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Unsupervised Visual Hashing with Semantic
Assistant for Content-Based Image Retrieval

Lei Zhu, Jialie Shen, Liang Xie, and Zhiyong Cheng

Abstract—As an emerging technology to support scalable content-based image retrieval (CBIR), hashing has recently received great

attention and became a very active research domain. In this study, we propose a novel unsupervised visual hashing approach called

semantic-assisted visual hashing (SAVH). Distinguished from semi-supervised and supervised visual hashing, its core idea is to

effectively extract the rich semantics latently embedded in auxiliary texts of images to boost the effectiveness of visual hashing

without any explicit semantic labels. To achieve the target, a unified unsupervised framework is developed to learn hash codes by

simultaneously preserving visual similarities of images, integrating the semantic assistance from auxiliary texts on modeling high-order

relationships of inter-images, and characterizing the correlations between images and shared topics. Our performance study on three

publicly available image collections:Wiki,MIR Flickr, and NUS-WIDE indicates that SAVH can achieve superior performance over

several state-of-the-art techniques.

Index Terms—Content-based image retrieval, semantic-assisted visual hashing, auxiliary texts, unsupervised learning

Ç

1 INTRODUCTION

WITH the continued advances in social media and
mobile computing technology, the past decade has

witnessed a tremendous growth in the availability of Web
images. Consequently, there has been an increasing interest
in the information retrieval andmultimedia computing com-
munities to study smart image retrieval techniques. In partic-
ular, techniques for content-based image retrieval (CBIR) [1],
[2], where only visual image is used as query, are gaining in
importance due to a wide range of promising applications.

To provide high quality content-based search services
over huge volume of image collections, both efficiency and
effectiveness are important issues. Advanced indexing struc-
ture is essential to scale the big data space and facilitate
accurate search. The most naive approach for CBIR is to
sequentially compare query image with each sample stored
in the database. Its linear complexity leads to the poor effi-
ciency and low scalability in real environment. Also, visual
features usually have high dimensions. How to solve the
curse of dimensionality is still an open research question,
which has not been addressed properly. Fortunately, in most
real CBIR applications, approximate retrieval results can
sufficiently satisfy users’ information needs. This suggests
the feasibility of approximate nearest neighbor retrieval.

Motivated by this observation, many indexing approaches,
such as inverted file [3], tree structure [4] and hashing [5],
[6], have been developed in recent years. Inverted file is orig-
inally designed for text retrieval, and it can only perform
well on indexing high-dimensional sparse feature, such as
bag-of-visual-words [3]. Tree structure is competent for
indexing low-dimensional features. However, its perfor-
mance degrades greatly when the dimension of features to
be indexed goes high. Furthermore, both inverted file and
tree structure consume large amount of memory when stor-
ing corresponding data structures. This issue becomes even
more seriouswhen image collection scale is large.

As one of the emerging technologies to support fast and
accurate image search, visual hashing has received great
attention and became a very active research domain in
last decade [5], [6]. Its basic idea is to map the raw high-
dimensional visual features into binary codes in low-dimen-
sional Hamming space, so that visual similarities of images
can be efficiently measured by simple but efficient bit-wise
operations. Generally, visual hashing enjoys two major
advantages: (1) Fast query response—Retrieval process can be
completed quickly, because bit-wise operations can be effi-
ciently implemented. (2) Low storage consumption—The stor-
age of high-dimensional features can be greatly reduced as
the result of binary embedding.

However, due to binary embedding of continuous visual
space, semantic information in original visual features may
be lost during hashing, which degrades the performance of
CBIR. To enrich the semantics of visual hash codes, many
machine learning based strategies have been applied and
several hashing schemes have been proposed. They include:
unsupervised visual hashing [7], [8], [9], supervised visual
hashing [10], [11], and semi-supervised visual hashing [12],
[13]. Both supervised and semi-supervised visual hashing
can improve the semantic discriminative capability of hash
codes. However, both paradigms require labeled images
in training process. This requirement, actually, may be not
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satisfied in CBIR since good quality labeled images are
scarce in practical scenario, while it requires a significant
amount of manual efforts and domain expertise. On the
other hand, images (such as pictures in social networks) are
usually associated with noisy but informative tags or textual
descriptions. Fig. 1 shows two image examples about The
Statue of Liberty from Wikipedia and Flickr respectively. It is
not hard to find that both images are accompanied with the
texts including valuable semantic elements. These observa-
tions inspire us to exploit the auxiliary texts to boost the
quality of visual hashing via unsupervised learning. The
core challenge is how to develop unsupervised learning
scheme to intelligently extract and integrate the semantics
from the associated informative texts into visual hash codes.

Generally, according to strategies to leverage different
kinds of visual features, existing unsupervised visual hash-
ing schemes can be classified into several independent fami-
lies: single feature visual hashing (SFVH) [7], [8] and
multiple feature visual hashing (MFVH) [14], [15], [16].
They learn hash functions and codes using visual features
solely. Due to the lack of discriminative capability on repre-
senting high-level semantics, the learned hash codes are not
able to characterize semantic correlations of images and the
ones between images and semantic topics latently involved
in the image database. It should be noted that, one of the
visual modality in MFVH can be substituted with text
modality. In this case, MFVH becomes multi-modal hashing
(MMH) [14], [17]. However, it requires text modality at both
stages of offline learning and online hashing (as shown in
Fig. 3b). Due to this constraint, the scheme cannot meet the
requirement of CBIR in practical retrieval applications,
where only visual image is uploaded as query.

On the other hand, unsupervised cross-modal hashing
(UCMH) [18], [19], [20], [21], [22], [23] can be applied to
CBIR. Inter-media hashing (IMH) [19], linear cross-modal
hashing (LCMH) [24], and collective matrix factorization
hashing (CMFH) [25] are typical examples. Its core idea is to
discover the semantic correlations of multiple modalities
and facilitate cross-modal retrieval by mapping heteroge-
neous modalities into the common Hamming space. How-
ever, the main objective of UCMH focuses on how to
support effective cross-modal retrieval between images and
texts. They generally suffer from two disadvantages when
being applied to CBIR:

� In UCMH, hash codes and functions are learned to
preserve intra-modality and inter-modality correla-
tions. The semantics in the discovered common

semantic space shared by heterogeneous modalities
could be limited. Thus, the valuable semantic infor-
mation originally owned by visual features may not
be comprehensively preserved as result of manda-
tory correlation (as shown in Fig. 2).

� UCMH is specifically designed for the task of cross-
modal retrieval. To achieve the goal, it usually treats
the involved modalities equally, which generally
ignores the differences between modalities on contri-
butions for search performance.1 Therefore, the
semantics in the associated texts cannot be fully
exploited for hashing.

In this work, we propose a novel unsupervised visual
hashing scheme, termed as semantic-assisted visual hashing
(SAVH), to effectively perform visual hashing learning with
semantic assistance. The key idea is to extract semantics
automatically from the noisy associated texts to enhance the
discriminative capability of hash codes, and thus facilitate
the performance improvement of visual hashing. SAVH
works as follows: First, hash code learning is formulated in
a unified unsupervised framework, where relaxed hash
codes are learned by simultaneously preserving visual simi-
larity of images and considering the assistance of texts.
More specifically, our framework integrates two important
assistance of auxiliary texts to effectively mitigate the inher-
ent limitations of visual features. The first assistance models
high-order semantic relations of images by constructing
topic hypergraph, while the second one correlates images
and latent shared topics detected via collective matrix fac-
torization. Then, an optimization method based on aug-
mented Lagrangian multiplier (ALM) [26] is proposed to
iteratively calculate the optimal solution. We specially pre-
serve bits-uncorrelated constraint during iterative process
to facilitate learning and simultaneously reduce information
redundancy between hash bits. Finally, hash functions are
constructed based on linear regression to enable out-of-
sample query extension. Linear projection can support effi-
cient hash code generation in online retrieval.

