Respiratory Syncytial Virus and Asthma Inception: Cause and Effect, or Shared Susceptibility?

Published in:
The Journal of Infectious Diseases

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2018 OUP. This work is made available online in accordance with the publisher's policies. Please refer to any applicable terms of use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person’s rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
RSV and asthma inception – cause and effect or shared susceptibility?

Helen E Groves¹,²
Michael D Shields¹,²

1. Wellcome Wolfson Centre for Experimental Medicine, Queens University Belfast
2. Royal Belfast Hospital for Sick Children, Belfast

For many asthma patients, the natural history of the disease starts with an initial presentation in infancy and early childhood. Episodes of recurrent wheeze in infancy are very common. For instance, the international study of wheezing in infants identified 45% of infants under one year of age had at least one episode of wheezing and 20% reported recurrent episodes of wheeze.¹ For most these episodes do not persistent beyond early childhood, but for some wheezing episodes progress into later childhood and adolescence with the development of the classical asthma phenotype. Research in this early age group is challenging in view of the important limitations of performing bronchoscopy and studies of airway structure in young infants. While it is well established that a range of allergens, infections and even exercise can contribute to exacerbations and progression of asthma,²⁻⁴ the mechanisms responsible for inception of the asthma phenotype are less clear.

In recent years there has been increased emphasis on the potential role of viral respiratory tract infections (RTIs) in asthma inception. It is recognized that viral RTIs in early life are associated with greater risk of recurrent wheezing in infancy and the subsequent development of asthma. In particular, severe bronchiolitis is a strong predictor for later development of asthma and there is now a large body of emerging evidence linking both rhinovirus (RV) and respiratory syncytial virus (RSV) bronchiolitis and asthma inception.⁵ In infants diagnosed with RSV related lower RTI, the odds of later developing asthma ranges from 2 to 13 and in infants with RV related lower RTI, the odds of later developing asthma ranges from 2 to 10.⁵⁻⁸ The VINKU-study demonstrated RV and allergic sensitization were significantly associated with recurrent wheezing in later infancy and RV-associated wheeze episodes in the first two years of life occurred more commonly in infants aged over six months.⁹ Interestingly the TABS study showed that birth four months before the winter virus peak, which correlates strongly with peak RSV bronchiolitis infection, carried a higher risk of later asthma development compared to birth twelve months prior to the peak, suggesting younger age of bronchiolitis infection may correlate with subsequent asthma risk.¹⁰
In the same issue of this journal, a study conducted by Homaira and colleagues on a large population in New South Wales has also demonstrated that severe RSV disease is associated with an increased risk of subsequent asthma hospitalization in early childhood.11 This study adds a novel perspective, showing that the increased risk in this cohort was age related, being at least 2-7 fold greater in infants whose first episode of severe RSV disease was after six months of age compared to children whose first RSV hospitalization occurred in the first six months of life. While this study was limited to capturing only subsequent asthma hospitalizations and not primary or ambulatory care attendances, it none-the-less adds new and important data on this subject. Interestingly, the authors also noted a dose-response relationship showing greater rates of asthma hospitalization in later childhood with greater age of first severe RSV disease. Homaira and colleagues postulate a number of possible explanations for this unexpected finding, including waning maternal antibody levels in older infants and greater capacity for modification and airway remodeling in infants under 6 months of age. They also speculate that children developing severe RSV related disease in later infancy may already have begun to manifest an underlying susceptibility that is later evidenced by the subsequent development of asthma.11

This point underscores one of the greatest challenges in discerning the role played by early life viral RTIs and asthma inception. Certainly, as discussed, the evidence of a link is strong. However, it remains unclear whether the occurrence of severe viral RTIs in infancy causes structural and functional changes that later manifest as asthma, if the association is due to shared innate susceptibility to both viral RTIs and asthma, or indeed if these early viral RTIs are simply the initial appearance of asthma.5 Specifically in relation to RSV RTI, a number of genetic polymorphisms associated with both RSV and asthma have been identified, many of which are involved in immune responses, raising the possibility of individual immune susceptibility.5 However, there is also an increasing body of evidence regarding a possible causality relationship. RSV infection leads to a number of long-term changes in immune developments and in animal models has been shown to cause pathophysiological changes similar to those noted in asthma.12,13 The importance of this debate, as eluded to by Homaira and colleagues, is entwined with the potential development of a new RSV vaccine or specific therapy to prevent severe RSV infection. If achieved, such interventions might represent an opportunity to modify subsequent asthma development. However, it is important to note, as discussed by Feldman et al in their very thorough review on this topic, that in all likelihood viral RTIs do not constitute the sole causative agent for asthma inception and indeed multiple risk factors, many of which may yet remain unidentified, likely play a role.5 On the other hand, given that the majority of infants are infected with RSV during the first year of life and it has been estimated that on a population level, 13% of asthma is associated
with infant bronchiolitis during RSV season, RSV prevention is a tantalizing target. Interestingly, a report this year from a single-blind extension of the MAKI trial (ISRCTN73641710) looking at the effect of RSV immunoprophylaxis in late preterm infants on later asthma development did show decreased parental report of current asthma in the RSV prevention group compared to placebo (absolute risk reduction 7.4%, 95% CI 1.5 to 13.2). However, these results should be interpreted cautiously given that the proportion with current physician-diagnosed asthma was similar and indeed the authors suggest results reflect a common predisposition for RSV-related RTI and asthma rather than causation.

Therefore, the debate regarding the role of RSV in initial asthma inception continues. Further work on associated immunological mechanisms, such as that by Turi et al who recently identified distinct clusters of nasal immune-response pathways present at first RSV or RV infection which were associated with subsequent development of wheezing, may help more clearly define this relationship. We echo the recent call by Ramilo et al for larger prospective cohort studies to carefully delineate virological and immunological parameters that underpin RSV disease severity and determine the subsequent development of recurrent wheeze. This exciting era of potential novel RSV therapeutic and vaccine strategies may provide an opportunity to modify the severity of RSV disease and, with the possibility of impacting post RSV-wheezing phenotypes and ensuing asthma inception, surely that is an aim worth pursuing. One strategy being pursued for RSV prevention is the development of a maternal RSV vaccine to boost antibody protection in the newborn. Several candidate vaccines are being developed and results of a recent phase three trial of the Novavax maternal RSV F vaccine candidate are anticipated within in the next year. It is important to note that the decay of maternally transferred antibodies can occur by four months of age. Therefore, a maternal RSV vaccine may provide protection against severe RSV-related lower RTI in children under this age but effectiveness could be less for infants over six months of age. Accordingly, the work by Homeria et al is very timely and highlights that there may be an additional need for an efficacious RSV vaccine in infants aged over six months if indeed RSV plays a causative role in asthma inception.
References

16. Scheltema NM, Nibbelke EE, Pouw J, et al. RSV prevention in infancy and asthma in later life –

