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Abstract  

How incretins regulate presence of their receptors at the cell surface and their activity is of paramount 

importance for the development of therapeutic strategies targeting these receptors. We have studied 

internalization of the human Glucose-Insulinotropic Polypeptide receptor (GIPR). GIP stimulated 

rapid robust internalization of the GIPR, the major part being directed to lysosomes. GIPR 

internalization involved mainly clathrin-coated pits, AP-2 and dynamin. However, neither GIPR C-

terminal region nor β-arrestin1/2 was required. Finally, N-acetyl-GIP recognized as a dipeptidyl-IV 

resistant analogue, fully stimulated cAMP production with a ~15-fold lower potency than GIP and 

weakly stimulated GIPR internalization and desensitization of cAMP response. Furthermore, docking 

N-acetyl-GIP in the binding site of modelled GIPR showed slighter interactions with residues of 

helices 6 and 7 of GIPR compared to GIP. Therefore, incomplete or partial activity of N-acetyl-GIP on 

signaling involved in GIPR desensitization and internalization contributes to the enhanced incretin 

activity of this peptide. 

 

Keywords: glucose-dependent insulinotropic polypeptide, internalization, desensitization, cAMP 

signaling, BRET, fluorescence confocal microscopy, molecular modeling, biased agonist 

 

Abbreviations: GIP, glucose-dependent insulinotropic polypeptide; GIPR, glucose-dependent 

insulinotropic polypeptide receptor; BRET, Bioluminescence Resonance Energy Transfer 
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1. Introduction 

Glucose-dependent insulinotropic polypeptide (GIP) is released by the entero-endocrine K cells 

from the proximal duodenum [1,2]. GIP stimulates insulin secretion from pancreatic β-cells after 

ingestion of nutrients. GIP, together with Glucagon-like peptide 1 (GLP1), contributes for 50 to 70 

percent to post-prandial insulin secretion [3]. GIP further enhances its glucose-lowering effects by the 

inhibition of hepatic glucose production and the stimulation of proinsulin gene transcription and 

translation. Moreover, GIP is known to play a role in lipid metabolism and fat deposition. Indeed, GIP 

increases lipoprotein lipase activity, stimulates lipogenesis, enhances fatty acid and glucose uptake in 

adipocytes [3]. GIP exerts its physiological functions through binding to GIP receptor (GIPR) which 

belongs to subfamily-2 of G-protein-coupled receptors (GPCR) [4,5]. GIPR triggers Gs-mediated 

cAMP production and subsequent signaling cascades [3]. 

Until very recently, one major argument against the development of a therapeutic strategy using 

GIP analogues to treat diabetes 2 was raised by the impairment of GIP-dependent insulin secretion in 

diabetic type II patients, with an almost complete loss of amplification of the second phase of insulin 

secretion [6-10]. This detrimental effect was found to result from down-regulation of GIPR presence 

in pancreatic β-cells exposed to diabetic milieu.  Conversely, recent reports indicated that glycemia 

normalization in diabetic animals and humans significantly improves GIP-stimulated insulin secretion 

[11,12]. Moreover, very promising pre-clinical data were obtained in rodents, monkeys and humans 

showing that a single peptidic molecule having dual agonist activity at GIP and GLP1 receptors 

exhibits enhanced insulinotropic and anti-hyperglycemic efficacy relative to GLP1 alone [13]. As a 

consequence, a renewed interest in developing pharmacological strategies to target GIPR has emerged 

[13-15]. 

So far, regulation of GIPR presence at the cell surface remains poorly understood. First, although 

exposure of pancreatic islet cells to GIP has been shown to produce homologous desensitization of the 

GIP receptor, the impact of GIPR internalization and trafficking on GIPR-dependent response and the 

underlying molecular mechanisms have not been investigated in detail yet [16,17]. Recently, it has 

been reported that in 3T3-L1 adipocytes, GIPR constitutively internalizes and recycles to the cell 

surface and that GIP induces a down-regulation of plasma membrane GIPR by slowing GIPR 

recycling without affecting kinetics of GIPR internalization [18]. Accordingly, GIPR does not 

conform to the typical behavior of G-protein coupled receptors which has been essentially studied for 

members of rhodopsin-related GPCRs (sub-family 1) and much less frequently for members of sub-

family 2 of GPCRs such as the GIPR [19,20].  

In most cases, agonist-induced internalization of GPCRs starts with the action of GPCRs kinases 

(GRKs) that selectively phosphorylate agonist-activated receptors. Phosphorylation of the receptors 

and subsequent binding of arrestins terminate the G-protein-mediated signal of the membrane 

receptors. Arrestin-bound membrane receptors are then rapidly targeted to the clathrin-coated pits, 

thereby promoting their internalization [20,21]. Furthermore, it has been recognized that in addition to 
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its role in desensitization of G-protein mediated signal and cell responsiveness, β-arrestins trigger 

signaling pathways independently of G-protein coupling [22]. Importantly, pharmacological agents, 

named “biased ligands”, have been discovered, which activate differentially G-protein-dependent and 

arrestin-dependent signaling pathways [23]. 

In this context, the aim of this study was to investigate internalization of GIPR following agonist 

exposure, as well as cellular and molecular underlying mechanisms. Besides, this study enabled the 

identification of a GIP analogue, N-acetyl-GIP, so far recognized as a dipeptidyl-IV resistant GIP 

analogue, which fully stimulated cAMP production but with a ~15-fold lower potency than GIP. 

Furthermore, N-acetyl-GIP only weakly induced internalization of the GIPR and desensitization of 

GIPR-dependent cAMP response. 

 

2. Materials and methods 

2.1. Materials 

Fragment 1-30 of human GIP (termed GIP) was synthesized as previously described [24]. N-acetyl-

GIP(1-30) (termed N-acetyl-GIP) was from Millegen (Toulouse, France). Alexa Fluor 647 labeled-

GIP (termed AlexaF647-GIP) and Alexa Fluor 647 labeled–acetyl-GIP(1-30) (termed AlexaF647-N-

acetyl-GIP) were obtained  according to the procedure described [24]. In both peptides, Alexa Fluor 

647 moiety was coupled to the peptide and coupling products were HPLC purified. Peak 

corresponding to peptide in which Alexa Fluor 647 was attached to Lysine 30, as determined by Maldi 

Tof analysis, was selected [24]. Both fluorescent probes were highly specific of GIPR (less than 5% 

nonspecific labeling in the present of 100-fold excess of unlabeled peptide). Radio-labeled GIP was 

obtained by radio-iodination of Phe1-GIP(1-30) with 125I-Na (Perkin Elmer, France) in the presence of 

chloramine T and was HPLC purified on a C-18 column. 125I-Phe1-GIP bound to a single class of 

GIPR binding sites from HEK 293T or Flp-InTMGIPR-293 cells with a dissociation constant, Kd of 

75.7 ± 8.4 nM. Sequence encoding short variant of the human GIPR was derived from a plasmid 

kindly given by Professor Bernard Thorens (Lausanne, Switzerland). Chemicals were from the 

following sources: dynasore from Calbiochem, Pitstop2 from Abcam, Filipin and H89 from Sigma-

Aldrich, LysoTracker® Red from Invitrogen. 

The cDNAs encoding GIPR, green fluorescent protein (GFP) tagged GIPRs and Renilla luciferase 

(Rluc) fused GIPR were generated by subcloning respectively the GIPR cDNA in pcDNA5/FTR 

(Invitrogen), pEGFP-N1 (BD biosciences clontech), pRluc-N1(h) (Perkin Elmer). DsRed tagged 

Rab5, DsRed tagged Rab11, DsRed tagged Rab7, Clathrin-LCa-eYFP and Caveoline1-GFP were 

obtained from Addgene (www.addgene.org). Plasmids encoding green fluorescent protein (GFP) 

tagged β-arrestin1 (β-arrestin1 = arrestin2), yellow fluorescent protein (YFP) tagged β-arrestin1, 

yellow fluorescent protein (YFP) tagged β-arrestin2 (β-arrestin2 = arrestin3), Rluc-EPAC-YFP and 

D44A-dynamin were generous gifts from Marc Caron (Duke University Medical Center, Durham,  

USA). Green fluorescent protein (GFP) tagged β-arrestin2, kindly given by Robert Lefkowitz (Duke 
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University Medical Center, Durham, USA), was subcloned in pcDNA5/FRT. Plasmid encoding YFP 

tagged β-adaptin2 was given by Professor Michel Bouvier (Montreal University, Canada). All 

truncated receptor cDNAs at C-terminal tail (TR414, TR432 and TR452) and the GFP tagged GIPR 

constructs were obtained by insertion of a stop codon or  linker sequence, respectively. All constructs 

were sequenced before use.   