The key contributions can be summarized as follows:

� Instead of considering only visual feature or equally
treating images and texts, SAVH specially exploits
the auxiliary texts to assist visual hashing. Two
important assistances from auxiliary texts: modeling
semantic correlations of images with topic hyper-
graph, correlating images and latent shared topics
via collective matrix factorization, are proposed to
effectively incorporate semantics into the hash codes.

� SAVH is designed in a unified unsupervised learning
framework, which comprehensively considers visual

Fig. 1. Image samples. Two similar images of The Statue of Liberty col-
lected from Wikipedia and Flickr, respectively. The core idea of SAVH is
extracting semantics latently embedded in such associated informative
texts to assist visual hashing process.

Fig. 2. Important visual information may be lost in unsupervised cross-
modal hashing due to mandatory heterogeneous modality correlation.

1. For example, IMH, CMFH, and LCMH impose the same impor-
tance for visual and textual features on learning shared binary space
for unsupervised cross-modal retrieval.
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similarity preservation of images and semantic-
assistance. An effective solution based on ALM is
proposed to calculate the optimal hash codes.

� The system architecture of SAVH is developed based
on multi-modal learning data but requires only
visual image as input query. It meets the practical
requirement of CBIR, where database images are
usually associated with informative texts, while no
text query is provided.

� Comprehensive experiments are conducted on sev-
eral publicly available image databases. Results
highlight various advantages of SAVH and demon-
strate that SAVH significantly outperforms several
state-of-the-art content-based and cross-modal hash-
ing methods from various perspectives.

The rest of the paper is structured as follows. Section 2
presents literature review. Details about SAVH are intro-
duced in Section 3. Experimental configuration is presented
in Section 4. In Section 5, we present experimental results
and analysis. Section 6 concludes the paper with summary
and future work.

2 RELATED WORK

2.1 Single Feature Visual Hashing

According to the way about how to generate hash function,
existing SFVH can be further categorized into two major
families: data-independent [27], and data-dependent hash-
ing [7], [8]. Locality sensitive hashing (LSH) [27] is one of
the most typical data-independent hashing schemes, which
is based on random vectors from specific distribution, e.g.,
standard Gaussian distribution, to map similar points into
Hamming space with high probability. On the other side,
data-dependent hashing schemes are proposed to learn the
hash functions according to the characteristics of underlying
data distribution by using machine learning methods. Spec-
tral hashing (SPH) [7], anchor graph hashing (AGH) [9],
and self-taught hashing (STH) [8] are typical unsupervised
hashing approaches. SPH learns the hash functions by pre-
serving the similarities of images in the mapped hash codes,
while STH extends it for out-of-sample queries via linear
support vector machine (LinearSVM) [28] training in Ham-
ming space. AGH approximates the affinity graph with
low-rank matrix, and learns the hash functions by binariz-
ing the Nystrom eigen-functions [29]. Iterative quantization
(ITQ) [30] is proposed to reduce the quantization loss by
rotating the learned hash codes. Besides, sparse learning,
manifold learning, and deep learning are applied to hash-
ing. With the trend, sparse embedding hashing [31], [32],
manifold based hashing [33], deep learning based hashing
[13] are proposed to learn effective binary hash codes.

2.2 Multiple Feature Visual Hashing

Multiple features integration is very important to compre-
hensively interpret visual contents and achieve optimal
learning performance [34], [35], [36]. Many researchers are
motivated to design various schemes to conduct hashing
while considering multiple feature fusion [14], [16], [37],
[38], [39], [40], [41] for different purposes. For example,
sequential update for multi-view spectral hashing (SU-
MVSH) [42] is proposed to sequentially learn hash functions

by solving the successive maximization of local variances.
In order to achieve the goal, multiple features are integrated
by minimizing its a-divergence from view-specific distance
matrices. Kim and Choi [37] present multi-view anchor
graph hashing (MVAGH) by extending AGH to handle
multiple image representations. The integrated binary
codes are calculated as the subset of eigenvectors of a
fused similarity matrix. Multiple feature hashing (MFH)
[14], [17] formulates the hashing learning by simulta-
neously preserving the local structural information in
each modality and considering all the local structures. By
using the learned hashing hyperplane, MFH concatenates
all features into single vector and maps it into binary
hash codes. Cheng et al. [16] formulates the hashing
learning on multiple visual features within multi-graph
framework, where multiple visual features are integrated
with proper weights. More recently, multi-view latent
hashing (MVLH) [38] is proposed to incorporate multi-
modal features in binary representation learning by dis-
covering the latent factors shared among multiple views.
The weights for multiple feature fusion are learned
according to the reconstruction error with each view.
Multi-view alignment hashing (MVAH) [39] learns hash
codes with regularized kernel non-negative matrix factor-
ization. It considers both the hidden semantics and joint
probability distribution of multiple visual features.

The most significant limitation of SFVH and MFVH is
that they only takes the features from visual modality into
account. Due to the semantic gap, image relations character-
ized by low-level visual feature cannot effectively describe
rich image semantics, consequently making the hash codes
less semantically meaningful.

2.3 Unsupervised Cross-Modal Hashing

The core idea of UCMH is to map heterogeneous modalities
into the common Hamming space, where similarities are
computed to return cross-modal retrieval results. One of the
typical examples is cross-view hashing (CVH) [18]. It is pro-
posed to extend SPH to cross-modal retrieval by jointly
minimizing Hamming distances of similar samples and
maximizing that of dissimilar samples. In inter-media hash-
ing [19], a framework is proposed to facilitate cross-modal
hashing learning, aiming to preserve intra-similarity of each
individual modality and inter-correlation between hetero-
geneous modalities. Linear cross-modal hashing [24] is pro-
posed to enable scalable multimedia search across different
modalities via efficient intra-modality similarity preserving.
In [23], latent semantic sparse hashing (LSSH) is proposed
to perform cross-modal similarity search in a joint abstract
semantic space by employing sparse coding and matrix fac-
torization. Collective matrix factorization hashing [25]
learns hash codes using collective matrix factorization with
latent factor model from multiple modalities of one sample.

It seems that, UCMH can improve the performance of
CBIR, as the projected space may embed more semantics
than low-level visual feature space. However, the main
design aim of various UCMH approaches is to enable
multimedia retrieval across heterogeneous modalities. It
assumes that each type of the involved modality contrib-
utes equally to cross-modal retrieval. This assumption
makes the common Hamming space shared by them less
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discriminative and effective. In addition, discriminative
information inherently involved in original visual feature
may be lost accordingly in hashing process due to manda-
tory heterogeneous modality correlation.

Fig. 3 and Table 1 summarize key characteristics of state-
of-the-art hashing methods and the proposed SAVH. Based
on analysis given above, we can find that it is important to
specifically design an intelligent hashing strategy to effec-
tively leverage the associated modality (e.g., informative
texts) to assist visual hashing.

3 SEMANTIC-ASSISTED VISUAL HASHING

This section gives a detailed introduction of SAVH scheme.
We first present system overview and problem formulation
in Sections 3.1 and 3.2 respectively. After that, we introduce
the scheme used in SAVH which preserves visual similarity
in Section 3.3. Then, Section 3.4 illustrates the semantic
assistance of auxiliary text in SAVH. Next, we formulate the
overall objective function for hash code learning and pres-
ent an effective optimization approach. We also extend

SAVH to out of sample via hash function learning. Finally,
Section 3.7 analyzes computational complexity.

