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Reservoir engineering enables the robust and unconditional preparation of pure quantum states in noisy
environments. We show how a family of nonclassical states of a mechanical oscillator can be stabilized in a
cavity that is parametrically coupled to both the mechanical displacement and the displacement squared. The
cavity is driven with three tones, on the red sideband, on the cavity resonance, and on the second blue sideband.
The states so stabilized are (squeezed and displaced) superpositions of a finite number of phonons. They show
the unique feature of encompassing two prototypes of nonclassicality for bosonic systems: by adjusting the
strength of the drives, one can in fact move from a single-phonon- to a Schrödinger-cat-like state. The scheme
is deterministic, supersedes the need for measurement-and-feedback loops, and does not require initialization of
the oscillator to the ground state.
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I. INTRODUCTION

The preparation and manipulation of pure quantum states
usually requires isolation of the system from the surround-
ing environment and control of the Hamiltonian. Pursuing
a radically different approach, reservoir engineering aims
instead to stabilize genuine quantum features of a system by
tailoring the properties of the environment [1]. Such a tech-
nique has proven particularly successful in cavity systems,
where a damped cavity mode naturally provides a highly
tunable reservoir. Reservoir engineering has been successfully
applied to trapped atoms [2] and ions [3–5], circuit quan-
tum electrodynamics [6,7] and opto- and electromechanics
[8–12]. Focusing on cavity optomechanics, the stabilization
of mechanical single- and two-mode squeezed states has been
recently achieved [13–16]. However, despite this success, the
dissipative preparation of mechanical pure states is currently
limited by the linear character of the evolution, which restricts
the set of target states to Gaussian ones [17,18].

In order to prepare non-Gaussian—and especially
nonclassical—states of motion, some source of nonlinearity
is needed [19]. Early proposals for generating mechanical
nonclassical states in optomechanical systems exploited
the regime of single-photon strong coupling [20,21], which
however is extremely weak in current experimental platforms.
Conditional strategies have also been developed, e.g., based
on photon-subtraction or pulsed interactions, which however
suffer from being probabilistic and/or having a low efficiency
[22–27]. In contrast, reservoir engineering guarantees the
stable and unconditional preparation of the desired state.

In this paper we propose a dissipative scheme that exploits
both the linear and the nonlinear (quadratic) optomechanical

coupling between one cavity mode and one mechanical res-
onator to generate highly nonclassical states of motion of
the mechanical element. In our scheme, the cavity provides
a tunable reservoir whose properties are controlled by ap-
plying three coherent drives. A specific choice of their rel-
ative strengths and phases yields a class of bosonic steady
states that admits a simple analytical expression. These states
are (squeezed and displaced) finite superpositions of phonon
number states with fixed parity and are parametrized by a
non-negative integer n, which determines how many number
states are superimposed. By selecting n = 1 we can stabilize
a (squeezed displaced) single-phonon state, while for increas-
ing n the state becomes a macroscopic quantum superpo-
sition similar to a Schrödinger cat state. Our scheme thus
interpolates between the two prototypes of nonclassicality
for bosonic systems: from single-excitation nonclassicality,
revealed in the phase space by a single pronounced negativity
of the Wigner function, to “interference fringes” typical of
macroscopic superposition states. These features are shown
to be robust against the effect of mechanical dissipation.

Contrary to existing proposals for the dissipative prepara-
tion of Schrödinger cat states that rely on a purely quadratic
optomechanical coupling [28,29], our scheme does not re-
quire initialization to the ground state, given that the tar-
get state corresponds to a unique steady state. Our pro-
posal also differs from that of Refs. [30,31] inasmuch as it
does not require any anharmonicity of the potential. Finally,
our protocol does not rely on the prohibitive single-photon
strong coupling, which has been exploited to stabilize me-
chanical single-phonon states [32] and certain sub-Poissonian
states [33].

2469-9926/2018/98(6)/063801(12) 063801-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.98.063801&domain=pdf&date_stamp=2018-12-03
https://doi.org/10.1103/PhysRevA.98.063801


MATTEO BRUNELLI et al. PHYSICAL REVIEW A 98, 063801 (2018)

FIG. 1. (a) A cavity mode (â) and a mechanical oscillator (b̂) are
coupled via a linear-and-quadratic optomechanical interaction with
strength g

(1,2)
0 [Eq. (1)]. The cavity is driven with three lasers as

shown on the left-hand side. (b) The cavity fluctuation d̂ is coupled
via a beam-splitter interaction (with strength G1) to the operator f̂ ,
which is a nonlinear function of b̂ [Eqs. (2) and (3)] and whose form
is determined by the relative strengths and phases among the drives
(symbolized by the circles). The prevailing cavity losses, which
couple the system at a rate κ to an environment with zero thermal
occupation, drive the oscillator toward the desired state [Eqs. (7) or
(8)] while mechanical damping at a rate γ introduces imperfections
(see Fig. 3).

II. MODEL

We consider a cavity mode whose frequency is paramet-
rically coupled to the displacement and the displacement
squared of a mechanical resonator. The Hamiltonian is given
by (we set h̄ = 1 throughout)

Ĥ = ωcâ
†â + ωmb̂†b̂ − g

(1)
0 â†â(b̂ + b̂†)

− g
(2)
0 â†â(b̂ + b̂†)2, (1)

where â (b̂) describes the cavity (mechanical) mode with
frequency ωc (ωm) and g

(1,2)
0 quantifies the single-photon

coupling strengths [34]. We refer to the term in Eq. (1)
proportional to the mechanical position (position squared) as
the linear (quadratic) term; as sketched in Fig. 1(a), its action
consists in the displacement (squeezing) of the mechanical
mode conditioned on the number of cavity photons.