2.2. Cell lines and transfections 

HEK 293 cells stably expressing the GIPR (Flp-lnTM HEK-GIPR) and the CCK2R (Flp-lnTM HEK-

CCK2R) were obtained using the Flp-InTM system (Invitrogen). Alternatively, HEK293T transiently 

expressing the GIPR were used. All HEK293 derived cell lines cells were maintained in Dulbecco’s 

Modified Eagle’s medium supplemented with 10% of fetal bovine serum (FBS), in a humidified 

atmosphere at 95% air and 5% CO2. MIN-6-B1clone (kindly given by Doctor Jun-Ichi Miyazaki) was 

maintained in culture in Dulbecco’s Modified Eagle’s medium 25mM glucose supplemented with 15% 

of FBS, 71 µM	2-mercaptoethenol. Transfections were performed using polyethylenimine (PEI) 

transfection reagent (1mg/mL, pH 7.4) (Polyplus). Plasmids were diluted in DMEM without FBS 

(ratio DNA (µg) / PEI (µL) 1:3). The mixture was mixed for 15 sec on a vortex, incubated for 15 min 

at room temperature and then deposited on the cells. 

2.3. Confocal fluorescence microscopy 

Cells were plated onto poly-L-lysine (Sigma-Aldrich) coated 4-wells Lab-Tek chambered 

coverglass (Nunc). After an overnight growth, cells were transfected either with 1 µg/well of 

pcDNA5/FRT containing cDNAs of interest. 24 hours later, the culture medium was replaced by D-

PBS (Dulbecco’s PBS1X, 1mg/L glucose, 36mg/L sodium pyruvate, pH 7.4, calcium and magnesium 

free). Cells were stimulated with appropriate ligands and confocal microscopy images of GFP, DsRed 

or Alexa Fluor 647 fluorescence, were collected by using single- or double-line excitation 

(respectively 488 nm, 543nm, 633nm) on a Zeiss Laser Scanning Microscope LSM-510 or Zeiss Laser 

Scanning Microscope LSM-780 at 37°C. Concentrations of fluorescent GIP analogues equal or above 

10 nM were used in internalization and trafficking studies because confocal microscopy and FACS did 

not enable detection of cell-associated fluorescence at lower concentrations. For β-arrestin1-GFP and 

β-arrestin2-GFP membrane recruitment assays, time series over a 5 min period were performed 

(pictures were taken every 30 seconds) and the decrease of cytoplasmic fluorescence was measured 

using the Region of interest (ROI) function of LSM-510 software. 

2.4. Quantification of internalization and recycling by flow cytometry 

Flp-InTMGIPR-293 cells or HEK293T cells were plated onto poly-L-lysine coated 24-wells plates. 

After an overnight growth, cells were incubated with AlexaF647-GIP (100 nM) in PBS 0.2% for 

various times (from 5 to 60 min). Cells were washed twice with cold PBS 0.2% BSA and acid washed 

(0.2M acetic acid, 0.5 M NaCl, pH 2.5) for 10 min on ice. Cells were then washed twice with PBS 

0.2% BSA and detached for transfer to FACS tubes. Cell-associated fluorescence was determined 
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using a BD FACSCalibur™ flow cytometer, with Flp-InTM 293 that do not express GIPR as a 

negative control. 

For recycling assay, cells were incubated with 100 nM GIP in DMEM/HEPES (20mM) for 1 hour 

at 37°C to enable GIPR internalization. Cells were washed 3 times with DMEM/HEPES and 

incubated without ligand for increasing times in order to enable GIPR recycling. GIPR at the cell 

surface were identified with AlexaF647-GIP (1µM) for 45 min at 37°C in the presence of the 

internalization inhibitor, dynasore (100 µM) added 5 min before the ligand.  

2.5. BRET assays of β-arrestin recruitment and cAMP production 

HEK 293T or Flp-InTMGIPR-293 cells were plated onto 10-cm culture dishes and overnight 

grown. For β-arrestin recruitment assays, cells were transfected with 0.2µg of Rluc tagged GIPR and 

10µg of either β-arrestin1-YFP or β-arrestin2- YFP. For cAMP measurements, Flp-InTMGIPR-293 

cells were transfected with 5µg of Epac biosensor. Alternatively, HEK 293T cells were co-transfected 

with 5 µg of Epac biosensor and 1 µg of GIP receptors. 24 hours after transfection, cells were plated 

in 96-wells clear bottom plates (Corning) at a density of 100.000 cells per well in phenol red free 

DMEM 2% FBS. After an overnight incubation, the medium was removed and replaced by calcium 

and magnesium free PBS. BRET assay was initiated by adding 10 µl of coelenterazine h to the wells 

(final concentration 5 µM). After 5 min of incubation with coelenterazine h, GIP, N-acetyl-GIP or 

Forskolin was added. Readings started 5 min after the addition of GIP or N-acetyl-GIP. A Mithras 

LB940 instrument (Berthold) that allows the sequential integration of signals at 465 to 505 nm and 

515 to 555 nm windows and MicroWin 2000 software were used.  

2.6. Receptor binding assays 

Flp-InTMGIPR-293 cells grown overnight were onto 10-cm culture dishes. 24 h later, cells were 

transferred to 24-well plates. Approximately 24 h later, binding assays were performed using 125I-

Phe1-GIP according to the protocol previously described in detail [25]. Ki for competitors were 

calculated according to the equation Ki = IC50/1+[125I-Phe1-GIP]/Kd (125I-Phe1-GIP) in which IC50 

(concentration inhibiting half of specific binding) and Kd of 125I-Phe1-GIP were calculated using the 

non-linear curve fitting software GraphPad Prism (San Diego, CA).  

2.7. cAMP-desensitization assay 

Flp-InTMGIPR-293 cells transfected with Epac biosensor and plated in 96-well clear bottom plates 

were pre-stimulated at 37°C for increasing times by  GIP (0.1 µM) or N-acetyl-GIP (1 µM) with or 

without H89 (10 µM). Then, pre-stimulation was stopped by removing the medium. GIP peptides 

were washed out from cells (two times) with PBS buffer containing 0.5% BSA.  cAMP production in 

response to a second challenge with 1µM GIP or 10 µM N-acetyl-GIP was measured by BRET as 

indicated above. cAMP levels were expressed as the percent of cAMP in cells which were not pre-

stimulated with peptides.   
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2.8. Insulin secretion from MIN-6-B1cells 

Insulinoma cells were seeded on 24-wells plates (3.105 cells/well) and let to grow for 48h. Cells 

were then washed 3-times with 500 µL KRBH buffer pH: 7.4 (125 mM NaCl, 4.74 KCl, 1 mM CaCl2, 

1.2 mM KH2PO4, 1.2 mM MgSO4, 5mM NaHCO3, 10 mM, Hepes, 0.1% BSA). Cells were incubated 

for 2h at 37°C in KRH buffer supplemented with 2.8 mM glucose. The incubation medium was 

discarded and replaced with 500 µL buffer containing 11 mM glucose with or without GIP or N-

acetyl-GIP. Cells were let to secrete insulin during 2h. Supernatants were centrifuged for 5 min at 

2000 rpm to eliminate detached cells, and secreted insulin contained in supernatants was determined 

using Ultrasensitive Insulin Elisa Kit (Alpco) according to manufacturer instructions. Insulin secretion 

was expressed as -fold basal value obtained in the absence of GIP analogue. 

2.9. Molecular modeling 

The crystal structure of the human glucagon receptor (GCGR) with PDB code of 4L6R was used to 

build the homology model of the GIPR helical bundle using Prime 3.8 with the energy-based method 

[26].  The N-terminal domain of GIPR bound to GIP with PDB code of 2QKH was docked to the 

helical bundle taking into account the previously identified interactions between the N terminal 

domain of GIP and the residues of the GIPR helical bundle [24,27].  The docking was done in two 

steps. Firstly, the first five amino acid residues of the N terminal domain was docked with the Induced 

Fit protocol, where docking was constrained around residues known to be important for binding from 

mutagenesis. Next, the remaining part of GIP together with the N terminal domain of GIPR was 

assembled manually and subjected to 500 ps minimization followed by 1000 ps of molecular 

simulations in implicit environment. MacroModel 9.9 was used for all minimizations and simulations.  