3.1 System Overview

Fig. 4 describes the basic framework of the SAVH-based
CBIR system. The system mainly includes two core compo-
nents: offline learning and online hashing.

� Offline learning. This component aims to learn hash
codes of database images and simultaneously gener-
ate hash function for query image. It consists of four
main steps. First, visual and text features of images
are extracted to transform image pixels to mathemat-
ical vector representations. Then, a text-enhanced
visual graph is constructed with the assistance of
topic hypergraph, and latent semantic topics are
detected under guidance of text information. Next,
hash codes of database images are learned in a
framework which preserves correlations of images
and that between images and semantic topics.
Finally, hash functions are generated with respect to
the hash codes within a linear regression model.

� Online hashing. Visual feature of query image is
extracted. Then, it is mapped into binary codes with
hash functions. Finally, the similarities between
query image and database images are calculated in
Hamming space, and database images are returned
in order of distance ascending.

3.2 Notations and Problem Formulation

In this study, we use boldface uppercase letters to represent
matrices, boldface lowercase letters to represent vectors,
and calligraphic letters to represent scales. The transpose of
matrix X is denoted as XT. The inverse of a matrix X is

denoted as X�1. The trace operator on a matrix X is denoted

Fig. 3. Basic structures of main unsupervised visual hashing schemes
and the proposed SAVH.

TABLE 1
Characteristics of Main Unsupervised Visual Hashing Methods and SAVH

Methods Query Learning Feature Learning Space Semantic Enhancement CBIR

Single Feature Visual Hashing (SFVH) Visual Visual Visual No Yes
Multiple Feature Visual Hashing (MFVH) Visual Visual Visual No Yes
Multi-modal Hashing (MMH) Visual+Text Visual+Text Multi-modal Yes No
Unsupervised Cross-modal Hashing (UCMH) Visual or Text Visual+Text Shared Limited Partly
The proposed SAVH Visual Visual+Text Text-enhanced Yes Yes

Fig. 4. Framework of the SAVH-based CBIR system.
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as TrðXÞ. jj � jjF denotes Frobenius norm. expð�Þ is exponen-
tial function. sgnð�Þ is Sign function. I denotes identity
matrix and 1 denotes a vector with all 1 elements. The corre-
sponding dimension of them can be inferred from the con-
text. 0 denotes a vector or matrix of all 0 elements.

More specifically, we define XðmÞ ¼ ½xðmÞ
1 ; . . . ; x

ðmÞ
N � 2

Rdm�N;m ¼ 1; 2 as the feature representations of database
images extracted from visual and text modality respectively,
dm denotes the dimension of the corresponding feature,N is
the number of database images. The aim of visual hashing is
to learn hash codes of database images Y ¼
½y1; . . . ; yN � 2 RL�N , and a group of hash functions F ¼
ff1; ::; fLg, where yi ¼ ½y1i; . . . ; yLi�T 2 RL�1 are the hash

codes of the ith image, each hash function fl is a mapping:

Rdm 7!f�1; 1g, l ¼ 1; . . . ; L, L is the length of the visual hash
codes.2 Main notations used in the study are listed in Table 2.

3.3 Visual Similarity Preservation

Effectively preserving visual similarities of images in binary
hash codes is essential to visual hashing. In this study, we
resort to graph model [43], [44], [45] to address the problem.
Actually, the inner structure of visual graph can be simply
representedwith affinity matrix S. In SAVH, we choose local
similarity for graph construction, considering its good prop-
erty on characterizing visual similarities of images [8], [46],
[47]. More specifically, we calculate visual similarities
between images and their k nearest neighbors, and preserve
them in matrix S. Formally, the element at ith row, jth col-
umn (visual similarity between image i and j) is calculated as

Sij ¼
expð�jjxð1Þi � x

ð1Þ
j jj2F=uð1ÞÞÞ
if x

ð1Þ
i 2 N kðxð1Þj Þ or xð1Þj 2 N kðxð1Þi Þ

0 otherwise

8><
>:

(1)

where N kðxÞ denotes the set of k nearest neighbors of x, uð1Þ

is normalization factor which is calculated as the average

visual distances of images. To preserve visual similarity, we
seek to minimize the sum of weighted Hamming distances

min
fyigNi¼1

XN
i¼1

XN
j¼1

Sijjjyi � yjjj2F , min
Y

TrðYLGY
TÞ (2)

where LG ¼ S1N � S is the Laplacian matrix of visual graph.
The behind idea of the above formulation is to incur a heavy
penalty if two similar images are mapped far apart. Hence,
visually similar images can be mapped into hash codes with
short Hamming distances.

3.4 Semantic-Assistance of Auxiliary Text

The core idea of SAVH is to effectively leverage the seman-
tics embedded in the associated informative texts around
images to assist visual hashing. With the assistance of texts,
the generated visual hash codes and functions can aware
high-level semantics, and thus they will be more discrimi-
native. In this study, we consider two important assistance.

1. Assistance on modelling semantic relations of images.
Due to the well-known semantic gap, visual feature
inherently has limitations on representing high-level
semantics. Hence, the built visual graph usually fails
to effectively characterize latent semantic correla-
tions of images. On the other hand, database images
are usually associated with informative tags or tex-
tual descriptions (as shown in Fig. 1). These texts
generally have better semantic descriptive capability
than pure image pixels. In addition, text and visual
image belong to different modalities. They have dis-
criminative information that may be complement
with each other [14]. Therefore, it is promising to
leverage the informative texts to assist visual graph
on characterizing semantic correlations of images.

Actually, the latent semantic correlations of
images are high-order. It is common that a single
image will describe multiple semantic topics, and a
topic may be shared by multiple images. In this case,
images that share more semantic topics will possess
the similar visual contents with greater probability.
Inspired by the observation, this study proposes a
topic hypergraph (a typical example is shown in
Fig. 5) constructed on auxiliary texts to model the

Fig. 5. A typical example of topic hypergraph. Images and latent seman-
tic topics are considered as vertices and hyperedges, respectively.
Images that belong to more identical hyperedges share more similar
visual distributions.

TABLE 2
Summary of Main Notations

Symbols Explanations

Xð1Þ;Xð2Þ visual and text feature matrix of database images
d1; d2 dimension of feature in visual and text modality
N number of database images
Y hash codes of database images
L length of hash codes
F hash functions
S affinity matrix of visual graph
k number of nearest neighbors in visual graph
T text topics
H incidence matrix of topic hypergraph
LG Laplacian matrix of visual graph
LTHG Laplacian matrix of topic hypergraph
Dv diagonal matrix of vertex degrees in topic hypergraph
De diagonal matrix of edge degrees in topic hypergraph
Dw diagonal matrix of edge weights in topic hypergraph
W projection matrix in hash functions
V shared topic distributions
Uð1Þ;Uð2Þ basis matrix of visual and text space

2. The length of hash code is equal to the dimension of the mapped
Hamming space.
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high-order semantic correlations of images. Different
from existing hypergraphs [48], [49], in topic hyper-
graph, visual images are determined as vertices.
Semantic topics detected from text features associ-
ated with images are considered as hyperedges. In
this case, a hyperedge connects several images and
an image belongs to several hyperedges. Hence, the
high-order semantic correlations of images are effec-
tively modelled.