The cavity is driven with three lasers, one red-detuned by
one mechanical frequency, one blue-detuned by twice the me-
chanical frequency, and one resonant, as schematically shown
in Fig. 1(a). The effect of the drives is taken into account by
the displacement transformation â = ∑

k αke
−iωkt + d̂, where

αk is the intracavity amplitude at each driving frequency
ωk and d̂ is a quantum fluctuation. Moving to a frame
rotating with the cavity and mechanical frequencies, we
can write the displaced Hamiltonian as Ĥ = ĤRWA + ĤCR,
where ĤRWA contains the transitions resonantly enhanced by
the drives while ĤCR collects the off-resonant terms. If we
restrict ourselves to the limit |G1,2,3| � ωm, |RG1| � ωm,
and |R−1G2,3| � ωm, where R = g

(2)
0 /g

(1)
0 , G1 = α1g

(1)
0 , and

G2(3) = α2(3)g
(2)
0 , we can neglect the counter-rotating terms

and consider only the resonant contributions (cf. Appendix A)

ĤRWA = G1(d̂†f̂ + d̂ f̂ †), (2)

where we have introduced the operator

f̂ = b̂ + G2

G1
b̂† 2 + G3

G1
(b̂b̂† + b̂†b̂). (3)

In the following we take the coefficients G1,2,3 to to be real
without loss of generality. Equation (2) describes a beam-
splitter interaction between the cavity fluctuation and a non-
linear combination of the mechanical creation and annihila-
tion operators, as shown in Fig. 1(b). The form of Eq. (3)
stems from the joint presence of the linear and the quadratic
coupling between one cavity mode and one mechanical oscil-
lator; coupling to different cavity modes was recently consid-
ered to obtain a tunable optomechanical nonlinearity [35].

We also need to take into account the effect of dissipation.
We start by including the dominant cavity losses, in which
case the evolution of the joint density matrix �̂ reads

˙̂� = −i[ĤRWA, �̂] + κ Dd [�̂], (4)

where Do[�̂] = ô�̂ô† − 1
2 (ô†ô�̂ + �̂ô†ô) is the standard dis-

sipator. Provided that a stationary state exists, this is given
by �̂ss = |ψss〉〈ψss |, with |ψss〉 = |0〉 ⊗ |ϕ〉 and where the
mechanical state obeys the dark-state condition [36]

f̂ |ϕ〉 = 0. (5)

By varying the number, strength, and frequency of the drives,
reservoir engineering with linear-and-quadratic coupling al-
lows to stabilize a plethora of nonclassical states and mani-
folds thereof [37]. In the following we focus on a particularly
relevant instance.

Family of steady states. We now introduce and characterize
a family of states that are generated within the scheme pre-
sented above. If we assume

G3 = −G2 = G1

2
√

2n + 1
, (6)

where n ∈ N0 is a non-negative integer, the mechanical steady
state |ϕ〉 ≡ |ϕn〉 is described by the surprisingly simple wave
function

ϕn(x) ∝ e− X2
n

4 Hn(Xn). (7)

In the equation above, ϕn(x) = 〈x|ϕn〉 and Hn(Xn) is the

Hermite polynomial of argument Xn =
√

2
3 (x + √

4n + 2).
This expression has been obtained by solving the differ-

ential equation associated with Eq. (5) (cf. Appendix D).
The choice of the coupling strengths as in Eq. (6), and in
particular the introduction of an integer parameter, are crucial
to obtain such a simple expression. Nevertheless, we verified
numerically that, for small deviations from these values, the
steady state (now no longer pure) has near-unit fidelity with
the target state described by Eq. (7), so that no fine-tuning
issue arises.

The stationary wave function ϕn(x) resembles that of a
simple harmonic oscillator, but with two crucial differences:
(i) the integer n appearing both in the order and in the
argument of the Hermite polynomial and (ii) the presence
of a factor 4 in the exponential. The latter, albeit seemingly
innocuous, prevents ϕn(x) from being recast into the standard
harmonic oscillator form and, in fact, entails a superposition
of harmonic oscillator wave functions. The corresponding
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FIG. 2. Wigner function W (x, p) of the state |ϕn〉 [Eq. (8)] for (a) n = 1, (b) n = 3, and (c) n = 6. The marginals of W (x, p), which
provide the position and momentum probability distribution, are also shown.

state is indeed a squeezed and displaced superposition of a
finite number of Fock states (cf. Appendix D)

|ϕn〉 ∝ D̂(ζn)Ŝ(r )


 n
2 �∑

j=0

1

22j j !
√

(n − 2j )!
|n − 2j 〉, (8)

where Ŝ(r ) and D̂(ζn) are the squeezing and displacement
operators of argument r = ln

√
3 and ζn = −√

2n + 1, re-
spectively, and 
y� yields the greatest integer smaller than or
equal to y. Equation (8) provides the exact expression of an in-
stance of a bosonic state and represents one of the main results
of this work. Unlike coherent or squeezed states, for which
the coefficients are found by writing the definition [analog of
Eq. (5)] in the Fock basis and solving a recurrence relation,
such an attempt here would fail. Instead, our approach of
first obtaining the wave function by projecting the dark-state
condition onto the position eigenstates and from that deriving
a closed expression for the coefficients proves successful.

The state |ϕn〉 consists of two Gaussian unitary operations
acting on a finite superposition of Fock states, which is respon-
sible for its nonclassical nature. This finite seed contains at
most n excitations, has a definite number parity, and can be in
principle isolated by deterministically counter-squeezing and
displacing the state. Theoretical proposals to achieve prob-
abilistically the truncation of photon number superpositions
have been put forward for linear optical devices [38,39]. In
contrast, here a finite superposition can be obtained uncondi-
tionally, without exploiting entanglement and for a massive
system. These states may thus be useful for quantum infor-
mation processing as a robust choice for qubit encoding [40],
similarly to what has already been proposed for Schrödinger
cat states [41,42].

In Fig. 2 we show the Wigner function
W (x, p) = 1

π

∫
dy e−2ipyϕn(x + y)ϕ∗

n (x − y) of |ϕn〉 for
different values of n. The transition from a single pronounced
negativity [Fig. 2(a)] to phase-space “ripples” [Figs. 2(b) and
2(c)] is apparent. It is useful to compare our solution to the
family of Schrödinger cat states |C±

α 〉 ∝ |α〉 ± | − α〉 [43],
for which optomechanical realizations exploiting reservoir
engineering have been proposed [28,29,31]. Contrary to the
case of an odd cat state |C−

α 〉, which in the limit of small
amplitude approximates a single-phonon state—the so-called

kitten state [44]—the state |ϕ1〉 = D̂(ζ1)Ŝ(r )|1〉 is exactly a
(squeezed and displaced) single-phonon state. On the other
hand, for large n the state |ϕn〉 approaches a Schrödinger
cat, yet the two never fully overlap (even asymptotically unit
fidelity is not attained), so that Eq. (8) embodies a similar but
distinct instance of a macroscopic quantum superposition (cf.
Appendix E).

