNRDF ) is
the instantaneous capacity obtained at D from selected relay
and log2(1 + SNRRm∗En∗ ) is the instantaneous capacity of
the channel from selected relay to the selected eavesdropper.
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4.1 Secrecy outage probability

The secrecy outage probability is introduced to evaluate the
system security and it is defined as the probability that the
instantaneous secrecy capacity is less than a positive target
secrecy rate θ [31], i.e.,

Pout (θ) = Pr(CS < θ)

=
∫ ∞

0
FSNRDF

(
22θ (1 + x) − 1

)

×fSINRRm∗En∗ (x) dx. (18)

Substitute (15) and (32) into (18), and with the help of
[24, Eq. (2.3.6.9)], [8, Eq. (9.211.4)], the expression for
secrecy outage probability can be given as (19).

Pout (θ) = 1 + J
∑̃
D

∑̃
E

β∑
α=0

(
β

α

)
(ϒ − 1)β−α

×(ϒ)αθE
ϕ̃3e−�(ϒ−1)(J1 − J2 + J3), (19)

where

⎧⎨
⎩

J1 = Q1�(ϕ̃2 + α + 1)εϕ̃2+α+1−ϕ̃3 (ϕ̃2 + α + 1, ϕ̃2 + α + 2 − ϕ̃3, ε(�ϒ + ϕ̃1)) ,

J2 = Q2�(ϕ̃2 + α)εϕ̃2+α−ϕ̃3 (ϕ̃2 + α, ϕ̃2 + α + 1 − ϕ̃3, ε(�ϒ + ϕ̃1)) ,

J3 = Q3�(ϕ̃2 + α + 2)εϕ̃2+α+2−ϕ̃3 (ϕ̃2 + α + 2, ϕ̃2 + α + 3 − ϕ̃3, ε(�ϒ + ϕ̃1)) .

and β = ∑mR−1
t=0 t , ϒ = 22θ , ε = θE

θJ
J = MN

(θJ )mJ (mJ −1)! .

Q1 = 1/θJ + mJ + j − i

θE

, Q2
�= i

θJ

, Q3 = 1

(θE)2
.

ϕN
1 = n/θE, ϕN

2
�=
∑mE−1

t=0
tϑt+1, ϕ

N
3

=
∑0

η1=0
(mJ + η1)μ1,η1+1 +

∑1

η2=0
(mJ + η2)

×μ2,η2+1 + ... +
∑mE−1

ηmE
=0

(mJ + ηmE
)μmE,ηmE

+1.

ϕ̃1 = 1/θE + ϕN−1
1 + ϕmN

1 , ϕ̃2 = ϕN−1
2 + ϕmN

2 + i, ϕ̃3

= ϕN−1
3 + ϕmN

3 + mJ + j + 1.

In addition,
∑̂

N,n,mE

,
∑̃
E

,
∑̃
D

are the shorthand notations of

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑̃
D

= ∑K
k=1

∑mD−1
q=0

∑k
ω1,...,ωmR

(
K
k

) (
k!

ω1!...ωmR
!
)

(−1)kλk

1

q!∏mR−1
t=0 (t !(θR)t )ωt+1

(
1

θD

)q

.
∑̃
E

= ∑̂
N−1,l,mE

∑̂
mN,r,mE

∑M−1
m=0

∑mE−1
i=0

∑i
j=0

(
M−1

m

)(
i
j

)
(−1)m 1

i!(θE)i
�(mJ + j).

∑̂
N,n,mE

= ∑N
n=0

∑n
ϑ1,...,ϑmE

∑ϑ1
μ1,1

∑ϑ2
μ2,1,μ2,2

...
∑ϑmE

μmE,1,...,μmE,mE

(
N
n

)
(−1)n

(
n!

ϑ1!...ϑmE
!
) (

ϑ1!
μ1,1!

) (
ϑ2!

μ2,1!μ2,2!
)

...
(

ϑmE
!

μmE,1!...μmE,mE
!
)

(
1

(θJ )mJ (mJ −1)!
)n

1∏mE−1
t=0 (t !(θE)t )ϑt+1

∏0
η1=0

[( 0
η1

)
�(mJ + η1)

]μ1,η1+1

∏1
η2=0

[( 1
η2

)
�(mJ + η2)

]μ2,η2+1
...

