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Abstract:  
 
This paper describes the use of Fibre Reinforced Polymer (FRP) composites to increase the 
strength of an isotropic metallic cylindrical shell against elephant’s foot buckling. This form of 
buckling occurs when a cylindrical shell structure is subjected to high internal pressure together 
with an axial force, such as those that may occur in tanks and silos. It is particularly relevant to 
tanks under seismic action. Although FRP composites have been widely applied to different 
types of structures under several loading conditions, its use to strengthen thin steel cylindrical 
shells has been very limited. Here, a non-linear elasto-plastic finite element idealization is used 
to explore the strengthening effect of an FRP strip on a thin cylinder. The optimum size and 
position of the FRP sheet were obtained and empirically formulated. This study has shown that 
the strength after repair is sensitive to minor changes in the FRP-parameters so that a close 
adherence to the optimum parameter values is very desirable. 
 
Keyword: Elephant’s foot buckling, FRP, shells, strengthening, non-linear analysis, silos, tanks. 

 
 
1. Introduction 
 
Elephant’s foot is the term commonly used to describe a local elastic-plastic buckling failure that 
occurs at the base of a cylindrical shell structure that is subjected to high internal pressure 
together with an axial force. This type of buckling failure is common in tanks after they have 
been damaged by earthquakes due to the axial forces induced by overturning moments (Rotter, 
1990, 2006).  Cyclic loading may cause an elephant's foot buckle to extend around the complete 
circumference at the bottom of the tank wall (Subhan et al., 2017; Djermane et al., 2014). 
Elephant's foot buckling can also be predicted for non-empty thin silos under wind loads (Zhao 
et al., 2013; Cao et al., 2018). A local buckle forms adjacent to the boundary, where the effects 
of local bending are amplified by co-existent axial compression (Rotter, 1989). It may be noted 
that smaller internal pressures increase the buckling strength under axial compression (Teng and 



Rotter 1992; Rotter 2004), but the first demonstration that this effect is limited by elephant’s foot 
buckling was given by Rotter (1990).  
 
The first theoretical investigation of elephant’s foot buckling for both pinned-base and fixed-base 
cylinders was published by Rotter (1990). His proposed semi-empirical design expressions are 
now widely used in codes of practice (EN 1993-1-6, 2007; EN 1993-4-1, 2007; EN 1998-4, 
2006; NZS-2654, 1989). Rotter showed that a clamped base can provide a significant increase in 
strength in very thin cylinders; but that the strength is similar for both pinned and fixed bases in 
thicker cylinders. An alternative treatment for design purposes was also developed by Rotter 
(2006). More recently, Kildashti et al. (2018) showed by a nonlinear time history analysis that 
there seems to be little difference in buckling resistance between the pinned and fixed base 
conditions if the tank is susceptible to elephant 's foot buckling under dynamic loading.   
 
One technique to strengthen a cylindrical tank or silo against elephant’s foot buckling is to use a 
ring stiffener. Chen et al. (2005, 2006) proposed that a small discrete metal ring stiffener could 
considerably improve a tank’s resistance to elephant's foot buckling. The optimum dimensions 
and location for this stiffener were derived, based on linear elastic shell bending theory 
(Timoshenko and Woinowsky-Krieger 1959; Rotter, 1985a). It was shown that if the ring 
stiffener has either a size or a location different from the optimum condition, the enhancement in 
the buckling strength that it provides can easily be lost.  
 
External bonding of fibre reinforced polymer (FRP) composites have been an effective 
strengthening method for different types of structures under various loading scenarios (Teng et al 
2002, Teng and Chen 2009). Kumar and Senthil (2016a; b) investigated the behaviour of an 
FRP-strengthened slender element of steel circular hollow sections (CHS) under axial loading, 
and observed a significant improvement in ductility, stiffness, and loading capacity. The loading 
capacity and the energy dissipation of concrete-filled steel cylinders under axial and lateral 
loadings can also be significantly enhanced by confining them with FRP (Lu et al, 2014; Zhu et 
al, 2018). In this case the steel tube wall is under internal pressure due to the expansion of 
concrete which also prevents its inward buckling, while its outwards buckling is restrained by the 
FRP. However, there is still very little published work on FRP-strengthened thin steel cylinders 
(Teng et al., 2012).   
 
Teng and Hu (2004, 2007) studied the wrapping of thicker cylinders (R/t=19) with FRP to resist 
axisymmetric plastic buckling failures under pure axial compression (also described as 
elephant’s foot, although the conditions are slightly different from those found in tanks and 
silos). Batikha et al. (2007a; 2009) studied a thin silo (R/t=1000) strengthened by FRP against 
elephant's foot buckling under an axial load accompanied by internal pressure.  In that study the 
optimum location and size of the FRP strengthening were derived using an elastic analysis.  
However, the accuracy of that study may be limited since plasticity could play a significant role 
in elephant’s foot buckling. The present study thus extends the work presented in Batikha et al. 
(2007a; 2009) by adopting a Geometrically and Materially Non-linear Analysis (GMNA) to 
devise proposals that accurately describe the great benefits of FRP in preventing elasto-plastic 
collapse at a tank base.  It may be noted that the preliminary results of this study were presented 
in a conference (Batikha et al. 2007b), where it was shown that FRP is an effective remedy. 