III. RATE OF APPROACHING THE STEADY STATE
AND EFFECTS OF MECHANICAL DISSIPATION

We now address how the unavoidable presence of mechan-
ical damping affects the properties of the target state. For
simplicity, we focus on the fast cavity limit κ 
 Gk , where
adiabatic elimination of the cavity field leads to an effective
master equation for the reduced mechanical density matrix
(see Refs. [45,46] or cf. Appendix B for explicit derivation)

˙̂�(m) = γ C Df [�̂(m)] + γ (n̄ + 1)Db[�̂(m)] + γ n̄Db† [�̂
(m)],

(9)

where C = 4G2
1/(γ κ ) defines the optomechanical cooperativ-

ity. The first term on the right-hand side describes dissipation
induced by the modified jump operator

f̂ = b̂ − 1

2
√

2n + 1
[b̂† 2 − (b̂b̂† + b̂†b̂)], (10)

which makes manifest the role played by the cavity in provid-
ing an engineered environment for the mechanical degree of
freedom. In Eq. (9) we also added thermal decoherence to a
mechanical bath at a rate γ and with n̄ thermal occupancy.

Let us first consider the limit of no mechanical damping.
In this case Eq. (9) describes a purely dissipative dynamics,
however relative to a jump operator that is neither linear nor
bosonic; complete information about the dynamics can be
uncovered by studying the spectrum of Df . In the infinite-time
limit the state �̂(m)

ss = limt→∞ �̂(m) satisfies Df [�̂(m)
ss ] = 0 and

is nondegenerate. We can conclude that our protocol is both
deterministic and independent of the choice of the initial state,
allowing in principle to start from any given state, e.g., a ther-
mal one. This must be contrasted with dissipative preparation
of mechanical cat states [28,29], for which the steady state
has a double degeneracy and consequently initialization to a
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FIG. 3. (a) Plot of the inverse spectral gap δ−1
n of the dissipator

Df with jump operator as in Eq. (10) for different n, in units of
(γ C)−1. δn/(γ C) = −Re λn, with λn the smallest nonzero eigen-
value. (b)–(d) Fidelity between the target state Eq. (8) and the steady
state in the presence of mechanical damping as a function of n̄ and
γ (parametrized by the cooperativity C) for (b) n = 1, (c) n = 2, and
(d) n = 3. We set G1 = 0.05κ .

state of definite parity—typically the ground state—is needed.
The presence of a linear part in f̂ breaks the discrete parity
symmetry associated with the quadratic terms and makes the
system more robust to losses [47]. We also stress that our
method enables the preparation of macroscopic superposition
states of chosen parity, while reservoir engineering of odd cat
states is highly impractical, as it requires to initialize the state
to a pure odd-parity state, e.g., in |1〉.

The analysis of the spectrum also provides information
about the timescale required to reach the steady state. The
slowest decaying term is associated with the eigenvalue λn

that has the smallest nonzero real part, which in turn de-
fines the spectral gap δn/(γ C) = −Re λn. The time needed
to approach the steady state (with a fixed fidelity) scales as
τn ∼ δ−1

n . As pointed out, when n increases, the state |ϕn〉
realizes a macroscopic superposition. On the other hand, from
Eq. (10) we see that for increasing n the nonlinear terms
are suppressed with respect to the cooling part: the optimal
strategy to prepare a large quantum superposition is therefore
to minimally perturb—in the way prescribed by Eq. (10)—a
standard cooling process, which is recovered by setting G2 =
G3 = 0 in Eq. (3). However, we find that the spectral gap is
exponentially suppressed with respect to n and therefore τn

grows exponentially, as shown in Fig. 3(a). It also represents
the main limiting factor of our protocol for the generation
of macroscopic quantum states when thermal decoherence is
taken into account.

We finally introduce a nonzero coupling with the bath.
Figures 3(b)–3(d) show the mismatch, quantified by the fi-
delity [48], between the actual steady state and the target state

in Eq. (8). As expected, mechanical dissipation is responsible
for a decrease of the purity and states with greater n are
more susceptible to thermal decoherence. Nevertheless, we
see that regions of near-unit fidelity are present even for
considerable thermal occupancy. Moreover, even if the fidelity
is no longer close to one, we show that the steady state retains
nonclassical features and is always non-Gaussian (in the range
of parameters explored, see Appendix F).

IV. EXPERIMENTAL IMPLEMENTATION

To implement our idea, we consider a three-mode op-
tomechanical system made of a pair of two-dimensional (2D)
photonic crystal cavities in a double-slotted configuration
separated by a central mechanical beam [49,50]. When the
beam is equidistant from the two slabs, an enhanced quadratic
optomechanical coupling is obtained [51]. On the other hand,
a shift in the beam’s position, which can be controlled via
electrostatic actuation, determines a tunable coupling that has
both a linear and a quadratic component (cf. Appendix C).
To estimate the single-photon couplings, we consider the
following realistic parameters from Ref. [50]: photon tun-
neling rate between left and right cavity J/2π = 0.1 GHz,
bare frequency pull parameter gL = −gR = 100 GHz/nm,
zero-point amplitude of the nanobeam xzpf = 10 fm, and
application of a bias voltage of a few tenth of a millivolt (that
guarantees a displacement x0 < 0.1 pm). These parameters
yield g

(2)
0 ≈ 5 kHz and g

(1)
0 ≈ 70 kHz, and hence a ratio

R ≈ 0.07, for which the rotating-wave approximation (RWA)
in Eq. (2) is justified (see Appendix A for details). The
central beam supports several acoustic modes ranging from
a few megahertz to a few gigahertz, with modes of frequency
ωm > 300 MHz lying deep in the resolved-sideband regime.
Photonic crystal cavities allow for large intracavity photon
capacities nc > 104, which give couplings G1,2,3 in the 10–
100 MHz range. The reasonable choice of the parameters
Qm = 106, ωm/2π = 400 MHz, κ/2π = 50 MHz, nc = 104,
and g

(1)
0 = 70 kHz gives a multiphoton cooperativity C ≈ 104,

which can be easily increased by one order of magnitude by
considering higher mechanical Q and/or higher couplings.
This would allow for the stabilization of our target state with
high fidelity also without initialization in the ground state.