We first leverage k-means to partition texts into L
groups. Their centers are considered as semantic
topics T ¼ ft1; . . . ; tLg latently embedded in texts.
The topic hypergraph can be represented with an
L�N incidence matrix H. The incidence value

between hyperedge tl and vertex x
ð2Þ
i inH is

Hðtl; xð2Þi Þ ¼ expð�jjtl � x
ð2Þ
i jj2F=uð2ÞÞ (3)

where uð2Þ has similar meaning with uð1Þ and it is cal-
culated as the average text distances of images. Each
element in H measures the probability that a vertex
belongs to a hyperedge. WithH, the degree of hyper-
edge tl is calculated as

dðtlÞ ¼
XN
i¼1

Hðtl; xð2Þi Þ: (4)

In this study, we assume that topics are evenly dis-
tributed in database. Thus, we set all weights of
hyperedges to 1, wðtlÞ ¼ 1. The degree of each vertex
is defined as

dðxð2Þi Þ ¼
XL
l¼1

wðtlÞHðtl; xð2Þi Þ ¼
XL
l¼1

Hðtl; xð2Þi Þ: (5)

Principally, images that belong to more same
hyperedges will describe identical semantic concepts
with greater probability. Therefore, they should be
mapped into near points in Hamming space. For-
mally, to generate effective hash codes, which can
accurately measure image distance with semantic
similarity, we derive the following formula

min
Y

TrðYLTHGY
TÞ

s:t: Y 2 ½�1; 1�L�N;YYT ¼ NI;Y1 ¼ 0
(6)

where Y is the hash codes of images. The constraint

YYT ¼ NI is to guarantee that the learned hash bits
to be uncorrelated, and Y1 ¼ 0 enforces each bit to
appear with equal possibility as positive or negative.

LTHG 2 RN�N denotes the Laplacian matrix of topic
hypergraph, which can be calculated as

LTHG ¼ I�D�1=2
v HDwD

�1
e HTD�1=2

v (7)

where Dv, De, and Dw are the diagonal matrices of
the vertex degrees, edge degrees, and hyperedge
weights, respectively.

2. Assistance on correlating images and latent shared seman-
tic topics. Images and their auxiliary texts jointly

describe the same latent topics. These shared topics
can be detected effectively with the assistance of aux-
iliary texts. Generally, semantically similar images
will possess similar topic distribution. Therefore, it is
reasonable that visual hash codes which measure
semantic similarity in Hamming space keep consis-
tent with shared topic distributions. Moreover, we
can assume that each hash bit describes a latent
shared topic. In this way, hash codes of images can
actually reflect latent correlations between images
and shared topics, or visual distribution of images
on shared topics. Hence, it is promising to preserve
correlations of images and shared topics into hash
codes to enhance semantic descriptive capability.

In this study, we adopt a simple but effective collective
matrix factorization [50] to detect shared semantic topics
and directly consider the shared topic distributions as hash
codes Y. Collective matrix factorization performs well on
discovering common parts across heterogeneous modali-
ties. The formal formulation of this process can be repre-
sented as

min
Y;Uð1Þ;Uð2Þ

jjXð1Þ �Uð1ÞYjj2F þ hjjXð2Þ �Uð2ÞYjj2F

s:t: Y 2 ½�1; 1�L�N;YYT ¼ NI;Y1 ¼ 0; h > 0

(8)

where Uð1Þ 2 Rd1�L and Uð2Þ 2 Rd2�L are basis matrices of
visual and text space respectively, h > 0 is adjustment fac-
tor which provides a balance between two terms.

3.5 Overall Objective Function and Optimization

After comprehensively considering visual similarity preser-
vation and the assistance from auxiliary text, we obtain the
overall objective function of hash code learning. Its form is

min
Y;Uð1Þ;Uð2Þ

VðYÞ ¼ jjXð1Þ �Uð1ÞYjj2F þ hjjXð2Þ �Uð2ÞYjj2F
þ �TrðYðLG þ aLTHGÞYTÞ

s:t: Y 2 ½�1; 1�L�N;YYT ¼ NI;Y1 ¼ 0; h; �;a > 0

(9)

where h; �;a are factors which adjust the assistance of auxil-
iary text on visual hashing. However, solving the above
problem is still NP-hard due to the discrete constraints. To
make the problem solvable, we relax the discrete constraint
and balance constraint Y1 ¼ 0 as recent literature [19], [23],
[25]. We first obtain real values of Y, and then binarize it to
hash codes via mean thresholding. Note that, we ensure bit-
uncorrelated constraint during hash code learning. This
design can facilitate learning process (as shown in Eq. (17))
and generate the learned hash codes with less redundancy.
With relaxation, the objective formulation is transformed as

min
Y;Uð1Þ;Uð2Þ

VðYÞ ¼ jjXð1Þ �Uð1ÞYjj2F þ hjjXð2Þ �Uð2ÞYjj2F
þ �TrðYLYTÞ

s:t: YYT ¼ NI;L ¼ LG þ aLTHG; h; �;a > 0:

(10)

As shown in Eq. (10), due to the orthogonal constraints

YYT ¼ NI, the objective function is not convex to Y, Uð1Þ,
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and Uð2Þ. This study proposes an optimization algorithm
based on augmented Lagrangian multiplier [26] to calculate
the optimal solution. It has shown desirable efficiency and
effectiveness in many matrix-based learning problems. Its
core idea is adding auxiliary variables to eliminate equality
constraints, and simultaneously minimizing the loss
brought by infeasible points. In particular, three auxiliary

variables Að1Þ, Að2Þ, B are added,

Að1Þ ¼ Xð1Þ �Uð1ÞY;Að2Þ ¼ Xð2Þ �Uð2ÞY;B ¼ Y: (11)

The objective function is transformed as

min
Y;Uð1Þ;Uð2Þ

VðYÞ ¼ jjAð1Þjj2F þ jjAð2Þjj2F þ m

2
ðjjXð1Þ �Uð1ÞY

�Að1Þ þ Eð1Þ

m
jj2F þ hjjXð2Þ �Uð2ÞY�Að2Þ

þ Eð2Þ

m
jj2F Þ þ �TrðYLBTÞ þ m

2
jjY� Bþ Eð3Þ

m
jj2F

s:t: YYT ¼ NI;L ¼ LG þ aLTHG; h; �;a;m > 0

(12)

where Eð1Þ 2 Rd1�N , Eð2Þ 2 Rd2�N , Eð3Þ 2 RL�N measure the
gap between target variables and auxiliary variables, m

adjusts the balance between terms. We adopt alternate opti-
mization to solve the above problem iteratively. In particu-
lar, we optimize the objective function with respective to
one variable while fixing other remaining variables. The key
steps for solving Y are summarized in Algorithm 1.

Algorithm 1. Solving Y via optimizing (12)

Input:
Feature representations of image, Xð1Þ, Xð2Þ.

Output:
Relaxed hash codes Y.