Images with the molecular models were prepared with Maestro 9.9.     

2.10. Statistics 

All values are expressed as the mean +/- standard error of the mean (SEM). Statistical analyses of 

data using One- or two-way ANOVA with Dunnett’s or Turkeys’s comparison test were performed 

using GraphPad Prism version 6.0. In figures and table 1, significance degrees were given as 

following: * 0.01<p<0.05; ** 0.001<p<0.01; ***p<0.001 or � 0.01<p<0.05; �� 0.001<p<0.01; 

���p<0.001.  
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3. Results 

3.1. GIP receptors rapidly and abundantly internalize following GIP stimulation 

Flp-lnTM HEK-GIPR and HEK293T-GIPR cells used for studies of internalization and trafficking of 

GIPR were characterized prior to their use as biological tools. As shown on Supplemental figure 1S, 

cAMP levels measured by BRET using EPAC sensor were dose-dependently increased upon 

stimulation by GIP, with half-maximal stimulation (EC50) in the nanomolar range. Therefore, GIPR 

appeared correctly coupled to adenylyl cyclase in the two cell lines. Moreover, cAMP production 

measured with EPAC sensor was in agreement with that measured using a radio-immunoassay [24] 

thus validating BRET assay to measure cAMP. We also characterized pharmacologically AlexaF647-

GIP which was used to study internalization and intracellular trafficking of GIPR. As shown on 

supplemental Fig 1S and table 1, alexaF647-GIP bound to Flp-lnTM HEK-GIPR cells and stimulated 

production of cAMP similarly to GIP. Moreover, fluorescence labeling of GIPR by alexaF647-GIP 

was highly specific since FACS analysis of Flp-lnTM HEK-GIPR cells incubated with alexaF647-GIP 

in the presence 1 µM unlabeled GIP revealed less than 5% of nonsaturable labeling (not illustrated). 

Confocal microscopy observations of Flp-lnTM HEK-GIPR cells showed intense labeling of the plasma 

membrane immediately after addition of AlexaF647-GIP (Fig. 1A). Then, fluorescence was relocated 

in numerous membrane clusters and progressively penetrated into the cells as punctuate vesicles which 

formed clusters over the incubation time. Moreover, in HEKT293 transiently expressing GFP tagged 

GIPR, AlexaF647-GIP and GFP tagged GIPR co-localized during internalization and intracellular 

trafficking for at least 2 hours (Fig. 1B). This result establishes that internalized AlexaF647-GIP truly 

accounted for GIPR internalization. On the other hand, most of AlexaF647 and GFP fluorescence 

remained co-localized at time 5 hours, although some labeling appeared separately and GFP 

fluorescence intensity decreased likely because of degradation of GFP (Fig. 1B). Therefore, based on 

these controls and potential risks that GFP tag could hinder interactions between the intracellular 

region of GIPR and proteins of the endocytosis machinery, next experiments aimed at characterizing 

molecular mechanisms of GIPR internalization were carried out using AlexaF647-GIP to trace GIPR 

intracellular trafficking following internalization. It is worthy to mention that due to detection limits of 

confocal microscope and FACS, internalization and trafficking of the GIPR were investigated with 

concentrations of fluorescent probes equal or above 10 nM. Previous studies investigating GIPR 

targeting in vivo demonstrated GIPR internalization in response to picomolar concentrations of radio-

labeled GIP [28].  

Quantification of the amount of internalized ligand resistant to acid-washing which efficiently 

removed membrane-bound ligand (supplemental Fig. 2S) indicated that 60% and near 100% of bound 

AlexaF647-GIP became resistant to acid-washing after 5 and 30 min of incubation, respectively, 

demonstrating rapid and abundant trapping of GIPR in endocytosis structures (Fig. 1C).  
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3.2. Internalized GIP receptors poorly recycle and are mainly directed to lysosomes 

The trafficking and fate of internalized GIPR was investigated in Flp-lnTM HEK-GIPR. Results 

from experiments designed to examine possible recycling of internalized GIPR at the cell surface 

showed a slight increase of GIPR density through recycling which however did not exceed 10-15% of 

initial GIPR population after 1 hour (Fig. 2A). Trafficking was examined in  Flp-lnTM HEK transiently 

expressing both GFP tagged GIPR and fluorescent Rab proteins which are GTPases regulating 

intracellular trafficking between functionally distinct compartments in the cells [29]. Results showed 

early co-localization of internalized GIPR in Rab-5-positive early endosomes (Fig. 2B) and rare late 

co-localization in Rab-11 containing vesicles (Fig. 1C). On the other hand, transport to lysosomes was 

evaluated using LysoTracker, an acidic organelle-selective fluorescent probes. Confocal microscopy 

images indicate that a part of AlexaF647-GIP labeled GIPR and GIPR-GFP co-localized in 

lysoTracker-labeled lysosomes at 30 min and that almost the totality of internalized labeled GIP 

receptors were found in lysosomes at times 2 and 3 h (Fig. 2C).Together, these data demonstrate that 

GIPR receptors rapidly internalize upon GIP stimulation and are mostly directed to lysosomal 

degradation pathway, with only a minority of receptors recycling to the cell surface. 

  

3.3. Internalization of GIP receptor involves clathrin-coated pits and dynamin  

Internalization of GPCRs can occur through two main membrane structures, caveolae and clathrin-

coated pits [21,30]. The role of clathrin in GIPR internalization was investigated by expressing a GFP 

tagged fragment of clathrin in the cells or by treating Flp-lnTM HEK-GIPR cells with chlorpromazine, 

an inhibitor of clathrin-coated pit formation. As shown on Fig. 3A, in cells expressing GFP tagged 

fragment of clathrin, abundant punctuated co-localization with labeled GIPR was observed both at the 

cell surface and in endocytosis vesicles. Furthermore, Pitstop2 blocked AlexaF647- and GFP-labeled 

GIPR at the cell surface (Fig. 3B). Together, these results support that GIPR internalization occurred 

through clathrin-coated pits. The possibility that GIPR internalized through caveolae was also 

evaluated by expressing GFP tagged caveolin-1 in the cells or by treating Flp-lnTM HEK-GIPR cells 

with filipin, a caveole inhibitor. GFP tagged caveolin-1 mostly remained at the cell membrane 

following stimulation with AlexaF647-GIP. Presence of GFP tagged caveolin-1 could be observed in 

some endocytosis vesicles containing AlexaF647-GIP (Supplemental Fig. 3S). On the other hand, the 

caveole inhibitor did not significantly affect GIPR internalization (Supplemental Fig. 3S). All 

together, these experiments support that internalization of GIPR likely occurs mainly through clathrin-

coated pits in HEK cells. 

The contribution of dynamin, a GTPase involved in the separation of endocytosis vesicles from the 

plasma membrane was assessed. As illustrated on Fig. 3C, in the presence dominant negative 

dynamin, DN-K44A, AlexaF 647-GIP labeled GIPR remained at the cell surface for a long period as 

labeled clusters and internalization was clearly delayed relative to control transfected cells. The delay 

of internalization was more pronounced in the presence of dynasore. Indeed, even after times of 
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incubation as long as 1h, most of the AlexaF647-labeled GIPR remained at the cell surface and a 

minority of labeled GIPR was internalized (Fig. 3C). These images clearly indicate that dynamin is 

required for the internalization of GIPR.  

 

3.4. Internalization of the GIP receptor does not require β-arrestins nor C-terminal region of 

the receptor but involves AP-2 

Most often, the cascade of molecular events in the process of GPCR internalization through 

clathrin-coated pits involves the phosphorylation by GRK of Ser/Thr residues located on extreme C-

terminal region and/or intracellular loops of receptors and subsequent binding of β-arrestins which 

play a role of adaptor for receptor binding to both β2-subunit of AP-2 complex and clathrin [20]. 