Once the target state �̂(m)
ss has been prepared, a cavity mode

(different from the one providing the engineered reservoir)
can be employed for the readout. Tomographic schemes via
quantum nondemolition (QND) coupling have been proposed
both in the good [52,53] and bad cavity limits [54–57] and
can be directly apply here. A less demanding task would be
the certification of the nonclassicality of the state, which can
be accomplished with a single homodynelike measurement
[56]. In photonic crystal architecture, it may be especially
convenient to exploit the optomechanical interaction with one
of the two cavity supermodes for the preparation and the other
for the readout.

V. CONCLUSIONS

The linear and the quadratic couplings achievable in
optomechanical systems have so far been addressed sep-
arately. We showed that the joint presence of both terms
enables engineering of unique nonclassical features in the
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state of a mechanical resonator. Our proposal achieves the
unconditional preparation of states of a macroscopic object
featuring a nonpositive Wigner function.
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APPENDIX A: DERIVATION OF THE HAMILTONIAN
AND THE EFFECT OF COUNTER-ROTATING TERMS

We consider an optomechanical system where the fre-
quency of a cavity mode parametrically couples to the dis-
placement and the displacement squared of a mechanical
resonator [34]. The Hamiltonian is given by (h̄ = 1)

Ĥ = Ĥ0 + Ĥint + Ĥdrive, (A1)

where we set

Ĥ0 = ωcâ
†â + ωmb̂†b̂, (A2a)

Ĥint = −g
(1)
0 â†â(b̂ + b̂†) − g

(2)
0 â†â(b̂ + b̂†)2, (A2b)

Ĥdrive = E (t )â† + E∗(t )â. (A2c)

The first of these expressions, Eq. (A2a), contains the
free oscillating terms, where â (b̂) describes the cavity
(mechanical) mode with frequency ωc (ωm). The second,
Eq. (A2b), describes the linear and the quadratic optome-
chanical interaction with single-photon coupling strength
g

(k)
0 = −xk

zpf2
1−k∂k

xωc(x̂)|x=0, k = 1, 2, x̂ being the (dimen-
sionless) mechanical displacement and xzpf the zero-point
fluctuation. The last expression, Eq. (A2c), includes a coher-
ent drive of the cavity with multiple tones of frequency ωk and
amplitude εk , namely, E (t ) = ∑

k εke
−iωkt .

The cavity is in contact with an effective zero-temperature
reservoir provided by the extracavity modes, while the me-
chanical oscillator is in contact with a bath of inverse temper-
ature β that induces n̄ = (eβωm − 1)−1 average thermal exci-
tations [43,45]. We assume for both processes the Markovian
limit, that translates into the following expressions for the
correlation functions of the optical (âin) and mechanical (b̂in)
input noise operator:

〈âin(t )â†
in(t ′)〉 = δ(t − t ′), 〈â†

in(t )âin(t ′)〉 = 0, (A3a)

〈b̂in(t )b̂†in(t ′)〉 = (n̄ + 1)δ(t − t ′),

〈b̂†in(t )b̂in(t ′)〉 = n̄ δ(t − t ′). (A3b)

The Heisenberg-Langevin equations for the system are thus
given by

˙̂a = −i
[
ωc − g

(1)
0 (b̂ + b̂†) − g

(2)
0 (b̂ + b̂†)2]â

− κ

2
â − iE + √

κâin, (A4a)

˙̂b = −iωmb̂ + i
[
g

(1)
0 + 2ig

(2)
0 (b̂ + b̂†)

]
â†a − γ

2
b̂ + √

γ b̂in,

(A4b)

where κ and γ are the optical and the mechanical damping
rates.

We then separate the contributions to the dynamics into
mean field and fluctuations, i.e., â(t ) = α(t ) + d̂(t ). After a
transient, we expect the cavity field to follow the modula-
tion of the drive, i.e., α(t ) = ∑

k αke
−iωkt . Driving multiple

frequencies leads to amplitude modulation of the intracavity
field, which in turn translates into an oscillating force acting
on the mechanical element. This fact can be taken into account
by decomposing also the mechanical mode into mean field and
fluctuations, b̂(t ) = β(t ) + ĥ(t ). Furthermore, if we restrict
ourselves to the limit g

(j )
0 αkαl � ωm, j = 1, 2, the mean

fields attain a stationary value, which we refer to as αk,s, βs .
The steady amplitudes take the following expressions:

αk,s = −iεk

κ
2 − i

[
�k + g

(1)
0 (βs + β∗

s ) + g
(2)
0 (βs + β∗

s )2
] ,

(A5a)

βs = g
(1)
0

∑
k |αk,s |2

(
ωm + i

γ

2

)(
γ

2

)2 + ωm

(
ωm − 4g

(2)
0

∑
k |αk,s |2

) , (A5b)

where we set �k = ωk − ωc. We see that position and
position-squared couplings lead to a shift of the equilibrium
mechanical position and to a modified detuning. However,
these effects are small and can be safely neglected; therefore,
we set βs ≈ 0 and αk,s = −iεk

κ/2−i�k
in what follows.

Moving to an interaction picture with respect to Ĥ0 the
Hamiltonian is transformed into

Ĥ = −
∑

k

(αkd̂
†e−i�k t + α∗

k d̂ei�k t )

× [
g

(1)
0 (b̂e−iωmt + b̂†eiωmt ) + g

(2)
0 (b̂e−iωmt + b̂†eiωmt )2].

(A6)

We now consider the following choice for the drives,

�1 = −ωm, �2 = 2ωm, �3 = 0, (A7)

which correspond to driving the first red mechanical sideband,
the second blue sideband, and on the cavity resonance. This
choice is to be understood a posteriori, as a suitable modifica-
tion of a cavity cooling scheme that selects the nonlinear terms
necessary to prepare the desired state. Indeed, for particular
values of the strength and phase of the second and third
drives with respect to the cooling beam, this setup cools
the mechanical mode toward a nonclassical state of motion.
The application of the drives displayed in Eq. (A7) makes the
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following processes in the Hamiltonian Eq. (A6) resonant:

ĤRWA = G1(d̂†f̂ + d̂ f̂ †), (A8)

where

f̂ = b̂ + G2

G1
b̂† 2 + G3

G1
{b̂, b̂†}, (A9)

and we set G1 = α1g
(1)
0 , G2(3) = α2(3)g

(2)
0 , and {·, ·} is the

anticommutator. The resonant contributions in Eq. (A8) de-
scribe a beam-splitter interaction between the fluctuation of
the cavity field d̂ and the nonlinear combination of mechanical
creation and annihilation operators f̂ .