1: Initialize Eð1Þ, Eð2Þ, Eð3Þ, Y, Uð1Þ, Uð2Þ;
2: while not convergence do
3: Optimize AðiÞ; i ¼ 1; 2while fixing the others;
4: Optimize UðiÞ; i ¼ 1; 2while fixing the others;
5: Optimize Bwhile fixing the others;
6: Optimize Ywhile fixing the others;
7: Update Eð1Þ, Eð2Þ, Eð3Þ, mwhile fixing the others;
8: end while

In the below, Step 3-7 are introduced in detail.
Step 3. Optimize AðiÞ; i ¼ 1; 2. The objective function

with respective to AðiÞ can be represented as

min
AðiÞ

jjAðiÞjj2F þ m

2
jjXðiÞ �UðiÞY�AðiÞ þ EðiÞ

m
jj2F : (13)

By calculating the derivative of the objective function with
respective to AðiÞ, and setting it to 0, we can obtain that

2AðiÞ � m XðiÞ �UðiÞY�AðiÞ þ EðiÞ

m

 !
¼ 0

) AðiÞ ¼ mXðiÞ � mUðiÞYþ EðiÞ

2þ m
:

(14)

Step 4. Optimize UðiÞ; i ¼ 1; 2. The objective function

with respective to UðiÞ can be represented as

min
UðiÞ

jjXðiÞ �UðiÞY�AðiÞ þ EðiÞ

m
jj2F : (15)

By calculating the derivative of the objective function with
respective to UðiÞ, and setting it to 0, we can obtain

2 XðiÞ �UðiÞY�AðiÞ þ EðiÞ

m

 !
YT ¼ 0

) UðiÞY ¼ XðiÞ �AðiÞ þ EðiÞ

m
:

(16)

Since YYT ¼ NI, we can derive that

UðiÞ ¼ 1

N
XðiÞ �AðiÞ þ EðiÞ

m

 !
YT: (17)

Step 5. Optimize B. The objective formulation for opti-
mizing with respective to B can be represented as

min
B

�TrðYLBTÞ þ m

2
jjY� Bþ Eð3Þ

m
jj2F : (18)

With transformation, the objective function for optimizing B
can be rewritten as

min
B

�TrðYLBTÞ þ m

2
Tr Y� Bþ Eð3Þ

m

 !T

Y� Bþ Eð3Þ

m

 ! !

, min
B

�

m
TrðYLBTÞ þ Tr �YBT � Eð3Þ

m
BT þ BTB

 !

, min
B

Tr
�

m
YL� Y� Eð3Þ

m
þ B

 !
BT

 !

, min
B

Tr B� Yþ Eð3Þ

m
� �

m
YL

 ! !T

B� Yþ Eð3Þ

m
� �

m
YL

 ! !

, min
B

B� Yþ Eð3Þ

m
� �

m
YL

 !�����
�����
2

F

:

(19)

The optimal solution of B can be derived as

B ¼ Yþ Eð3Þ

m
� �

m
YL: (20)

Step 6. Optimize Y. The objective function with respec-
tive to Y can be represented as

min
Y

m

2
Xð1Þ �Uð1ÞY�Að1Þ þ Eð1Þ

m

�����
�����
2

F

þh Xð2Þ �Uð2ÞY
��

0
@

�Að2Þ þ Eð2Þ

m

�����
2

F

1
Aþ �TrðYLBTÞ þ m

2
Y� Bþ Eð3Þ

m

�����
�����
2

F

s:t: YYT ¼ NI:

(21)

With transformation, the objective function for optimizing Y
can be rewritten as
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min
Y

�mTr

�
YTUð1Þ

�
Xð1Þ �Að1Þ þ Eð1Þ

m

��
� mhTr

�
YTUð2Þ

�
Xð2Þ

�Að2Þ þ Eð2Þ

m

��
þ �TrðYTBLÞ � mTr

�
YT

�
B� Eð3Þ

m

��
, min

Y
�TrðYTCÞ

(22)

where C ¼ B� Eð3Þ
m

� �
m
BLþ ðUð1ÞÞTðXð1Þ �Að1Þ þ Eð1Þ

m
Þ þ h

ðUð2ÞÞTðXð2Þ �Að2Þ þ Eð2Þ
m
Þ. The Eq. (21) is equivalent to the

following optimization problem

max
Y

TrðYTCÞ s:t: YYT ¼ NI: (23)

With singular value decomposition [51], C can be decom-
posed as

C ¼ PLQT (24)

where L is rectangular diagonal matrix and its diagonal
entries are singular values of C, the columns of P and Q are
left-singular vectors and right-singular vectors of C, respec-
tively. Then, the optimizing formulation for Y can be trans-
formed to

max
Y

TrðYTPLQTÞ , max
Y

TrðLQTYTPÞ: (25)

Theorem 1. Given any matrix ZZT ¼ NI and diagonal matrix

L � 0, the optimal solution ofmaxZTrðLZÞ isZ ¼ diagð ffiffiffiffiffi
N

p Þ.
Proof. Assuming �ii and zii are the ith diagonal entry of L

and Z respectively, TrðLZÞ ¼Pi �iizii. Since ZZT ¼ NI,

zii �
ffiffiffiffiffi
N

p
. TrðLZÞ ¼Pi �iizii �

ffiffiffiffiffi
N

p P
i �ii. The equality

holds only when zii ¼
ffiffiffiffiffi
N

p
; zij ¼ 0; 8i; j). This is to say,

TrðLZÞ reaches its maximum when Z ¼ diagð ffiffiffiffiffi
N

p Þ. tu
L � 0 as L is calculated by Eq. (24). On other hand, we

can easily derive that QTYTPPTYQ ¼ NI. Therefore, accord-
ing to Theorem 1, the optimal Y in Eq. (25) can only be

obtained when QTYTP ¼ diagð ffiffiffiffiffi
N

p Þ. Hence, the optimal
solution of Y can be represented as

Y ¼
ffiffiffiffiffi
N

p
PQT: (26)

Step 7. Updating Eð1Þ, Eð2Þ, Eð3Þ, m. The update rules are

EðiÞ ¼ EðiÞ þ mðXðiÞ �UðiÞY�AðiÞÞ; i ¼ 1; 2

Eð3Þ ¼ Eð3Þ þ mðY� BÞ;
m ¼ rm

(27)

where r > 1 is learning ratewhich controls the convergence.
It is worth mentioning that, the above objective function

and optimization strategy differ from the traditional multi-
graph regularized non-negative matrix factorization
approaches [52], [53]: (1) The graph regularizer is con-
structed in our studywith different motivations and intrinsic
meanings. The visual graph is used to preserve the visual
information, which is important to the performance of CBIR.
The topic hypergraph is proposed to incorporate the auxil-
iary semantics to assist visual hashing. (2) In our study, an
orthogonal constraint YYT ¼ NI is guaranteed in the whole
optimization process. The advantage of this design on

reducing the redundancy of hash bits is validated in our
experiment. In contrast, [52] is designed without imposing
any orthogonal constraint, [53] transforms the orthogonal
constraint to a soft one. (3) [52] and [53] follow the traditional
way of non-negative matrix factorization to solve the prob-
lem. Different from them, our study proposes an effective
optimization approach based on ALM to iteratively calculate
the optimal solution. (4) Our formulation is specially
designed to leverage the semantics in auxiliary texts to assist
unsupervised visual hashing in CBIR. In contrast, [52] and
[53] are proposed for general data representation in continu-
ous feature space and cross-modal hashing, respectively.

3.6 Hash Function Learning

We leverage linear projection to learn hash functions for its
high efficiency on online retrieval. The learning objective is

min
W

FðWÞ ¼ min
W

jjY�WTXð1Þjj2F þ �jjWjj2F (28)

where W 2 Rd1�L denotes the projection matrix. Note that,

only visual feature Xð1Þ is used in (28). The main objective is
to reduce the loss between the hash codes and the projected

ones. jjY�WTXð1Þjj2F is the loss term and jjWjj2F is to avoid
over-fitting. � > 0 balances these two terms. By calculating
the derivative of FðWÞ with respect to W and set it to 0, we
can obtain

W ¼ Xð1ÞðXð1ÞÞT þ �I
� ��1

Xð1ÞYT: (29)

The hash functions can be constructed as

FðxÞ ¼ sgnðWTx� bÞ þ 1

2
;b ¼ WTXð1Þ1

N
: (30)

Algorithm 2. Summary of Semantic-Assisted Visual
Hashing

Input:
Database images: fIngNn¼1, query image q.