The possible involvement of β-arrestins in GIPR internalization was examined. We first determined 

whether GIPR recruited β-arrestins using confocal microsopy and BRET, the later being recognized as 

a highly sensitive biophysical assay for detection of protein proximity [31]. Results showed no change 

in the concentration of cytoplasmic GFP tagged β-arrestin1 or 2 following GIP stimulations (Fig. 4A 

and supplemental Fig. 4S). In contrast, stimulation of CCK2R (used here as a receptor recruiting β-

arrestins) caused rapid translocation of cytosolic GFP tagged β-arrestin1 or 2 to the cell plasma 

membrane upon activation. Moreover, no BRET signal between RLuc tagged GIPR and YFP tagged 

β-arrestin1 or 2 could be detected (illustrated only with YFP tagged β-arrestin2, Fig. 4S), whereas 

BRET signal was seen with CCK2R, as previously documented [32]. Absence of β-arrestin1/2 

recruitment by GIPR was observed in confocal microscopy and BRET experiments with ratio of 

transfected plasmids ranging from 1:10 to 10:1. Collectively, these results indicate that GIPR most 

likely internalizes without requiring β-arrestin1 or 2 recruitment. 

We then evaluated the involvement of the C-terminal region of GIPR by constructing truncated 

GIPR. The GIPR constructs were first tested for their ability to stimulate adenylyl cyclase in response 

to GIP. As shown on supplemental Fig. 5SA, truncated GIPR at residues 414, 432 or 452 responded to 

GIP stimulations by increasing cAMP levels to the same maximum as the wild-type GIPR. However, 

half-maximal stimulation of GIPR-TR414 or GIPR-TR432 required higher GIP concentrations than 

did the wild-type GIPR (EC50: 5.2 ± 0.1 nM or 5.8 ± 0.1 nM versus 0.27 ± 0.21 nM, respectively) 

suggesting importance of the eliminated part of the receptor C-terminal tail for Gs coupling. Confocal 

microscopy observations indicate that abundant internalization could be seen in cells expressing the 

different truncated GIPR (Supplemental Fig. 5S, B). Quantification of internalization of these 

truncated GIPR using acid-washing showed no significant differences (Supplemental Fig. 5S, C). 

Therefore, none of the amino acids from C-terminal tail of GIPR seems to be essential for 

internalization, thus confirming previous data with rat GIPR [33]. 

Finally, the involvement of AP-2 in GIPR internalization was investigated by co-expressing YFP 

tagged β2-subunit of AP-2 in Flp-lnTM HEK-GIPR cells. Imaging results show abundant co-localization 
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between β2-subunit of AP-2 and AlexaF647-labeled GIPR strongly suggesting participation of AP-2 

complex to the internalization machinery of the GIPR (Fig. 4B). 

 

3.5. N-acetylation of GIP affects activity of the peptide on cAMP production, GIPR 

internalization and GIPR desensitization 

Structure-activity relationship data with GIP as well as mapping of GIP binding site in GIPR 

demonstrated that N-terminal region of GIP is essential for its biological activity [24,34,35]. On the 

other hand, N-terminal modifications of GIP were reported to increase resistance of GIP to 

degradation by DPP IV and/or its efficacy as an incretin [34,36]. We therefore tested whether N-acetyl 

modification of GIP affects ability of the peptide to trigger internalization and desensitization of the 

GIPR. 

  We first determined affinity of N-acetyl-GIP for human GIPR by performing binding experiments. 

Results show that N-acetyl-GIP competed with radio-iodinated GIP to GIPR with ~2.5-fold lower 

affinity than that of GIP (Ki : 28.6 ± 4.3 nM for N-acetyl GIP versus 11.3 ± 3.1 nM for GIP, 

supplemental Fig. 5A and table 1).  On the other hand, N-acetyl-GIP stimulation of Flp-lnTM HEK-

GIPR cells resulted in a dose-dependent increase of cAMP levels, with a maximal cAMP response 

close to that obtained with GIP, but a half-maximal response (EC50) achieved with 14.8 ± 1.9 nM  

versus 1.1 ± 0.1 nM for GIP (Fig. 5B, supplemental table 1). Thus, N-acetyl-GIP behaved as a full 

agonist of the GIPR to stimulate cAMP formation in HEK 293 cells but was ~15-fold less potent that 

GIP.  

Before use for internalization studies, AlexaF647-N-acetyl-GIP was characterized 

pharmacologically. Binding experiments indicated that AlexaF647-N-acetyl-GIP bound to GIPR with 

slightly lower affinity than that of unlabeled N-acetyl-GIP (Ki: 49.5 ± 5.8 versus 28.6 ± 4.3 nM, 

supplemental Fig. 6SA and table 1, supplemental data). Nevertheless, AlexaF647-N-acetyl-GIP 

stimulated cAMP production with a 15.5-fold lower potency than that of AlexaF647-GIP (EC50 : 7.3 ± 

0.9 nM for AlexaF647-N-acetyl-GIP versus 0.47 ± 0.08 nM for AlexaF647-GIP, supplemental Fig. 6S 

and table 1), supporting again that N-acetyl moiety is more important for GIPR activation than for 

ligand binding.  

Confocal microscopy studies of GIPR internalization following stimulation with 1 µM AlexaF647-

N-acetyl-GIP showed minor internalization as compared with 0.1 µM AlexaF647-GIP which provided 

similar cAMP production levels (Fig. 5C). In agreement with this result, unlabeled N-acetyl-GIP did 

significantly stimulate internalization of GFP tagged GIPR transiently expressed in HEK 293T cells, 

thus ruling out a possible role of AlexaF647 moiety in the inability of N-acetyl-GIP to trigger GIPR 

internalization (Fig. 5C). Furthermore, using acid-washing procedure, we quantified internalization of 

GIPR in response to AlexaF647-N-acetyl-GIP in comparison to AlexaF647-GIP at times 5 and 30 min 

of stimulation.  As illustrated on Fig. 6, after 5 min and 30 min of stimulation, the fraction of cell-

associated AlexaF647-N-acetyl-GIP which remained resistant to acid-washing was significantly lower 
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than that of AlexaF647-GIP at the three concentrations tested. Despite no EC50 could be calculated 

because dose-response curves did not reach a plateau, data from acid-washing experiments support 

that AlexaF647-N-acetyl-GIP and AlexaF647-GIP stimulate differently trapping and/or internalization 

of the GIPR. Strikingly, between ~54 and ~75% of cell-associated AlexaF647-N-acetyl-GIP were 

resistant to acid-washing whereas only a minority of fluorescence was detected in the cell interior by 

confocal microscopy. This apparent discrepancy suggests that binding of AlexaF647-N-acetyl-GIP to 

GIPR was rapidly followed by its trapping (or sequestration) at the plasma membrane but this was not 

pursued by its complete internalization.  

In light of the data showing distinct abilities of AlexaF647-N-acetyl-GIP and AlexaF647-GIP to 

stimulate GIPR internalization, we compared desensitization of cAMP responses stimulated with N-

acetyl-GIP or GIP. Indeed, phosphorylation by second messenger-dependent protein kinases and G-

protein-coupled receptor kinases (GRK) followed by internalization are major cause of desensitization 

of GPCR signaling [19,20]. For desensitization experiments, Flp-lnTM HEK-GIPR cells were pre-

stimulated with N-acetyl-GIP or GIP for different periods of time in order to cause desensitization of 

GIPR response. Then, cAMP production in response to a second agonist challenge was measured. As 

shown on Fig. 7, pre-stimulations with GIP dramatically decreased the ability of GIPR to respond to a 

second agonist challenge. Indeed, a 15-minute pre-stimulation decreased by 63% the cAMP response 

to GIP. In contrast, 15-minutes pre-stimulation of the cells with N-acetyl-GIP did not significantly 

affect cAMP responses; Neither GIP, nor N-acetyl-GIP pre-stimulation affected the ability of forskolin 

to increase cAMP level indicating that desensitization of cAMP responses was related to GIPR and not 

to adenylyl cyclase (not shown). Finally, PKA inhibitor, H89, which did not significantly affect 

internalization (Supplemental Fig. 7S) only partially reversed down regulation by GIP and entirely 

reversed N-acetyl-GIP-induced desensitization of cAMP response. In summary, N-acetyl-GIP differs 

from GIP mostly in its potency to stimulate cAMP production, as well as in its ability to desensitize 

GIPR-induced cAMP production and to stimulate GIPR internalization. 

  

3.6. N-acetyl-GIP efficiently stimulates insulin secretion from MIN-6 cells. 

We next compared stimulatory effects of GIP and N-acetyl-GIP on cultured β-cells. As shown on 

Fig. 8, both peptides dose-dependently stimulated insulin secretion. Insulin secretion levels with 1 and 

10 nM as well as 0.1 µM N-acetyl-GIP were slightly (but not significantly) higher than that with GIP 

at equivalent concentrations. Unfortunately, the low number of GIPR receptors present at the cell 

surface of MIN-6 as well as the low level of insulin secretion did not allow us to investigate GIPR 

internalization and desensitization.  
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4. Discussion 

In the context of a renewed interest for the development of GIP analogues therapeutic value, the 

aim of the current study was to investigate internalization of the GIPR following pharmacological 

stimulation by agonists, as well as the cellular and molecular underlying mechanisms. This study was 

carried out in HEK cells, a reference cell model for internalization studies. 