The counter-rotating terms ĤCR = Ĥ − ĤRWA are

ĤCR = d̂†{e−iωmt
(
α2g

(1)
0 b̂† + α3g

(1)
0 b̂ + α1g

(2)
0 b̂2

)
+ e+iωmt (α3g

(1)
0 b̂† + α1g

(2)
0 {b̂, b̂†})

+ e−2iωmt
(
α2g

(2)
0 {b̂, b̂†} + α3g

(2)
0 b̂2

)
+ e+2iωmt

(
α1g

(1)
0 b̂† + α3g

(2)
0 b̂† 2

)
+ e−3iωmtα2g

(1)
0 b̂ + e+3iωmtα1g

(2)
0 b̂† 2

+e−4iωmtα2g
(2)
0 b̂2

} + H.c. (A10)

We rewrite the oscillating terms as ĤCR = ∑4
k=1 eiωmkt Ĥ

(k)
CR +

H.c., with

Ĥ
(1)
CR = R−1G2d̂b̂ + R−1(G3d̂

† + G3d̂ )b̂† + RG1d̂ b̂† 2

+RG1d̂
†{b̂, b̂†}, (A11a)

Ĥ
(2)
CR = G1d̂

†b̂† + (G3d̂
† + G3d̂ )b̂† 2 + G2d̂{b̂, b̂†},

(A11b)

Ĥ
(3)
CR = R−1G2d̂b̂† + RG1d̂

†b̂† 2, (A11c)

Ĥ
(4)
CR = G2d̂ b̂† 2, (A11d)

where we introduced the ratio R = g
(2)
0 /g

(1)
0 between the

quadratic and the linear single-photon coupling strength.
From this explicit form it is apparent that a necessary con-
dition for the RWA to be valid is that∣∣G1,2,3

∣∣ � ωm, |RG1| � ωm, and
∣∣R−1G2,3

∣∣ � ωm.

(A12)

We can verify the validity of the RWA by integrating numeri-
cally the time-dependent master equation

˙̂� = −i[ĤRWA + ĤCR, �̂] + κ Dd [�̂] (A13)

and comparing its long-time average with the steady state of
the same master equation when omitting the counter-rotating
terms ĤCR. In the following we choose the driving amplitudes
such that

G3 = −G2 = G1

2
√

2n + 1
, (A14)

where n is a non-negative integer. In Fig. 4 we show the
fidelity between the two steady states of the master equation
(A13), with and without ĤCR, as a function of the ratio R

for different values of n = 0, 1, 2, 3 and the parameters κ =
0.001ωm, G1 = 0.01κ . We can see that there exist ranges of
values of R, within the region identified by the conditions

F
id

el
it
y

R

0.5

FIG. 4. Fidelity between the long-time average of the full master
equation (A13) and the target state (8) as a function of the ratio
R = g

(2)
0 /g

(1)
0 between single-photon quadratic and linear coupling.

Parameters are κ = 0.001ωm, G1 = 0.05κ . The horizontal black line
corresponds to taking the rotating-wave approximation; the solid
yellow, dot-dashed red, dashed green, and dotted blue curves are for
n = 0, 1, 2, 3, respectively.

in Eq. (A12), for which the rotating-wave approximation is
fully justified (for the parameters under consideration). The
range of values R for which the counter-rotating terms can be
neglected depends on n, and the fidelity develops a double-
peak structure that shrinks for increasing n; this behavior can
be understood from the fact that conditions (A12) depend on
both the ratio R and its inverse. However, there is always a
window of values R that achieves near-unit fidelity.

APPENDIX B: DERIVATION OF THE EFFECTIVE
MASTER EQUATION

In the main text we used an effective master equation for
the mechanical degrees of freedom only, where the cavity field
was adiabatically eliminated. Here we give a derivation of the
effective master equation for a generic system consisting of
a damped cavity mode coupled to an arbitrary function of
the mechanical operators. The master equation describing the
dynamics of the joint density operator is

˙̂� = −i[Ĥ , �̂] + κ

(
â�̂â† − 1

2
â†â�̂ − 1

2
�̂â†â

)
, (B1)

where Ĥ = G(â†f̂ + âf̂ †), â is the cavity mode annihilation
operator, κ is the cavity damping rate, and f̂ a function of b̂

and b̂†.
We assume that there are two time scales in the system: a

fast dynamics for the cavity and a slow one for the mechanical
oscillator; this assumption translates into G � κ . To eliminate
the cavity variables we use the recipe for adiabatic elimination
developed in Ref. [58]: Master equation (B1) can be put in the
form

˙̂� = L0�̂ + GL1�̂, (B2)

where L0�̂ ≡ κ (â�̂â† − 1
2 â†â�̂ − 1

2 �̂â†â) and L1�̂ ≡
−i[Ĥ1, �̂], with Ĥ1 ≡ Ĥ /G. Then we treat the second
term of Eq. (B2) as a perturbation since we assumed that
G � κ . We write the effective master equation for the
mechanical oscillator in the form

˙̂�b = Lb�̂b, (B3)
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where �̂b is the density operator describing the mechanical
state, and Lb is a Lindbladian. The latter is expressed as a
power series in the perturbation parameter G:

Lb�̂b =
∑
n�1

GnLb,n�̂b . (B4)

Up to second order in perturbation theory, Lb,1 and Lb,2 are
given by the expressions [58]

Lb,1�̂b = −i[Ĥb, �̂b] , (B5)

Lb,2�̂b =
∑

�

(
B̂��̂bB̂

†
� − 1

2
{B̂†

� B̂�, �̂b}
)