Output:
Hash codes of database images: Y, hash functions: F.
Image retrieval results for image query q.
Offline Learning

1: Extract features of database images, obtaining Xð1Þ;Xð2Þ;
2: Compute visual graph Laplacian matrix LG;
3: Compute topic hypergraph Lalacianmatrix LTHG via Eq. (7);
4: Learn relaxed hash codes via Algorithm 1;
5: Construct hash functions F via Eq. (30);
6: Project database images into binary hash codes with F;

Online Hashing
7: Extract visual feature of query image;
8: Project query visual feature into hash codes via Eq. (30);
9: Calculate the Hamming distances between hash codes of

query image and that of database images;
10: Rank Hamming distances and return retrieval results.

3.7 Complexity Analysis

This section provides time complexity analysis of the
hashing learning. The main procedures of SAVH-based
CBIR are summarized in Algorithm 2. In offline training,
the computations of graph Laplacian matrix LG and topic
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hypergraph Laplacian matrix LTHG consume OðN2Þ. It is
worth noting that these processes are conducted in offline
part and consume one-time cost. Besides, they enjoy high
degree of parallelism and can be efficiently implemented
with advanced parallel computing techniques. To learn the
relaxed hash codes, the computational complexity is
Oðiter� ðd1 �N þ d2 �N þ d1 � Lþ d2 � Lþ L�NÞÞ,
where iter denotes the number of iterations in Algorithm 1.
Given N 	 d1ðd2Þ > L, this process scales linearly with N .
The computation of hash functions solves a linear system,
whose time complexity is OðNÞ. Calculation of hash codes
of database images costs OðNÞ. In online hashing, generat-
ing hash code for a query can be completed in Oðd1Lþ LÞ,
which is quite efficient.

4 EXPERIMENTAL CONFIGURATION

4.1 Experimental Datasets

In this study, comprehensive experiments are conducted on
three publicly available image datasets:Wiki [54],MIR Flickr
[55], and NUS-WIDE [56], to empirically validate the effec-
tiveness of SAVH. All datasets consist of image-text pairs,
and they are widely used for evaluating performance of
multimedia retrieval in the past work [23], [19], [25]. Follow-
ing the same setting, each dataset is partitioned into query
set, learning set, and database set.3 This experimental set-
ting matches the practical application scenarios of CBIR,
where queries are out of database, and continuously flow-
ing into database when time passes by. Table 3 summarizes
key statistics of the test collections.

� Wiki4 consists of 2,866 multimedia documents in 10
semantic categories, which are collected from Wiki-
pedia.5 Visual contents are represented by 128
dimensional SIFT [57] histogram and text contents
are represented by 10 dimensional topic vector gen-
erated by latent Dirichlet allocation [58]. For Wiki
dataset, since images are labelled into 10 indepen-
dent categories, images in this dataset are considered
to be relevant only if they belong to the same class.

� MIR Flickr6 contains 25,000 images from 38 catego-
ries from the Flickr.7 Each image is associated with

tags. The tags that appear less than 50 times are
removed, resulting in a vocabulary of 457 tags.
Visual contents of images in MIR Flickr are repre-
sented by 1,000 dimensional dense SIFT histogram.
Text contents are represented by 457 dimensional
binary vector, and each dimension describes the
presence of 457 tags. Since images in MIR Flickr are
generally labeled by several tags, they are considered
to be relevant only if they share at least one concept.

� NUS-WIDE8 is comprised of 269,648 images labeled
into 81 concepts. In experiments, we preserve 10
most common concepts and the corresponding
186,577 pairs. Each image is associated with tags. On
NUS-WIDE dataset, images are represented by 500
dimensional SIFT histogram. Text features are 1,000
dimensional binary vectors describing the presence
of 1,000 tags. Similarly, images are considered to be
relevant if they share at least one concept.

4.2 Evaluation Metrics

In our experimental study, mean average precision (mAP) is
adopted as the evaluation metric. The metric has been

widely used in literature [23], [19]. For a given query, aver-

age precision (AP) is calculated as AP ¼ 1
NR

PR
r¼1 cðrÞ’ðrÞ,

where R is the total number of retrieved images, NR is the
number of relevant images in retrieved set, cðrÞ denotes
the precision of top r retrieval images, which is defined
as the ratio between the number of the relevant images and
the number of retrieved images r, and ’ðrÞ is indicator func-
tion which equals to 1 if the rth image is relevant to query,
and vice versa. mAP is defined as the average of the AP of
all queries. Larger mAP means the retrieval performance is
better. In experiments, we set R as 100 to collect results. Fur-
thermore, Precision-Scope curve is also reported to reflect the
retrieval performance variations with respect to the number
of retrieved images.

4.3 Compared Approaches

SAVH is specially designed for CBIR without any labeled
images. Therefore, for comparison fairness, we compare
SAVH with several state-of-the-art unsupervised SFVH and
UCMH approaches. More specifically, SFVH approaches
used for comparison include: spectral hashing [7], shift-
invariant kernel locality sensitive hashing (SKLSH) [27],
anchor graph hashing (1-layer) [9], self-taught hashing [8],
iterative quantization [30], UCMH approaches used for
evaluation include9:

� Cross-view hashing [18]. It learns hash functions by
jointly minimizing Hamming distances of similar
samples and maximizing that of dissimilar samples.

� Composite hashing with multiple information sour-
ces (CHMIS) [46]. It integrates multiple modalities
into the binary hash codes with proper weights. For
comparison fairness, text input is removed and only
visual input is preserved in CHMIS. In this case,
CHMIS can also be considered as UCMH.

TABLE 3
Statistics of Test Collections

Datasets Wiki MIR Flickr NUS-WIDE

Database Size 2,866 25,000 186,643
Query Size 144 250 1,867
Training Size 287 750 5,540
Visual
Modality

BoVW
(128-Dim)

BoVW
(1,000-Dim)

BoVW
(500-Dim)

Text Modality Text Topics
(10-Dim)

BoTW
(457-Dim)

BoTW
(1,000-Dim)

BoVW and BoTW denote bag-of-visual-words and bag-of-textual-words,
respectively.

3. In SAVH, the hash codes learned on learning set are all discarded
after hash function learning. It leverages the constructed hash functions
to generate hash codes for query and database images.

4. http://www.svcl.ucsd.edu/projects/crossmodal/
5. https://www.wikipedia.org/
6. http://lear.inrialpes.fr/people/guillaumin/data.php
7. https://www.flickr.com/

8. http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
9. For implementation of CVH, we use the code provided by [59].

For SPH, SKLSH, STH, AGH, ITQ, CHMIS, IMH, LSSH, CMFH, we
directly download implementation codes from author websites.
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� Inter-media hashing [19]. It formulates hash function
learning in a framework where intra-similarity of each
individual modality and inter-correlations between
differentmodalities are both preserved in hash codes.

� Latent semantic sparse hashing [23] performs cross-
modal similarity search in a joint abstract semantic
space learned by employing sparse coding and
matrix factorization for semantic projection.

� Collective matrix factorization hashing [25] learns a
latent semantic subspace shared by multiple modali-
ties. In CMFH, both visual and text features are
mapped into a unified hash codes.

Note that, CVH, CHMIS, IMH, LSSH, and CMFH can
generate hash codes for both query visual image and text.
Since the aim of experiment is to test the performance of
CBIR, we remove hash codes of text. In this case, the
whole retrieval process of CBIR in all compared
approaches is performed in binary visual Hamming
space. All parameters in compared approaches are
adjusted according to the relevant literature and report
the best performance.