By using two different means to trace GIPR internalization, namely fluorescent reversible labeling of 

the GIPR with AlexaF647-GIP or covalent labeling with the GFP tag, we show rapid and abundant 

internalization of the GIPR immediately after GIP stimulation. Once internalized, GIPR poorly 

recycles to the cell surface but rather co-localizes with LysoTracker labeled vesicles indicating major 

targeting to late endosomes and lysosomes. Furthermore, converging results obtained with chemical 

inhibitors (chlorpromazine or fillipin) and GFP tagged proteins (Lca clathrin-eYFP or caveolin1-GFP) 

of both clathrin-coated pits and caveolae clearly support that internalization of the GIPR occurs mainly 

through clathrin-coated pits, although we do not exclude that a minority of GIP-stimulated GIPR could 

internalize through caveolae. GIPR internalization was strongly diminished and delayed by a 

dominant-negative and a chemical inhibitor of dynamin, thus indicating involvement of this GTPase in 

the fission of GIPR-containing endocytosis vesicles from the cell plasma membrane. 

The molecular events linking GIPR activation and its subsequent targeting to clathrin- coated pits 

were also investigated. Several lines of evidence support that GIPR internalization does not require β-

arrestins. First, both confocal microscopy and BRET studies were unable to show recruitment of β-

arrestin 1 or 2 whereas parallel experiments showed this recruitment to the CCK2R used as a reference 

receptor recruiting β-arrestins [32]. Moreover, elimination of phosphorylatable amino acids by 

truncation of C-terminal region of GIPR did not affect internalization of the GIPR, a result in 

agreement with previous reports by others showing that, although probably phosphorylated on two 

serines, the C-terminal tail of rodent GIPR was not essential for agonist-induced internalization 

[33,40]. Moreover, our results agree with those reported during the preparation of this manuscript, 

indicating no significant recruitment β-arrestin2 by the GIPR in HEK293 cells [41]. On the other hand, 

confocal microscopy observations strongly support participation of the AP-2 complex in GIPR 

internalization, a result in line with evidence showing that AP-2 is essential, if not required, in 

clathrin-coat pit formation [42,43]. β-arrestins are adaptor proteins classically recruited by 

phosphorylated G-protein coupled receptors, a biochemical event that is followed by binding of 

receptor-arrestin dimer to both β2-subunit of the AP-2 complex and clathrin, and subsequent targeting 

of the resulting cargo to clathrin-coated pits. The fact that GIPR internalization does not require β-

arrestins whereas it involves AP-2 raises the question of the mechanism by which activated GIPR is 

targeted to AP-2 complex before endocytosis. In light of available data from the literature, several 

hypotheses can be proposed. First, activated GIPR might interact directly via intracytosolic 

endocytosis motifs with a subunit of AP-2 complex. Consensus endocytosis motifs capable to be 

recognized by AP-2 adaptor complex are YxxΦ tyrosine-based motifs where Φ can be F, I, L, M or V 
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as well as [ED]xxxL[LI] acidic dileucine motifs [21]. Several G-protein- coupled receptors, such as 

protease-activated receptor 1 (PAR1), the chemokine CXCR2 and CXCR4 receptors, and the β2-

adrenergic receptor have been shown to internalize by involving such sorting motifs [44] [45-47]. We 

have performed an analysis of amino acid sequence of the GIPR and found 3 potential consensus 

sorting motifs in the intracytosolic region of the protein (bottom of transmembrane segments 2, 4 and 

7). However, point-mutations within these motifs did not affect significantly GIPR internalization 

(unpublished data). Among other likely hypotheses, involvement of GPCR kinases (GRKs) is 

plausible. GRK are best known to phosphorylate intracellular domains of active GPCRs resulting in 

receptor desensitization and internalization and are also capable of regulating GPCR signaling and 

trafficking independently of phosphorylation [48-50]. GRK2 has been shown to directly interact with 

clathrin through a clathrin box [48-50]. However, contradictory results were reported about interaction 

of GRK2 with GIPR [40,41]. Indeed, recruitment assay using FRET could not detect any binding of 

GRK2 to the GIPR whereas GRK2 over-expression caused drops in GIPR-dependant cAMP 

production and insulin secretion [40,41]. 

An additional important finding of the current work is the identification of new pharmacological 

properties of N-acetyl-GIP. This peptide was previously shown to have an improved anti-

hyperglycemic activity and stimulatory action on insulin secretion in vivo in ob/ob mice [51]. The 

half-life of N-acetyl-GIP to DPP IV degradation was estimated to be >24 hours in plasma versus 6.2 

hours for natural GIP [52]. In the current study, N-acetyl-GIP was found to be as potent and efficient 

as GIP to stimulate insulin secretion from MIN-6-B1 cells in spite of its 15-fold lower potency to 

stimulate cAMP production. These findings must be examined in light of results showing that N-

acetyl-GIP incompletely stimulates GIPR endocytosis and displays a decreased ability to desensitize 

GIP-induced cAMP production. It is thus plausible that N-acetylation of GIP improves insulinotropic 

action of the peptide by decreasing its potency to stimulate desensitization, internalization and 

lysosomal degradation of the GIPR. Additionally, like several other G-protein coupled receptors, 

GIPR might stimulate cAMP production from plasma membrane and early endocytosis vesicles as 

well and both cAMP pools would contribute to insulin secretion [53]. Related to this hypothesis, it will 

be important to investigate precise early trafficking of GIPR stimulated both by GIP and N-acetyl-

GIP, as well as possible differential effects of the two peptides on GIPR recycling. 

Thus, N-acetylation has a minor impact on affinity of GIP for its receptor but more strongly affects 

ability of GIP to activate GIPR. These findings are compatible with converging data showing that N-

terminal part of GIP is crucial for activation of the GIPR, whereas the C-terminal region of GIP is 

essentially involved in ligand binding [24,34,35,37]. Also, our previous studies dedicated to mapping 

of the activation site of the GIPR showed that N-terminus of receptor-bound GIP is in contact with 

aminoacids from transmembrane domains of the GIPR [24]. Our results showing distinct behaviors of 

N-acetyl-GIP relative to the full agonist GIP led us to examine if this could be explained by different 

binding poses of the two ligands in the binding site of the modeled GIPR. We previously identified 
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amino acid residues of the GIPR binding site that are essential for GIPR activation by GIP using an 

iterative approach involving homology modeling based on templates of Group A GPCRs and site-

directed mutagenesis [24]. For the purpose of this study, we have validated the data by reconstructing 

the GIPR homology model using the recently published crystal structure of the human glucagon 

receptor (GCGR), a Group B GPCR having a sequence identity of 58% with GIPR. In the modeled 

GIPR.GIP complex represented in Fig. 9A and B, the side chain of Tyr1 in GIP forms a H-bond with 

Q224 and a cation-π interaction with R300 and the terminal ammonium moiety of Tyr1 has an ionic 

interaction with E377 and a cation-π interaction with F357. The side chain of Glu3 forms an ionic 

interaction with R183. The backbone of Gly4 forms a H-bond with R190. The importance of R183, 

R190, Q224, R300 and F357 in GIPR activation by GIP agrees with earlier site-directed mutagenesis 

results [24]. Docking of N-acetyl-GIP in the binding site of the GIPR indicates that N-acetyl-GIP 

maintains the most of contacts apart from interactions with E377 and F357, acetylated nitrogen being 

moved away from these residues (Fig. 9C).  As a consequence, N-acetyl-GIP has a less number of 

interactions with helices 6 and 7 compared to GIP. These results, together with data showing that 

helices 6 and 7 in G-protein coupled receptors are essential for stabilization of the active conformation 

of receptors, may explain atypical activity of N-acetyl-GIP analogue [37-39]. So, it is plausible that 

the two agonists may stabilize different conformations of the GIPR, each of which having distinct 

ability to trigger signals.  