, (B6)

where Ĥb = Ŝ†Ĥ1Ŝ and B̂� = 2Ŝ†M̂�L̂(L̂†L̂)
−1

Ĥ1Ŝ with
L̂ ≡ √

κâ and Ŝ and M̂� are the operators defined as follows:
in the absence of perturbation (G = 0) the system evolves
toward the steady state |0〉a〈0| ⊗ Tra[�̂(0)]. The set of all
steady states (when the initial state �̂(0) varies) has the sup-
port |0〉a ⊗ |�〉b (� = 0, 1, . . .). The operator Ŝ is defined as
Ŝ = ∑

� (|0〉a ⊗ |�〉b )b〈�| and M̂� are obtained from the rela-
tion |0〉a〈0| ⊗ Tra[�̂(0)] = ∑

� M̂��̂(0)M̂†
� with the condition∑

� M̂
†
�M̂� = 1 (the identity operator in the Hilbert space of

the system). It is straightforward to obtain M̂� = |0〉a〈�| ⊗ 1b

(1b denotes the identity operator in the Hilbert space of the
mechanical oscillator). With these expressions we find Ĥb =
0 and B̂� = 2√

κ
δ�,0f̂ , so that the effective master equation

reads

˙̂�b = 4G2

κ

(
f̂ �̂bf̂

† − 1

2
{f̂ †f̂ , �̂b}

)
. (B7)

This is the reduced master equation (9) upon the identification
G ≡ G1, â ≡ d̂ , �̂b ≡ �̂(m), and f̂ as in Eq. (10).

APPENDIX C: IMPLEMENTATION

The system we consider for implementing our scheme
consists of a pair of two-dimensional photonic crystal cavities,
obtained by patterning two thin silicon films, separated by
a central suspended mechanical beam, also realized with a
photonic crystal with a single row of holes (nanobeam). The
two cavities host localized degenerate optical modes âL and
âR of the same frequency ω and are coupled at a rate J

via photon hopping across the central mechanical beam b̂ of
frequency ωm. A sketch of this multimode setup is given in
Fig. 5. Details about the experimental realization of such a
device can be found in Ref. [49], while Ref. [50] provides an
in-depth study of the optical and acoustic modes accessible in
this multimode structure and their optomechanical properties.
The Hamiltonian of the three-mode optomechanical system is
given by

Ĥtot = Ĥ0 + Ĥhop + Ĥint, (C1)

Ĥ0 = ω(â†
LâL + â

†
RâR ) + ωmb̂†b̂, (C2)

Ĥhop = J (â†
LâR + â

†
RâL), (C3)

Ĥint = xzpf (b̂ + b̂†)(gLâ
†
LâL + gRâ

†
RâR ). (C4)

0 x0

b̂

âL âR

J

FIG. 5. Sketch of an optomechanical crystal implementation
of a tunable linear-and-quadratic coupling. Due to photons hop-
ping through the central nanobeam (mode b̂), localized photonic
modes âL,R hybridize into supermodes delocalized over the two
photonic cavities. The supermodes are optomechanically coupled to
the nanobeam displacement and displacement squared. When the
beam is equidistant from the two slabs (x0 = 0), a purely quadratic
optomechanical coupling is realized, while a controlled offset of
the nanobeam displacement x0 �= 0 enables arbitrary linear-and-
quadratic couplings.

Due to the tunneling, the localized optical modes hybridize
into supermodes. The Hamiltonian written in the supermode
basis â± = (âL ± âR )/

√
2 can be diagonalized by assuming a

quasistatic approximation of the mechanical motion, resulting
in eigenfrequencies ω± = ω±(x̂) that are given by [51]

ω±(x̂) = ω + g±x̂ ±
√

J 2 + g2+−x̂2, (C5)

where x̂ = xzpf (b̂ + b̂†) and

g+ = g− = gL + gR

2
and g+− = gL − gR

2
(C6)

are referred to as linear self-mode coupling and linear cross-
mode coupling, respectively. For the geometry we consider
one has gL = −gR , so that by expanding Eq. (C5) around the
position equidistant from the two slabs (x0 = 0) one is left
with a purely quadratic interaction with enhanced optome-

chanical coupling g
(2)
0 = g2

+−
2J

x2
zpf . The enhancement follows

from the fact that J can be made arbitrarily small. On the
other hand, when the central beam position is not equidistant
from the two crystal cavities, i.e., the two air slots are not of
the same width, the expansion of the supermode frequency
around x0 �= 0 leads to both a linear and a quadratic term. The
expressions read [50]

g±(x0) ≈ gL + gR

2
± gL − gR

2

Z√
Z2 + 1

, (C7)

g+−(x0) ≈ gL − gR

2

1√
Z2 + 1

, (C8)
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where Z = (gL−gR )
2J

x0, which entail single-photon optome-
chanical coupling of the form

g
(1)
0 = g±(x0) xzpf , (C9)

g
(2)
0 = g2

+−(x0)

2J

1

(Z2 + 1)3/2
x2

zpf . (C10)

The separation of the slots with respect to the central beam
can be fine-tuned via electrostatic actuation, which provides
extremely refined control over the ratio R = g

(2)
0 /g

(1)
0 . To

estimate the single-photon couplings we consider the fol-
lowing values, taken from the finite-element simulation of
Ref. [50]: J/2π = 0.1 GHz, xzpf = 10 fm, application of a
bias voltage of a few tenths of a millivolt that guarantees
a displacement x0 < 0.1 pm (Ref. [59] reports a measured
tunability of 0.05 nm/V2 in a similar double-slotted photonic
crystal cavity), and gL = −gR = 100 GHz/nm. Plugging
these parameters in Eqs. (C9) and (C10) yields g

(2)
0 ≈ 5 kHz

and g
(1)
0 ≈ 70 kHz, and thus R ≈ 0.07, for which the RWA is

an excellent approximation for several values of n considered
in Fig. 4. In general, depending on the specific target state |ϕn〉
to be stabilized, the ratio R needs to be tuned to the required
value(s).