4.4 Implementation Details

In experiments, we adopt five folds cross-validation to
choose parameters. More specifically, the best performance
of SAVH is achieved when k is set to 7, 5, 8 on Wiki, MIR
Flickr, andNUS-WIDE respectively. Furthermore, SAVH has
three parameters: a, �, and h in Eq. (9), which are used to
adjust the assistance of auxiliary text on visual hashing. In
particular, the best performance is achieved when
fa ¼ 1000; � ¼ 1; h ¼ 10g, fa ¼ 0:01; � ¼ 1; h ¼ 5g, fa ¼ 1;
� ¼ 0:0001; h ¼ 100g on Wiki, MIR Flickr, and NUS-WIDE
respectively. The parameters m and r in Eq. (12) and Eq. (27)

are used for ALM optimization. The optimal performance is
obtained when fm ¼ 0:01; r ¼ 5g; fm ¼ 0:001; r ¼ 2g; fm ¼
0:0001; r ¼ 2g on Wiki, MIR Flickr, and NUS-WIDE respec-
tively. � is used in Eq. (28) to learn hash functions. The opti-
mal performance is obtained when � is set to 0.1, 100, 100 on
Wiki,MIR Flickr, andNUS-WIDE respectively.

In experiments, hash code length L on all datasets is var-
ied in the range of ½16; 32; 64; 128� to observe the perfor-
mance. The retrieval scope onWiki andMIR Flickr is set from
100 to 1,000 with step size 100, that onNUS-WIDE is set from
500 to 5000 with step size 500. In the step 1 of Algorithm 1,

the initial values of Eð1Þ, Eð2Þ, Eð3Þ are set to 0. The value of

Uð1Þ, Uð2Þ, and Y are obtained by solving a simple matrix fac-

torization problem: minYjjXð1Þ �Uð1ÞYjj2Fþ hjjXð2Þ �Uð2ÞYjj2F .
All the experiments are conducted on a computer with Intel
Xeon(R) CPU E5-2620 2.0 GHz and 32 GB RAM.

5 RESULTS AND DISCUSSIONS

5.1 Comparisons with Unsupervised Hashing

The mAP results of SAVH and all compared approaches
on different code lengths and datasets are reported in
Table 4. The Precision-Scope curves on three datasets are
shown in Figs. 6, 7, and 8 respectively. According to the
presented results, we can clearly observe that SAVH out-
performs the compared approaches. For example, on NUS-
WIDE, the highest mAP of SAVH is 52.81 percent, which is
more than 2.5 percent better than the second best mAP
50.02 percent achieved by LSSH. Besides, we can obtain
several insightful observations:

� In SAVH, retrieval performance increases steadily
with hash code length. However, for many compared

TABLE 4
mAP of Compared Unsupervised Hashing Approaches

Methods
Wiki MIR Flickr NUS-WIDE

16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits

SPH 0.1644 0.1740 0.1777 0.1829 0.5976 0.6093 0.6269 0.6433 0.3430 0.3910 0.4415 0.4583
SKLSH 0.1542 0.1671 0.1664 0.1776 0.5624 0.5927 0.6084 0.6280 0.3685 0.3695 0.3680 0.3673
AGH 0.1699 0.1833 0.1828 0.1809 0.6204 0.6231 0.6321 0.6311 0.4646 0.4681 0.4711 0.4731
STH 0.1614 0.1752 0.1837 0.1819 0.6196 0.6258 0.6336 0.6313 0.4120 0.4368 0.4443 0.4606
ITQ 0.1607 0.1649 0.1813 0.1817 0.6442 0.6403 0.6542 0.6555 0.4482 0.4667 0.4860 0.4859

CVH 0.1651 0.1716 0.1766 0.1754 0.5511 0.5583 0.5566 0.5663 0.4447 0.4300 0.4233 0.4149
CHMIS 0.1492 0.1626 0.1755 0.1783 0.5585 0.5612 0.5659 0.5851 0.4419 0.4347 0.4302 0.4265
IMH 0.1676 0.1827 0.1760 0.1831 0.6285 0.6338 0.6454 0.6586 0.4475 0.4618 0.4634 0.4879
LSSH 0.1658 0.1722 0.1749 0.1870 0.5917 0.5875 0.6038 0.6378 0.4449 0.4615 0.4849 0.5002
CMFH 0.1612 0.1677 0.1696 0.1672 0.5733 0.5614 0.5723 0.5735 0.4703 0.4883 0.4942 0.4882
SAVH 0.1748 0.1880 0.1914 0.1991 0.6450 0.6511 0.6680 0.6704 0.4962 0.5103 0.5193 0.5281

The best result in each column is marked with bold.

Fig. 6. Precision-Scope curves onWiki varying code length.

ZHU ETAL.: UNSUPERVISED VISUAL HASHINGWITH SEMANTIC ASSISTANT FOR CONTENT-BASED IMAGE RETRIEVAL 481



approaches, the stable performance improvement
with hash code length cannot be easily observed. This
is because SAVH ensures bits-uncorrelated constraint
in hash code learning. The design forces the learned
hash bits to have less information redundancy. In this
case, more hash bits will bring more new valuable
information. Besides, we can find that, with less hash
bits, SAVH can achieve better performance than
many compared approaches with longer hash codes.
The reason is that, with semantic assistance, SAVH
can compress more semantics into short hash codes.
In practice, it means that CBIR based on SAVH can
enjoy faster retrieval process and less storage cost
under the same performance level.

� On several code lengths and datasets, it is interesting
to find that UCMH approaches even perform worse
than SFVH (For example, ITQ and AGH). This exper-
imental phenomenon validates our analysis on
UCMH presented in Section 1. Actually, UCMH
aims to achieve fast retrieval across heterogeneous
modalities. Therefore, seeking the shared space of
heterogeneous modalities is the main objective (as
shown in Fig. 3c). In this way, the discovered com-
mon semantic space of heterogeneous modalities can
principally preserve semantic correlations of differ-
ent modalities. But, in some cases, it may even lose
the valuable semantics besides the common part in
original visual features. UCMH may not be the best
suited for CBIR. This observation also motivates us
to design SAVH to effectively leverage the auxiliary
text to assist visual hashing.

� On most of code lengths and datasets, CMFH, LSSH,
and IMH perform better than CVH and CHMIS. This
experimental phenomenon is consistent with the
result observed in [23], [25]. This is because, in addi-
tion to simply preserve intra-similarity within each
modality and inter-similarity across modalities,
CMFH, LSSH, and IMH impose more constraints on
hashing learning, which discovers low-dimensional
Hamming subspace with more semantics.

� IMH achieves better performance than LSSH and
CMFH in many cases. It demonstrates that, IMH per-
forms better than LSSH and CMFH on preserving
semantic correlations of original visual feature in pro-
cess of shared space discovery. More importantly, it
shows that performance on cross-modal retrieval
obtained by UCMH approaches may be not consis-
tent with the performance on CBIR.10 The advantages
of several UCMH approaches on cross-modal
retrieval may not be held on CBIR. It also validates
the importance of specially considering assistance of
auxiliary texts when developing visual hashing.

Besides the retrieval precision comparison, we also eval-
uate the efficiency of online image retrieval which impacts
user experience most in real practice. As indicated in Algo-
rithm 2, the online retrieval process is comprised of four
subsequent steps 7-10. Since step 7, 9, 10 are identical for all
hashing approaches, we only compare the hash code gener-
ation efficiency in step 8. In particular, we compare the hash

Fig. 7. Precision-Scope curves onMIR Flickr varying code length.