The understanding of the origin of incomplete internalization and decreased desensitization of 

GIPR following stimulation by N-acetyl-GIP will deserve additional investigations. Meanwhile, the 

fact that the PKA inhibitor fully reverses desensitization by N-acetyl-GIP whereas it partly reverses 

that by GIP supports the view that distinct signaling pathways and mechanisms cause desensitization 

of GIPR response: weak desensitization following N-acetyl-GIP exposure would mainly involve 

cAMP-dependent protein kinase (PKA) whereas more intensive desensitization by GIP would involve 

both PKA and other signaling pathways, including those leading to internalization. Thus, it is plausible 

that N-acetyl-GIP fails to activate a step of GIPR signaling involved in both desensitization and 

internalization. Accordingly, N-acetyl-GIP is a biased agonist candidate.  

Our results on GIPR internalization in HEK cells differ from those recently reported in transfected 

3T3L1 adipocytes [18]. In the last study, it was shown that GIPR constitutively internalizes and 

recycles to the cell surface and GIP regulates down-regulation of plasma membrane GIPR by slowing 

GIPR recycling without affecting kinetics of GIPR internalization [18]. We have no explanation for 

such different findings excepted that GIPR, like other G-protein coupled receptors, could behave 

differently according to the cell context [54].  On the other hand, it is interesting to compare behavior 

of the GIPR with that of the GLP1R. Indeed, although these two receptors are highly homologous in 

structure and functions, their insulinotropic responses are differently affected in diabetics. Studies 

insulinoma and HEK cells both showed that GLP1 rapidly internalizes in response to its natural 

agonist but also rapidly recycles to the cell surface [55,56]. Furthermore, GLP1 was shown to recruit 
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GRK2 and β-arrestin2 upon activation [41]. Thus, with respect to recycling to the cell surface and 

molecular mechanisms involved in internalization, GIPR seems to differ from GLP-1R [41,55,56]. 

  

5. Conclusion 

In this study, internalization of the GIPR and subsequent intracellular trafficking has been 

characterized. GIP stimulated rapid robust internalization of the GIPR, the major part being directed to 

lysosomes. GIPR internalization involved clathrin-coated pits, AP-2 and dynamin. However, neither 

GIPR C-terminal region nor β-arrestin1/2 was required. Thus, mechanisms of GIPR internalization 

seems to differ from that reported for GLP1R. Finally, N-acetyl-GIP recognized as a dipeptidyl-IV 

resistant analogue appeared to weakly stimulate GIPR internalization and desensitization of cAMP 

response. Molecular modelingof GIPR.N-acetyl-GIP complex enabled to show that N-acetyl-GIP 

interact more slightly with amino acids of helices 6 and 7 of the GIPR compared to GIP, supporting 

that the two agonists may stabilize different conformations of the GIPR, each of which having distinct 

ability to trigger signals. We propose that incomplete or partial activity of N-acetyl-GIP on signaling 

involved in GIPR desensitization and internalization contributes to the enhanced incretin activity of 

this peptide which is a biased agonist candidate. 
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9. Legends to Figures: 

Fig. 1: internalization of human GIP receptor 

A: GIPR internalization was traced using AlexaF647-GIP (≈100 nM) incubated for indicated times 

with Flp-InTM HEK-GIPR cells. Images show a cell representative of the population in a single 

experiment. Cells expressing lower levels of GIPR (as shown by AlexaF647-GIP binding) presented 

an identical profile of internalization. 

B: GIPR internalization was traced using GFP-tagged GIP receptor. HEK 293T cells transiently 

expressing GFP-tagged GIP (green) were incubated with AlexaF647-GIP (100 nM, red) for indicated 

times. Merged confocal microscopy images show AlexaF647-GIP co-localization with GFP tagged 

GIPR during intracellular trafficking. Images at different times correspond to distinct field from the 

same cell population.  

C: Quantification of GIPR internalization. AlexaF647-GIP (≈100 nM) was incubated with Flp-InTM 

HEK-GIPR cells for indicated times. Cells were directly assayed for fluorescence by FACS to 

measure amount of both bound and internalized AlexaF647-GIP (black bars) or were acid-washed 

before measuring cell-associated fluorescence (white bars), which according to confocal experiment 

control (Fig. 2S), corresponded to GIPR-mediated trapped and internalized AlexaF647-GIP. Values 

are expressed as % of maximum fluorescent labeling and are mean ± SEM of 3 experiments. 

Statistical significance of resistant acid-washing uptake versus total uptake: * 0.01<p<0.05. 

 

Fig. 2: Analysis of recycling and trafficking of internalized human GIP receptor  

A:  Graph shows results from quantification of GIPR recycling. Cells were treated with GIP (100 nM) 

for 1 hour, washed several times and incubated without ligand for indicated times to enable GIPR 

recycling at the cell surface. Then, cells were incubated with AlexaF647-GIP (1 µM) for 45 min and 

presence of GIPR was assayed using FACS. Values are the mean ± SEM of at least 3 separate 

experiments. The value 100 corresponds to cell-associated fluorescence at time 0 of recycling. 

Statistical significance of recycling values in reference to initial value: * 0.01<p<0.05; ** 

0.001<p<0.01; ***p<0.001. 

 

B1 and B2: Intracellular trafficking was traced by co-transfecting HEK 293T cells with cDNA 

encoding GIPR or GIPR-GFP and Rab5-DsRed or Rab11-DsRed. Images were captured at  times 3, 6 

and 24 min in B1, and at 4h in B2 after stimulation by AlexaF647-GIP (100 nM). Images in B1 show 

examples of co-localization of AlexaF647-GIP labeled GIPR (in red) with Rab5-DsRed (in green) in 

early endosomes at initial steps of trafficking (3-24 min). Images B2 show rare triple co-localization 

between AlexaF647-GIP (shown in red), GIPR-GFP (shown in blue) and Rab11-DsRed in slow 
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recycling endosomes at long times of incubation (between 2 and 5.5 h, illustrated for time 4h). These 

images are representative of 3 microcopy fields from 2 distinct experiments. 

 

C: Flp-InTM HEK cells transfected with GFP-tagged GIP receptor were incubated with LysoTracker 

(75 nM, displayed in green) for 15 min. AlexaF647-GIP (100 nM) was added to the cells and 

incubated for 30 min.  At this time, incubation medium was withdrawn, cells were washed once with 

PBS and new buffer without AlexaF647-GIP was added. Trafficking of internalized GIPR was let to 

proceed at 37°C.  Images show that only a part of AlexaF647-GIP labeled GIPR (shown in red) and 

GIPR-GFP (shown in blue) co-localized in lysoTracker-labeled lysosomes at 30 min (shown in green, 

the arrow indicates an example of absence of co-localization). Co-localization in lysosomes increased 

over the time of incubation, as displayed at 2h and 3h. These images are representative of 4-5 

microcopy fields from 2 distinct experiments. 

 

Fig. 3: Human GIP receptor internalization involves clathrin coated-pits and dynamin 

A: HEK 293T cells co-transfected with cDNA encoding GIPR and Clathrin-LCa-eYFP were 

stimulated with AlexaF647-GIP for indicated times. Merge images show co-localization of eYFP-

tagged chlathin with AlexaF647-labeled GIPR both at the cell surface and in endocytosis vesicles. 

Images at different times correspond to different microcopy fields representative of several others. 

B: HEK 293 cells transfected with cDNA encoding GIPR-GFP were incubated with AlexaF647-GIP 

alone or in the presence of the clathrin inhibitor, Pitstop2 (25µM). For each condition, images 

correspond to a single microscopy field representative of 2 others. They show that AlexaF647-labeled 

GIPR-GFP is maintained at the cell surface in the presence of Pitstop2. It was observed that Pitstop2 

decreased intensity of AlexaF647 fluorescence over the time. Therefore, in order to ensure 

visualization of the GIPR, the experiment was performed on cells expressing GIPR-GFP and not on 

Flp-InTM HEK-GIPR cells. 

C: Flp-InTM HEK-GIPR cells were incubated with AlexaF647-GIP alone (left panels) or HEK 293T 

cells co-transfected with cDNA encoding GIPR and dominant negative DN-K44A of dynamin were 

stimulated with AlexaF647-GIP for indicated times (midle panels) or Flp-InTM HEK-GIPR cells were 

incubated with AlexaF647-GIP in the presence of dynasore (50 µM) (right panels). Images showing 

different microscopy fields representative of several others indicate that both the dominant negative 

of dynamin and the chemical inhibitor strongly delay the process of GIPR internalization. 