∏mE−1
ηmE

=0

[(
mE−1
ηmE

)
�(mJ + ηmE

)
]μmE,ηmE

+1
.

To provide full insights into the impact of unreliable
backhaul connections, the asymptotic expression for the
secrecy outage probability can be obtained as Eq. 20.

P∞
out (θ)

θD→∞= 1 + J
∑̃
D∞

∑̃
E

β̃∑
α=0

(
β̃

α

)
(ϒ − 1)β̃−α(ϒ)αθE

ϕ̃3e−�̃(ϒ−1)(J4 − J5 + J6), (20)
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where

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

J4 = Q1�(ϕ̃2 + α + 1)εϕ̃2+α+1−ϕ̃3
(
ϕ̃2 + α + 1, ϕ̃2 + α + 2 − ϕ̃3, ε(�̃ϒ + ϕ̃1)

)
,

J5 = Q2�(ϕ̃2 + α)εϕ̃2+α−ϕ̃3
(
ϕ̃2 + α, ϕ̃2 + α + 1 − ϕ̃3, ε(�̃ϒ + ϕ̃1)

)
,

J6 = Q3�(ϕ̃2 + α + 2)εϕ̃2+α+2−ϕ̃3
(
ϕ̃2 + α + 2, ϕ̃2 + α + 3 − ϕ̃3, ε(�̃ϒ + ϕ̃1)

)
.

and β̃ = ∑mR−1
t=0 tωt+1, �̃ = k

θR
,
∑̃
D∞

= ∑K
k=1

∑k
ω1,...,ωmR

(
K
k

) (
k!

ω1!...ωmR
!
)

(−1)k−1sk

∏mR−1
t=0 (t !(θR)t )ωt+1

4.2 Probability of non-zero secrecy rate

The probability of non-zero secrecy rate is the probability
that secrecy rate is more than zero, or another way SNRTk∗D

is higher than SINRRm∗En∗ . The probability of none-zero
secrecy rate can be obtained as [31]

Pr(CS > 0) = 1 − Pout (0)

= 1 −
∫ ∞

0
FSNRDF (x) fSINRRm∗ En∗ (x) dx,

(21)

Using Eqs. 15 and 32 and with the help of [24, Eq. (2.3.6.9)].
The closed-form expression for the probability of non-zero
achievable secrecy rate is given as, Eq. 22.

Pr(CS > 0) = −J
∑̃
D

∑̃
E

θE
ϕ̃3(J7 − J8 + J9), (22)

where

⎧⎨
⎩

J7 = Q1�(ϕ̃2 + β + 1)εϕ̃2+β+1−ϕ̃3 (ϕ̃2 + β + 1, ϕ̃2 + β + 2 − ϕ̃3, ε(� + ϕ̃1)) ,

J8 = Q2�(ϕ̃2 + β)εϕ̃2+β−ϕ̃3 (ϕ̃2 + β, ϕ̃2 + β + 1 − ϕ̃3, ε(� + ϕ̃1)) ,

J9 = Q3�(ϕ̃2 + β + 2)εϕ̃2+β+2−ϕ̃3 (ϕ̃2 + β + 2, ϕ̃2 + β + 3 − ϕ̃3, ε(� + ϕ̃1)) .

To investigate the asymptotic behavior of the probability
of non-zero achievable secrecy rate in high SNR regime, the
asymptotic expression is given as Eq. 23.

Pr(C∞
S > 0)

θD→∞= −J
∑̃
D∞

∑̃
E

θE
ϕ̃3(J10 − J11 + J12),

(23)

where

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

J10 = Q1�(ϕ̃2 + β̃ + 1)εϕ̃2+β̃+1−ϕ̃3
(
ϕ̃2 + β̃ + 1, ϕ̃2 + β̃ + 2 − ϕ̃3, ε(�̃ + ϕ̃1)

)
,

J11 = Q2�(ϕ̃2 + β̃)εϕ̃2+β̃−ϕ̃3
(
ϕ̃2 + β̃, ϕ̃2 + β̃ + 1 − ϕ̃3, ε(�̃ + ϕ̃1)

)
,

J12 = Q3�(ϕ̃2 + β̃ + 2)εϕ̃2+β̃+2−ϕ̃3
(
ϕ̃2 + β̃ + 2, ϕ̃2 + β̃ + 3 − ϕ̃3, ε(�̃ + ϕ̃1)

)
.