The central beam hosts several acoustic modes, both flexu-
ral mechanical resonances and localized “breathing” modes,
ranging from a few megahertz to a few gigahertz. A large
cavity quality factor of Q ≈ 4 × 106 at the telecom wave-
length λ = 1550 nm places mechanical modes of frequency
ωm > 300 MHz deep in the resolved-sideband regime. For
the specific deign of Ref. [50], finite-element simulations give
for such high-frequency modes xzpf ≈ 3 fm, which however
is not much smaller than the one we have assumed for
the estimate of the bare optomechanical couplings. Photonic
crystal cavities allow for large intracavity photon capacities
nc > 104, which gives the multiphoton optomechanical cou-
plings G1,2,3 in the 10–100 MHz range. Assuming a me-
chanical quality factor Qm = 106, a mechanical frequency
ωm/2π = 400 MHz, a cavity decay rate κ/2π = 50 MHz,
intracavity photon number nc = 104, and g

(1)
0 = 70 kHz gives

a multiphoton cooperativity C ≈ 104. This would allow for
the stabilization of our target state with high fidelity also
without initialization in the ground state (see Fig. 3). To
give a reference, at the dilution refrigerator temperature of
15 mK the thermal occupation of a mode ωm/2π = 400 MHz
(1 GHz) is n̄ = 0.39 (0.04), which increases to n̄ = 52 (20)
at 1 K. Larger values of the cooperativity can be obtained by
considering higher mechanical quality factors and/or higher
couplings.

APPENDIX D: DERIVATION OF
THE STEADY-STATE SOLUTION

In this section we derive the analytic expressions for the
wave function, Eq. (7), and from that obtain the Fock-state de-
composition presented in Eq. (8). We also discuss how a finite
accuracy in tuning the coefficients to the values prescribed by
Eq. (A14) affects the target state.

1. Wave function

The dark-state condition, Eq. (5), relative to the com-
bination of mechanical creation and annihilation operators,
Eq. (A9), can be equivalently expressed as the following
differential equation for the system wave function ϕ(x) =
〈x|ϕ〉: (

G2
2 − G3

)
ϕ′′(x) +

(
G1√

2
− G2x

)
ϕ′(x)

+
[
−G2

2 + G1√
2
x + (

G2
2 + G3

)
x2

]
ϕ(x) = 0. (D1)

This is a second-order linear, homogeneous equation, whose
only square integrable solution (for suitable values of the
coefficients G1,2,3) comes in the form of a Hermite function,
i.e., a Hermite polynomial times a Gaussian function. The
explicit expression is rather involved, and hence not reported.
We can simplify it by demanding that the order of the Hermite
polynomial, which is expressed as a combination of G1,2,3, re-
duces to a non-negative integer value n ∈ N0. This constraint
can be expressed, e.g., as G2 = G2(n,G1,G3). Moreover,
upon direct inspection of the solution one can see that the
expression greatly simplifies by choosing G3 and G2 equal
and opposite. This choice fixes the form of the coefficients,
whose magnitude is given by |G2| = |G3| = G1

2
√

2n+1
and in

the following we consider the case G3 > 0, as shown in
Eq. (A14). As a result, the wave function acquires a universal
character, depending only on the parameter n, and takes the
remarkably simple form

ϕn(x) = Nne
− X2

n
4 Hn(Xn), (D2)

where we introduced Xn =
√

2
3 (x + √

4n + 2) and

Nn = (3π )−
1
4

√
n!

(2n)!2F1(−n,−n;−n+ 1
2 ;− 1

2 )
is the normalization

constant, 2F1(a, b; c; z) being the Gaussian hypergeometric
function of argument z. We stress that values of the ratio
between the quadratic terms G3 and G2 different from that
in Eq. (A14) also lead to legitimate wave functions (for
some the solution of Eq. (5) no longer describes a pure
state), whose properties, however, may be very different from
those of ϕn(x) and whose nonclassical features are generally
suppressed.

Figure 6 shows plots of the wave function, Eq. (D2),
for different values of n (left-hand panel), together with the
corresponding probability density function (right-hand panel).
We notice how the wave functions relative to an even or odd
integer n have distinct parity, as for the case of a simple
harmonic oscillator. However, compared to the latter, the
central oscillations of ϕn(x) are progressively suppressed for
increasing values of n and at the same time the probability
density develops a distinct bimodal character; this feature
witnesses the transition to a Schrödinger-cat-like state for
increasing n.

Unlike the quantum harmonic oscillator, where integer
values labeling the solutions follow from the quantization of
energy levels and the wave functions form an orthonormal set,
in our case there are no fundamental mechanisms forbidding
noninteger values—these being determined by the choice of
the drives—and different ϕn(x) are not orthogonal. The simi-
larities between the two wave functions are due to the fact that
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FIG. 6. Wave function ϕn(x ) (top) and corresponding probability
density (bottom) from n = 0 (blue) to n = 8 (orange).

the dark-state condition, Eq. (D1), resembles the Hermite dif-
ferential equation encountered in the stationary Schrödinger
equation for a harmonic potential. However, since the ratio
between the coherent drives can only be tuned up to a finite
precision, it is important to verify that the target state is well
behaved with respect to imperfections. We then proceed to
include small deviations from the optimal couplings shown in
Eq. (A14),

G2 = G1

( −1

2
√

2n + 1
+ δ1

)
,

G3 = G1

(
1

2
√

2n + 1
+ δ2

)
, (D3)

and check the deviation of the steady state from the ideal
one. Figure 7 confirms that the state is robust with respect to
imprecisions in the strength of the drives.

2. Fock-state representation

We now derive the explicit decomposition of the state |ϕn〉
in the Fock basis. To achieve this goal, we start from the
expression of the wave function, Eq. (D2), and exploit the
rescaling property of the Hermite polynomials that, for any
γ ∈ R, is given by

Hn(γ x) =

 n

2 �∑
j=0

γ n−2j (γ 2 − 1)j
(

n

2j

)
(2j )!

j !
Hn−2j (x). (D4)

The wave function is thus rewritten as

ϕn(x) = Nne
− 1

2 ( Xn√
2

)2

Hn

(√
2

Xn√
2

)
, (D5a)

= Nn


 n
2 �∑

j=0

2
n
2 −j

(
n

2j

)
(2j )!

j !
e
− 1

2 ( Xn√
2

)2

Hn−2j

(
Xn√

2

)
,

(D5b)

where 
y� is the floor function of argument y. We hence see
that the wave function, Eq. (D2), is in fact a superposition
of 
 n

2 � + 1 harmonic oscillator wave functions of argument
Xn/

√
2. Moreover, each of these is easily identified with the

wave function of a squeezed displaced number state. Indeed,
one finds

〈x|D̂(ζ )Ŝ(r )|n〉 = 1

π
1
4

√
2nn!er

e− 1
2 ( x+√

2ζ

er
)2
Hn

(
x + √

2ζ

er

)
,

(D6)

where D̂(ζ ) and Ŝ(r ) are displacement and squeez-
ing transformations that, for real parameters, reduce to
D̂(ζ ) = e−i

√
2ζ p̂ and Ŝ(r ) = e−i r

2 (x̂p̂+p̂x̂). Therefore, combin-
ing Eqs. (D5b) and (D6) we can write

ϕn(x) = π
1
4 Nn


 n
2 �∑

j=0

2
n
2 −j

(
n

2j

)
(2j )!

j !