Fig. 4: Human GIP receptor internalization involves AP-2 complex and does not require β-

arrestins 
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A: Flp-InTM HEK-GIPR cells or Flp-InTM HEK-CCK2R transfected with β-arrestin2-GFP were 

stimulated with GIP or CCK (100 nM), respectively. Images show that β-arrestin2-GFP remains in 

the cytoplasm in stimulated Flp-InTM HEK-GIPR cells whereas it was translocated to the plasma 

membrane (shown at time 5 min) in stimulated Flp-InTM HEK-CCK2R cells used as positive control 

of β-arrestin2 recruitment.  Graphs of recruitment assay represent measurement of cytosolic 

fluorescence over the time after GIP or CCK stimulation. They show that cytosolic β-arrestin2-GFP 

concentration remains unchanged in stimulated Flp-InTM HEK-GIPR cells whereas it rapidly 

decreases in stimulated Flp-InTM HEK-CCK2R cells. 

B: HEK293 T cells co-transfected with wild-type GIPR and YFP tagged β2-subunit of AP-2 were 

stimulated with AlexaF647-GIP (100 nM). Confocal microscopy Images show co-localization of 

AlexaF647-GIP labeled GIPR with YFP tagged β2-subunit of AP-2 on plasma membrane as well in 

endocytosis vesicles (shown at times 30 and 60 min.) 

 

Fig. 5: N-acetylation of GIP affects activity of the peptide on cAMP production and GIPR 

internalization in HEK cells. 

A: Inhibition of 125I-Phe1-GIP binding by GIP or N-acetyl GIP to GIP receptor. Flp-InTM HEK-GIPR 

cells were incubated with 125I-Phe1-GIP (100 pM) alone or in the presence of increasing 

concentrations of GIP or N-acetyl-GIP for 30 min. Bound radio-ligand was assayed and expressed as 

percent of specific binding. Results are mean ± SEM of 4 individual experiments. Inhibition 

constants, Ki, were: 11.3 ± 3.1 nM for GIP and 28.6 ± 4.3 nM for N-acetyl-GIP. These were 

significantly significant, p˂0.05. 

 B: Dose-response curves of cAMP production in Flp-InTM HEK-GIPR stimulated with GIP or N-

acetyl-GIP. cAMP levels were measured by BRET as described in the section “Materials and 

methods”. cAMP levels with each concentration of agonist were expressed as percent of cAMP level 

achieved with 10µM GIP. Results are mean ± SD of 4 individual experiments. Concentration giving 

half-maximal responses were 1.1 ± 0.1 nM and 14.8 ± 1.9 nM, respectively. These were significantly 

significant, p˂ 0.001. 

C: Flp-InTM HEK-GIPR cells were stimulated by AlexaF647-GIP or AlexaF647-N-acetyl-GIP at 0.1 

and 1µM, respectively. Images show absence of internalization of AlexaF647-N-acetyl-GIP labeled 

GIPR (midle panels). HEK293 T cells were transfected with GIPR-GFP and stimulated with N-

acetyl-GIP. Images (right panels) confirm that GIPR-GFP remains at the cell surface. Positive control 

of internalization of GIPR-GFP following GIP stimulation is shown on Fig. 1. Each kinetic is shown 

for the same microscope field. Images are those from an experiment representative of at least two 

others.  
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Fig. 6: Quantification of uptake of AlexaF647-GIP or AlexaF647-N-acetyl-GIP by HEK cells 

expressing GIP receptors. 

Flp-InTM HEK-GIPR cells were incubated at 37°C with AlexaF647-GIP or AlexaF647-N-acetyl-GIP 

at different concentrations. At time 5 and 30 min, cells were directly assayed for fluorescence by 

FACS to measure amount of both bound and internalized AlexaF647-GIP (panel A) or were acid-

washed before measuring cell-associated fluorescence (panel B). Histograms A represent mean ± 

SEM of total cell-associated fluorescence from 3 separated experiments, and histograms B represent 

the percent of cell-associated fluorescence resistant to acid-washing. Percent of cell-associated 

AlexaF647-N-acetyl-GIP resistant to acid washing was compared to that of cell-associated 

AlexaF647-GIP resistant to acid washing. Significance was as follows: ** 0.001<p<0.01; 

***p<0.001. 

Fig. 7: Differential desensitization of GIPR-dependant cAMP production by GIP and N-acetyl-

GIP.  

HEK 293T cells co-transfected with cDNA encoding GIPR and EPAC Bret sensor were pre-

stimulated with GIP (0.1µM) or N-acetyl-GIP (1µM) for indicated times. Then, cells were washed and 

stimulated with GIP (0.1µM) or N-acetyl-GIP (1µM) alone or in the presence PKA inhibitor, H89. 

cAMP production was determined by BRET measurements as described in “Materials and methods” 

section. Significance for cAMP production of cells pre-stimulated with GIP and N-acetyl-GIP without 

H89 is given in comparison with corresponding untreated cells. * 0.01<p<0.05; ** 0.001<p<0.01; 

Significance is also shown for cAMP in the presence of H89 as compared to cAMP in the absence of 

H89, � 0.01<p<0.05; �� 0.001<p<0.01. Results indicate that GIP-induced down regulation of cAMP 

production was more pronounced and observed earlier than that with N-acetyl-GIP. Moreover, H89 

only reversed a fraction of GIP-induced desensitization of cAMP production whereas it fully reversed 

N-acetyl-GIP-induced desensitization of cAMP production. 

Fig. 8:  N-acetyl-GIP and GIP stimulations of insulin secretion from MIN-6-B1 cells. 

Insulinoma cells (3.105cells/well) were grown in 24-wells plates for 48h. After washing, cells were 

incubated for 2h at 37°C in KRH buffer supplemented with 2.8 mM glucose. The incubation medium 

was discarded and replaced with 500 µL buffer containing 11 mM glucose with or without human GIP 

or N-acetyl-GIP. Cells were let to secrete insulin during 2h. Insulin secreted in supernatants was 

assayed by Elisa and results were expressed as -fold basal value obtained in the absence of peptide. 

Results are the mean ± SEM of 4 individual experiments. 
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Fig. 9: Molecular models of GIP and N-acetyl-GIP binding at GIPR. 

 A: Overall view of GIPR in the complex with GIP. B: Zoomed view of the GIP binding site. C: 

Zoomed view of the acylGIP binding site. Unlike GIP, N-acetyl-GIP does not form an ionic 

interaction with E377 and a cation-π interaction with F357. Only the first five residues of GIP and 

residues of the helical bundle predicted to be important for GIPR activation based on previous site-

directed mutagenesis are shown in stick-like representation. Hydrogen bonds and π-cation interactions 

are in pink and dark green, respectively.  
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 GIP N-acetyl-GIP AlexaF647-GIP AlexaF647- 

N-acetyl-GIP 

cAMP 
(EC50 ± SEM, nM) 

1.1 ± 0.2 14.8 ± 1.9 ***(a) 0.47 ± 0.10 7.3 ± 0.9��������(b) 

Binding 
(Ki ± SEM, nM) 

11.3 ± 3.1 28.6 ± 4.3*(c) 25.5 ± 5.7 49.5 ± 5.8����(d) 

 

 

Table 1: Summary of the pharmacological parameters of GIPR ligands 

(a) and (c): comparison  EC50 and Ki of N-acetyl-GIP versus EC50 and Ki of GIP 

***p<0.001; * 0.01<p<0.05. 

(b) and (d): comparison  EC50 and Ki of AlexaF647-N-acetyl-GIP versus EC50 

and Ki of AlexaF647-GIP; �� 0.001<p<0.01; � 0.01<p<0.05. 
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Glucose-Insulinotropic Polypeptide receptor (GIPR) is an incretin receptor subjected to strong 

regulation.>GIPR internalization is robust and rapid, it involved clathrin-coated pits, AP-2 and 

dynamin.>Neither GIPR C-terminal region nor β-arrestin1/2 are required for GIPR internalization.>N-

acetyl-GIP weakly stimulates GIPR internalization and desensitization of cAMP response.>N-acetyl-

GIP interacts more slightly than GIP with residues of helices 6 and 7 of GIPR. 
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Fig. 1S: Functional and binding characterization of cells expressing GIP receptors and fluorescent labeled GIP.  

Panel A, Flp-InTM HEK-GIPR stably expressing human GIPR were transfected with EPAC Bret sensor  or in 

panel B, HEK293T cells co-expressing transiently GIPR and EPAC Bret sensor were stimulated with GIP at 

indicated concentrations for 5 min. cAMP production was assayed by BRET as described in materials and methods. 