4.3 Ergodic capacity

The ergodic capacity is defined as the average secrecy rate
averaged over all the SNR distributions.

Ergodic capacity (nat/s/Hz) is expressed as [31]

Cerg = 1
2 ln(2)

∫∞
0

FSINREn∗,m∗ (x)

1+x
[1 − FSNRDF (x)]dx (24)
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Substitute (13) and (15) into (24), and with the help of
[24, Eq. (2.3.6.9)], [18, Eq. (1.1.1)], [18, Eq. (2.6.2)],
[18, Appendix A7], ergodic capacity can be evaluated as
Eq. 25.

Cerg = − 1

2 ln(2)

(∑̃
D

�(β + 1)

(
β + 1, β + 1, �

∑̃
D

M∑
h=0

(
M

h

)
(−1)hθJ

ϕhN
3

)

−
∑̂

hN,v,NE

(� + ϕhN
1 )−ϕhN

2 −β−1

�(ϕhN
3 )

H
1,1,1,1,1
1,(1:1),0,(1:1)

⎡
⎢⎣

1
�+ϕhN

1
1

ε(�+ϕhN
1 )

∣∣∣∣∣∣∣

(1+ϕhN
2 +β,1)

(0,1);(1−ϕhN
3 ,1)

−
(0,1);(0,1)

⎤
⎥⎦

⎞
⎟⎠ . (25)

To gain the full insights of the system, the asymptotic
ergodic capacity is given as Eq. 26.

C∞
erg

θD→∞= − 1

2 ln(2)

(∑̃
D∞

�(β̃ + 1)

(
β̃ + 1, β̃ + 1, �̃

∑̃
D∞

M∑
h=0

(
M

h

)
(−1)hθJ

ϕhN
3

)

−
∑̂

hN,v,mE

(�̃ + ϕhN
1 )−ϕhN

2 −β̃−1

�(ϕhN
3 )

H
1,1,1,1,1
1,(1:1),0,(1:1)

⎡
⎢⎣

1
�̃+ϕhN

1

1
ε(�̃+ϕhN

1 )

∣∣∣∣∣∣∣

(1+ϕhN
2 +β̃,1)

(0,1);(1−ϕhN
3 ,1)

−
(0,1);(0,1)

⎤
⎥⎦

⎞
⎟⎠ . (26)

where Hmn
pq [.] denotes the Fox H-function [18, Eq. (1.1.1)].

5 Numerical results

In this section, numerical results along with simulations are
shown for the analysis carried out on the proposed sys-
tem. The threshold of secrecy outage probability is fixed
at θ = 1 bits/s/Hz. The binary phase-shift keying (BPSK)
modulation is adopted in the simulations with transmission
block size S = 64 symbols. In figures, “Sim” represents the
simulation results, “Ana” represents the analytical results
and “Asy” represents the asymptotic analysis results. We
investigate the network performance with various param-
eters to examine the effects of the degrees of cooperative
transmission and backhaul reliability.

5.1 Secrecy outage probability

Fig. 2 investigates the secrecy outage probability for
various M and N . The network parameters are set as
K = 3, s = 0.998, {mR, mE, mJ , mD} = {2, 2, 2, 3},
and {θR, θE, θJ } = {10, 10, 10} dB. We can observe that
the number of relays and eavesdroppers strongly affects the
secrecy outage probability. Specifically, when N = 1, the
secrecy outage probability decreases when the number of

relay increases, thus achieving a better system performance.
By contrast, when M = 1, the secrecy outage probability
increases when the number of eavesdropper increases. We
can also observe that our results approach asymptotic results
in the high SNR regime.

Figure 3 plots the secrecy outage probability with various
K and s. We set the parameters as M = 2, N =
1, {mR, mE, mJ , mD} = {2, 2, 3, 2},and {θR, θE, θJ } =

Fig. 2 Secrecy outage probability for various M, N
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Fig. 3 Secrecy outage probability for various K, s

{10, 10, 10} dB. We can observe from the figures that when
K = 1, the secrecy outage probability decreases when
the backhaul reliability gets higher. If the system has more
reliable backhaul, it performs better.

In addition, when s = 0.95 and the number of small-cell
transmitters increases from K = 1 to K = 3, the secrecy
outage probability decreases due to the increased received
signal power at D.