√
2n−2j (n − 2j )!er

×〈x|D̂(ζn)Ŝ(r )|n − 2j 〉, (D7)

δ1

δ2

δ1

δ2

δ1

δ2

0.8

1.

0.6

0.4

0.2

n = 1 n = 2 n = 3

FIG. 7. Fidelity between the target state, Eq. (8), and the steady state obtained with perturbed couplings, Eq. (D3). The fidelity is plotted
against relative errors δ1 (horizontal axis) and δ2 (vertical axis) for n = 1 (left), n = 2 (center), and n = 3 (right).
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where we set

r = 1

2
ln 3, and ζn = −√

2n + 1. (D8)

From Eq. (D7) we can finally read the expression for the state
in the Fock basis,

|ϕn〉 = MnD̂(ζn)Ŝ(r )


 n
2 �∑

j=0

1

22j j !
√

(n − 2j )!
|n − 2j 〉, (D9)

where now the normalization factor reads Mn =√
n!

2F1( 1−n
2 , −n

2 ;1; 1
4 )

. It is also clear that reversing the sign

between G2 and G3 amounts to a change of displacement
direction.

APPENDIX E: COMPARISON WITH
SCHRÖDINGER CAT STATES

We are now interested in comparing the target state of our
protocol with a Schrödinger cat state, which is a well-known
benchmark for macroscopic quantum superposition states. We
consider cat states of the following form:

|C±
α 〉 = N±

α (|α〉 ± | − α〉), (E1)

where the normalization factor is given by N±
α = [2(1 ±

e−2|α|2 )]−
1
2 and the plus (minus) sign selects an even (odd)

cat state, namely, a superposition of only even (odd) number
states. For a better comparison we also consider the target
state |ϕn〉 without the squeezing and the displacement term,
thus focusing on the finite superposition. The fidelity between
the two states is computed as F±(α, n) = |〈C±

α |ϕ̃n〉|, where

|ϕ̃n〉 = Mn


 n
2 �∑

j=0

1

22j j !
√

(n − 2j )!
|n − 2j 〉. (E2)

Given that both states have definite parity, the only nonzero
overlaps are between an even/odd cat state and an even/odd
superposition of Fock states, and their expressions read

F+(α, 2n) = M2n√
cosh |α|2

∣∣∣∣∣∣
n∑

j=0

(α∗)2(n−j )

22j j !(2(n − j ))!

∣∣∣∣∣∣, (E3a)

F−(α, 2n + 1) = M2n+1√
sinh |α|2

∣∣∣∣∣∣
n∑

j=0

(α∗)2(n−j )+1

22j j !(2(n − j ) + 1)!

∣∣∣∣∣∣.
(E3b)

In Fig. 8 we show the maximum fidelity F±
max = F±(αmax, n),

optimized over α, between an even (odd) cat state and even
(odd) finite superposition of Fock states. The fidelity always
lies within the range F±

max ≈ 0.9−1, providing further evi-
dence that our state is indeed a macroscopic quantum super-
position; larger values of n correspond to larger superposition
states, as also witnessed by the increasing amplitude of the
“closest” cat state, shown in the right-hand panel. However,
by increasing n, the fidelity does not approach 1 and in
fact saturates to a value F±

max ≈ 0.92, thus confirming that

FIG. 8. Top: Maximum fidelity between even (odd) Schrödinger
cat states and even (odd) finite superpositions for different integers
n. Bottom: Values of the amplitude of the cat state yielding optimal
fidelity for each n.

|C±
α 〉 and |ϕn〉 provide similar but always distinct instances of

macroscopic superposition states.

APPENDIX F: EFFECTS OF THE MECHANICAL
DAMPING ON THE NONCLASSICALITY

We now address how the nonclassical features of
the target state, Eq. (8), are affected by the presence
of mechanical damping. To this aim, we consider
the volume of the negative portion of the Wigner
function, i.e., ν (−) = ∫

R2 dxdpW (x, p)(−), where
W (x, p)(−) = 1

2 {|W (x, p)| − W (x, p)}, which is known
to provide an indicator of the nonclassicality of the
state [60]. In the limit γ → 0 the Wigner function
W (x, p) = 1

π

∫
dx e−2ipyϕn(x + y)ϕ∗

n (x − y) can be
expressed analytically from Eq. (D2), although for the general
state |ϕn〉 its form is quite cumbersome and hence not
reported. For γ �= 0 we numerically obtain �̂(m)

ss as the
solution of Df [�̂(m)

ss ] = 0 and compute its Wigner function.
Notice that, by definition, the quantity ν (−) vanishes for
nonclassical yet Gaussian states such as a squeezed vacuum
state. A plot of ν (−) as a function of n̄ and γ (parametrized
by the cooperativity C) is shown in Fig. 9, for different values
of n. As expected, the negative volume is suppressed by the
presence of mechanical dissipation and reduction of ν (−) is
more pronounced for increasing n. However, the steady state
is nonclassical for a large range of values, even when it no
longer has near-unit fidelity with the target pure state Eq. (8)
(cf. Fig. 3). In particular, the state is non-Gaussian for all the
values shown.
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FIG. 9. Negative volume of the Wigner function [of the steady state of Eq. (9)] in the presence of mechanical damping as a function of n̄

and γ (parametrized by the cooperativity C), for n = 1 (left), n = 2 (center), and n = 3 (right). G1 = 0.05κ .
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