Concentration of GIP giving half-maximal stimulation of cAMP production were 0.53 ± 0.17 nM in 

Flp-InTM HEK-GIPR cells and 0.52 ± 0.06 nM in HEK293T-GIPR cells. Panel C, Flp-InTM HEK-GIPR were 

incubated with 125-I-Phe1-GIP in the presence of increasing concentrations of GIP or AlexaF647-GIP for 30 min. 

Results are mean ± SEM of 4 individual experiments. Analysis of inhibition curves provides the following 

Ki: 11.3 ± 3.1 nM for GIP and 25.5 ± 5.7 nM for AlexaF647-GIP. Panel D, HEK293T cells co-expressing 

transiently GIPR and EPAC Bret sensor were stimulated with AlexaF647-GIP at indicated concentrations for 5 min 

and cAMP production was assayed by BRET.  Results are mean ± SEM of 3 individual experiments. AlexaF647-GIP 

stimulated cAMP production with an EC50 of 0.47 ± 0.08 nM. 

 

Supplementary Data to article:Internalization and desensitization of the human glucose-dependent- 

insulinotropic receptor is affected by N-terminal acetylation of the agonist by Sadek Ismail et al. 
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Fig. 2S: Acid-washing of membrane-bound but not internalized AlexaF647-GIP.  

Flp-InTM HEK-GIPR were incubated with AlexaF647-GIP (100 nM) for 2-3 min. at 37°C. Then, cells were 

acid-washed (B) or not at 4°C for 5 min. Confocal microscopy images show efficiency 

of the elimination of membrane-bound fluorescent GIP and some remaining sequestered or internalized ligand.  
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Fig. 3S: GIP receptor does not significantly internalize through caveolae.  

Right panels: Flp-InTM HEK-GIPR cells were incubated with AlexaF647-GIP alone or in the presence of 

the caveola inhibitor, fillipin (50µM). Left panels: HEK 293T cells co-transfected with cDNA encoding GIPR 

and caveoline1-GFP were stimulated with AlexaF647-GIP for indicated times. Images show no significant 

change of internalization of GIPR in the presence of fillipin. AlexaF647-labeled GIPR strongly co-localizes 

with caveoline1-GFP at the plasma membrane and in some cases in endocytosic vesicles 

 (the white arrow shows an example). 
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Fig. 4S: Absence of β-arrestin1/2 recruitment to GIP receptor  

1) BRET assays showing absence of direct recruitment of β-arrestin2 to GIP receptor. 

Panel A: HEK293 T cells co-transfected with GIPR-RLuc and β-arrestin2-YFP were stimulated with GIP (100 nM). 

Panel B: HEK293 T cells co-transfected by CCK2R-RLuc and β-arrestin2-YFP were stimulated with CCK (100 nM). 

Results are those from one representative experiment of 3 others and are expressed as netBRET. 

2) Confocal microscopy images of Flp-InTM HEK-GIPR cells or Flp-InTM HEK-CCK2R transfected with 

β-arrestin2-GFP stimulated with GIP or CCK (100 nM), respectively. Images show that β-arrestin2-GFP  

remains in the cytoplasm in stimulated Flp-InTM HEK-GIPR cells whereas it was translocated to the plasma 

membrane in stimulated Flp-InTM HEK-CCK2R cells used as positive control of β-arrestin2 recruitment.  

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

WT-GIPR TR414-GIPR TR432-GIPR TR452-GIPR 

1’ 

45’ 

A: cAMP production 

-12 -11 -10 -9 -8 -7 -6 -5 
0 

25 

50 

75 

100 

WT-GIPR 
TR414-GIPR 
TR432-GIPR 
TR452-GIPR 

[GIP], Log M 

cA
M

P
 p

ro
d

u
ct

io
n

 (
%

 W
T

-G
IP

R
) 

B: AlexaF647-GIP 

2.107 

4.107 

6.107 

8.107 Total uptake 

Acid-washing 

resistant uptake  

C
el

l-
a

ss
o

ci
a

te
d

 f
lu

o
re

sc
en

ce
 

(a
b

it
ra

ry
 u

n
it

s)
 

GIPR       WT       TR452       TR432        TR414 

C: Quantification of internalized AlexaF647-GIP 
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Fig. 5S: The C-terminal region of the GIP receptor is dispensable for internalization of GIP receptor.  

A: C-terminal truncated GIP receptors retain ability to stimulate adenylyl cyclase.  

HEK293 T cells co-transfected with EPAC BRET biosensor and with wild-type or truncated GIPR  

positions 414, 432 or 452 (termed TR414, TR432, TR452) were stimulated with increasing concentrations 

of GIP. BRET was measured 5 min. after addition of GIP. Almost identical maximal responses were observed 

with wild-type and truncated GIPR. Potencies to stimulate production of cAMP were as follow: 

EC50, Wild-type GIPR: 0.27 ± 0.21, TR414: 5.2 ± 0.1 nM, TR432: 5.8 ± 0.1 nM, TR452: 0.48 ± 0.25 nM. 

B: C-terminal truncated GIP receptors abundantly internalize upon stimulation with AlexaF647-GIP.  

HEK293 T cells transfected with wild-type GIPR or with TR414-, TR432-, TR452-GIPR were stimulated with 

AlexaF647-GIP (100 nM). Confocal microscopy images show that all truncated GIPR abundantly internalized 

upon GIP stimulation (shown at 45 min). 

C: Quantification of AlexaF647-GIP internalization indicates that the C-terminal region of the GIP receptor 

is dispensable for internalization of GIP receptor. Two batches of HEK293 T cells transfected with wild-type  

GIPR or with TR414-, TR432-, TR452-GIPR were stimulated with AlexaF647-GIP (100 nM) for 30 min. 

Uptake of ligand was stopped by cooling the cells on ice. After PBS washing at 4°C, one batch was acid-washed 

whereas the second batch was PBS-washed (4°C). Fluorescence remaining associated to cells was quantified by FACS. 
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Fig. 6S: Pharmacological properties of N-acetyl-GIP and AlexaF647-N-acetyl-GIP 

Panel A: Competition binding between 125I-Phe1-GIP and AlexaF647-N-acetyl-GIP. Flp-InTM HEK-GIPR 

were incubated with 125-I-Phe1-GIP (100 pM) in the presence of increasing concentrations of 

AlexaF647-N-acetyl-GIP for 30min. Results are mean ± SEM of 4 individual experiments. Inhibition constant 

of AlexaF647-N-acetyl-GIP was: 49.5 ± 5.8 nM. Panel B: Dose-response curve for stimulation of cAMP 

production by AlexaF647-N-acetyl-GIP. HEK293T cells co-expressing transiently GIPR and EPAC Bret 

sensor were stimulated with AlexaF647-N-acetyl-GIP at indicated concentrations, for 5 min, and cAMP production 

was assayed by BRET.  Results are mean ± SEM of 3 individual experiments and show that AlexaF647-N-acetyl-GIP 

stimulated cAMP production with an EC50 of 7.3 ± 0.9 nM. 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

1’ 30’ 

-H89 

+H89 

0.0 

5.109 

1.109 

1.5.109 

Total uptake Acid-washing 

resistant uptake  

H89      +       -                 +       -   

C
el

l-
a
ss

o
ci

a
te

d
 f

lu
o
re

sc
en

ce
 

(a
b

it
ra

ry
 u

n
it

s)
 

30 min 

0.0 

1.108 

2.108 

3. 108 

4.108 

Total uptake Acid-washing 

resistant uptake  

H89      +        -                 +       -   

C
el

l-
a
ss

o
ci

a
te

d
 f

lu
o
re

sc
en

ce
 

(a
b

it
ra

ry
 u

n
it

s)
 

5 min 

A: 

B: 

Fig. 7S: Absence of effect of H89, a PKA inhibitor, on GIP-stimulated internalization of the GIP receptor. 

A: Flp-InTM HEK-GIPR cells were stimulated with AlexaF647-GIP (100 nM) in the absence or in the presence  

of H89. Confocal microscopy images show internalization of AlexaF647-GIP at 30 min). 

B: The absence of effect of H89 on GIP-induced GIPR internalization was confirmed by acid-washing experiment 

which indicated that the same amount of AlexaF647-GIP was resistant to acid washing when internalization  

proceeded in the absence or in the presence of H89. 

  

 