Fig. 8. Precision-Scope curves on NUS-WIDE varying code length.

TABLE 5
The Times Measured in Seconds for Hash Code Generation

SPH SKLSH AGH STH ITQ CVH CHMIS IMH LSSH CMFH SAVH

Wiki 0.0521 0.0028 0.0296 0.0652 0.0010 0.0011 0.0402 0.0089 0.5487 0.0010 0.0007
MIR Flickr 0.1893 0.0059 0.0130 0.8676 0.0028 0.0037 4.0084 0.0048 0.9886 0.0022 0.0018
NUS-WIDE 0.4561 0.0159 0.0603 5.2052 0.0073 0.0140 27.1756 0.0200 7.4780 0.0105 0.0092

The best two results in each row are marked with bold.

10. LSSH and CMFH consistently perform better than IMH on cross-
modal retrieval, as reported in [23], [25].
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code generation time of all query images when hash code
length is fixed to 128 bits. Table 5 presents the main experi-
mental results. From it, we can easily find that, SAVH takes
the least time on Wiki and MIR Flickr, and the second least
time on NUS-WIDE. It has desirable hashing efficiency. This
is because that SAVH adopts simple linear projection for
hash code generation. This desirable advantage can well
support the application of SAVH to CBIR.

5.2 Effects of Semantic Assistance on Visual
Hashing

In this section, we conduct empirical experiments to validate
the effectiveness of semantic assistance from auxiliary text
on visual hashing. More specifically, we compare the perfor-
mance of SAVH with the one which ignores discriminative
information of texts and only considers visual features.

Fig. 9 presents the detailed experimental results. The key
observation we gain is: First, retrieval performance of
CBIR can be improved by auxiliary text. The reason for bet-
ter performance is that, with semantic assistance, relations
between images and that between images and latent shared
topics can be better modelled and correlated. The valuable
extracted semantics can be effectively encoded in the binary
hash codes. Second, performance gap is varied on different
datasets and lengths of hash code. The largest performance
gap is more than 6 percent. The variations of performance
gap is mainly caused by the different effectiveness of text
on assisting visual hashing.

5.3 Effects of Training Size

This section investigates the performance variations with the
training size on NUS-WIDE. We fix hash code length to 128
bits and record performance variations when training size is
changed from 1,000 to 10,000. Table 6 demonstrates the main
results. We can observe that mAP of SAVH increases when
more training data is leveraged. However, mAP scores are
not improved significantly. This phenomenon illustrates the
stabilization of the hash functions learned by SAVH with
reasonably small training set. Besides, it should be noted that
mAP of SAVH can achieve 0.5006when training size is 1,000.
It is a bit higher than the best performance of compared
approaches 0.5002 obtained by LSSH (NUS-WIDE, 128 bits).
The observation further validates that, the assistance of aux-
iliary text can effectively mitigate the semantic shortage of
hash codes when training data is limited.

5.4 Convergence Analysis

This section conducts empirical experiments to analyze the
convergence of SAVH. Fig. 10 presents the variations of
objective function value in Eq. (12) with the number of itera-
tions on NUS-WIDE. We can observe from the figure that,
on three datasets, objective function value first decreases
with the number of iterations and becomes steady after cer-
tain iterations. This experimental results demonstrate that
the convergence of SAVH can be guaranteed with aug-
mented Lagrangian multiplier approach.

5.5 Parameter Sensitivity

In this section, empirical experiments are conducted to
observe the performance variations with parameters a, �, h,
� in SAVH. a, �, and h are used in Eq. (9) to play trade-off
between regularization term and empirical loss, while � is
used in Eq. (28) with similar aims. We fix hash code length
to 128 bits and report results on NUS-WIDE. Similar results
can be found on other code lengths and datasets. We test
the results when four parameters are varied from
f0:0001; 0:01; 1; 100; 10000g. For a, �, h, since they are
equipped in the same equation, we observe the performance
variations with respect to two parameters while fixing the
remaining one parameter. For �, we observe the perfor-
mance variations by fixing a, �, h. Detailed experimental
results are presented in Fig. 11. From (a),(b),(c), we can find
that the performance is relatively stable in a wide range of
a, �, h variations. From (d), the best performance can be
achieved at certain point (� ¼ 100).

5.6 Further Comparison with Supervised Hashing

In this section, we conduct experiment to further compare
SAVH with several state-of-the-art supervised hashing
approaches. The main objective is to validate the effec-
tiveness of SAVH on extracting valuable semantics for
visual hashing even with unsupervised learning. The
compared supervised hashing approaches include, binary
reconstructive embeddings (BRE) [10], kernel based
supervised hashing (KSH) [11], semantic correlation

Fig. 9. Effects of semantic assistance on three datasets.

TABLE 6
Performance Variations with Training Size on NUS-WIDE

Training size 1K 2K 3K 4K 5K 6K 7K 8K 9K 10K

SAVH 0.5066 0.5111 0.5128 0.5218 0.5281 0.5286 0.5288 0.5294 0.5328 0.5343

Fig. 10. Variations of objective function value in Eq. (12) with the number
of iterations on NUS-WIDE.
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maximization (SCM) [60] (Two effective approaches:
SCM-sql and SCM-orth are proposed, and we use both of
them for comparison.). All their implementation codes
are downloaded directly from authors’ websites. Their
reported experimental results are maximized by adjusting
the involved parameters according to relevant literature.
Note that, in this experiment, the training data in three
datasets are all labeled for supervised learning.

Table 7 presents the main results. From the table, we can
easily observe that, on Wiki and MIR Flickr, our proposed
approach SAVH can achieve comparable or even better per-
formance than the best performance achieved by the com-
pared supervised hashing approaches. On NUS-WIDE,
SAVH achieves better performance than most of the com-
pared supervised hashing approaches. KSH demonstrates
superior performance due to the kernel hash function
design. However, the generation of kernel matrix in online
hashing of SKH needs large amount of computations, which
is not easily applicable in large-scale real-time CBIR. These
experimental results demonstrate that, even on unlabeled
images (with unsupervised learning), SAVH can still gener-
ate discriminative hash codes and functions by effectively
leveraging the valuable semantics involved in the associated
texts to assist visual hashing.

6 CONCLUSIONS AND FUTURE WORK

Most existing single feature and multiple feature hashing
approaches for CBIR build their schemes with only visual
features. They ignore the valuable semantics involved in
the associated texts. Although unsupervised cross-modal
hashing approaches can leverage text for retrieval task across
heterogeneous modalities, they equally treat visual and text,
and still fail to fully take advantages of text. Different from
them, this study proposes an effective hashing framework,
SAVH. Our idea is leveraging the associated texts of images

to assist the visual hashing using unsupervised learning.
SAVH can integrate extra discriminative information into
the generated visual hash codes and functions. Moreover,
SAVH has an important advantage that its offline learning
can effectively leverage semantics involved in text, while its
online hashing requires only visual image as input. This
desirable property matches the requirements of real applica-
tion scenarios of CBIR. Comprehensive experiments on sev-
eral standard image datasets validate that the performance
of visual hashing can be improved with the assistance of
text, and SAVH can achieve superior performance compared
with several state-of-the-art methods.

This research opens up several promising directions for
further exploration. Notably, it is interesting to further vali-
date the effectiveness of SAVH when more associated
modalities are involved. For example, geographical location
of image, social correlation of images, and etc. Moreover, it
would be also interesting to investigate the effectiveness of
visual image on assisting hashing for text retrieval.
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