Figure 4 shows the effects of dense networks on secrecy
outage probability versus number of relays M with K =
10, s = 0.998, {mR, mE, mJ , mD} = {2, 2, 2, 3}, and
{θR, θE, θJ , θD} = {10, 10, 10, 10} dB. We can observe
that for all N = {1, 5, 10}, secrecy outage probability
decreases when there are more relays due to the cooperative
communication. In addition, with the increase of N from
N = 1 to N = 10, the secrecy outage probability increases.

Fig. 4 Impact of the dense networks on the secrecy outage probability

Fig. 5 Ergodic capacity for various M, N

This is because the achievable capacity in the wiretap
channels gets higher.

5.2 Ergodic capacity

Figures 5 and 6 depict the effect of the number of small-
cell transmitters, the number of relays and eavesdroppers
and backhaul reliability on the ergodic capacity. Parameters
are the same in the corresponding figures of the ergodic
capacity and secrecy outage probability. Effects of the
degree of cooperative transmission and reliability of
backhaul are complementary on ergodic secrecy rate and
secrecy outage probability. When secrecy outage probability
decreases, the ergodic secrecy rate would increase. We can
observe in the figures that when N = 1, the ergodic

Fig. 6 Ergodic capacity for various K, s
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Fig. 7 Non-zero achievable secrecy rate probability for various M, N

capacity increases when the number of relay grows. Also,
when M = 1, ergodic capacity decreases when the number
of eavesdroppers increases. In addition, when K = 1,
the ergodic capacity increases when the backhaul is more
reliable, and when s = 0.95, the ergodic capacity increases
when the number of small-cell transmitters increases.

5.3 Non-zero achievable secrecy rate

Figures 7 and 8 show the same performances as of secrecy
outage probability and ergodic secrecy rate with the same
parameters, correspondingly. The observations are similar
in all the cases.

In the figure, simulation results match well with the
numerical results, thus, validating the analysis presented in
the paper.

Fig. 8 Non-zero achievable secrecy rate probability for various K, s

6 Conclusions

This paper investigates the secrecy performance of coopera-
tive heterogeneous networks with unreliable backhaul links.
A two phase transmitter/relay selection scheme was pro-
posed to maximize the SNR at the relays and minimize
the SINR at the eavesdroppers. Closed-form expressions
are derived and asymptotic expressions are also provided.
Results show that when the number of small-cell transmit-
ters and relays increases, the system can achieve a better
performance. However, the increase of eavesdroppers can
significantly degrade the system performance. Moreover,
backhaul reliability is a key parameter for the improvement
of secrecy performance.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were
made.

Appendix A

Since all the channels follow Nakagami-m fading, and the
CDF and PDF can be found in Eqs. 1 and 2. The CDF and
PDF of SNRTkRm can be written as

fSNRTkRm
(x) = (1 − s)δ(x) + s

(θR)mR(mR − 1)!
xmR−1e−x/θR ,

FSNRTkRm
(x) = 1 − se−x/θR

mR−1∑
l=0

1

l!
(

x

θR

)l

, (27)

where δ(.) denotes the Dirac delta function. Since the best
transmitter Tk∗ is selected, the CDF of SNRTk∗Rm can be
given as

FSNRTk∗Rm
(x) =

[
FSNRTkRm

(x)
]K

. (28)

After some simple manipulations, we can derive (10).

Appendix B

The CDF of SINRRmEn can be obtained as

FSINRRmEn
(x) = 1 − 1

(θJ )mJ (mJ − 1)!

×
mE−1∑
i=0

i∑
j=0

(
i

j

)
�(mJ + j)

i!(θE)i
,

×xie−x/θE

(
1

θJ

+ x

θE

)−(mJ +j)

. (29)
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Since the frequency selective fading channels between
the particular relay to the eavesdroppers are independent and
identically distributed, the CDF of the SINREn∗ is given as

FSINRRmEn∗ (x) = [FSINRRmEn
(x)]N . (30)

Appendix C

We first derive the PDF of SINRRmEn∗ ,

fSINRRmEn∗ (x) = ∂FSINRRmEn∗ (x)

∂x
.

(31)

Since (12), we derive the PDF of SINRRm∗En∗ ,

fSINRRm∗ En∗ (x) = MfSINRRmEn∗

× (x)
[
1 − FSINRRmEn∗ (x)

]M−1
. (32)
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