 



 
2. Finite element modelling 

 
The general-purpose finite element program ABAQUS (Ver 6.12-1) was used for the analysis. A 
steel cylinder with a height h of 5000 mm, radius R of 5000 mm and thickness ts of 5 mm was 
modelled as the reference case. The radius to thickness ratio R/t was 1000, producing a medium-
length cylinder according to EN 1993-1-6 (2007). The values of Young’s modulus, Es, and 
Poisson’s ratio, νs, of the steel were taken as 200 GPa and 0.3 respectively. The steel was 
assumed to have an elastic-perfectly-plastic stress-strain relationship with a yield stress of fy = 
250 N/mm2.  
 
A uniform internal pressure p and a vertical load per unit circumference Nz were applied to the 
cylinder. The base of the cylinder was restrained in the radial and axial directions. The top edge 
of the cylinder was restrained against rotation. Under axisymmetric loading, these boundary 
conditions ensure that buckling occurs at the base and model a cylinder that is much longer than 
the extent of the local deformations involved in elephant’s foot buckling (Rotter and Teng, 
1989).  
 
The cylinder was modelled using the 2-node axisymmetric general-purpose shell element SAX1 
which includes transverse shear deformation (ABAQUS/Standard User’s Manual, 2012). Each 
node has three degrees of freedom (radial and axial displacements and rotation about the 
circumferential axis). An axisymmetric element was justified as only axisymmetric collapse was 
observed in previous studies that included checks for non-symmetric bifurcation (Rotter, 1990, 
2006). 
 
Non-linear elasto-plastic finite element analysis was performed. The Riks arc-length method was 
used (Riks 1979) to trace the nonlinear response after buckling. A mesh convergence study was 
conducted, from which an element size of  was chosen. Such an element size is far 

smaller than that used by Rotter and Teng (1989) and Rotter and Zhang (1990), where cubic 
elements of size  were used. 

 
 
3. Buckling strength of thin cylindrical shells without strengthening  
 
For a uniform metal cylindrical shell without any strengthening to resist elephant’s foot buckling, 
an upper bound to the strength may be taken as the condition where the von Mises effective 
stress is reached on the outside surface of the shell: 
 = ( + ) − ( + ) × ( + ) + ( + )   (1) 
 
in which σmz is the meridional membrane stress, σmθ is the circumferential membrane stress, and 
σbz is the meridional bending stress. The latter two stresses are usually dominant in Eq. (1) when 
the internal pressure is high. The von Mises stress, σvM0 is used as the reference value, which 

0.02 sRt

0.25 sRt



refers to the state where the bending moment is zero and the lateral displacement, w, is equal to 
the membrane theory normal deflection wm: = ( + )  (2) 

 
The axial stress at first yield when the characteristic elephant’s foot shape develops can be 
predicted by Rotter’s (1989) approximation to the exact solution for the non-linear elastic 
bending equations: = + 0.3 2.725 + .√ − 2.65 =  (3) 

in which the normalised meridional membrane stress: =  (4) 

where σcl is the classical elastic buckling stress of thin cylindrical shells given by: 
 = ( ) ≈ 0.605                     (5) 

 
Rotter (1989, 1990) derived the following semi-empirical equations to describe the elephant’s 
foot buckling strength under elastic-plastic conditions.  These have been widely adopted into 
codes of practice (e.g. EN 1993-1-6, 2007; ECCS, 2008): = 1 − 1 − . .  (6) 	 =  (7) 

 
The conditions leading to elastic bifurcation buckling under pure axial compression in other parts 
of an imperfect shell have been reviewed by Rotter (2004) and are defined in EN 1993-1-6 
(2007).  The amplitude of the imperfection affects this strength, and the reduced strength is 
commonly written as: = .  (8) 
where αz is the meridional elastic imperfection factor. An empirical lower bound for the 
relationship between this imperfection factor and the imperfection amplitude is used in 
EN 1993-1-6 (2007) as: = .. ( / ) .                (9) 

in which is the characteristic imperfection amplitude.  Since the imperfection amplitude is 
affected by both the quality of fabrication and the radius to thickness ratio, the amplitude is 
defined in EN 1993-1-6 (2007), taken from Rotter (1985b), as: =  (10) 

where, Q is the meridional compression fabrication quality parameter (Table 1). 
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1 shows that the elastic-plastic collapse strengths obtained from a FE analysis in the present 
study are in very close agreement with those predicted by Eq. 6 developed by Rotter (1990). 

 
 
4. FRP strengthened cylindrical shells 

 
4.1. Modelling  
  
For the example cylinder, an FRP sheet with a height of hf was bonded to the external surface of 
the cylindrical shell, starting at the level xf above the base. The FRP sheet was treated as 
orthotropic with Young’s modulus Efθ in the circumferential direction and Efz in the meridional 
direction, and Poisson’s ratios νfθz  and νfzθ . The FRP lamina was modelled using the element 
SAX1, a 2-node axisymmetric shell element. The model assumed a perfect bond between the 
cylinder and the FRP sheet. 
 
4.2. Verification of the model  
 
To verify the FE model, the FE predictions are compared with the experimental results of Teng 
and Hu (2004, 2007) as shown in Fig. 2. The experimental study of Teng and Hu (2004, 2007) 
was to demonstrate the effectiveness of FRP confinement on thick steel tubes using a GFRP 
jacket. The experimental setup of a fixed-base steel tube with height h = 450mm, radius R = 
80.4mm and thickness ts = 4.2mm was modelled. The steel had a Young’s modulus Es of 
201GPa, Poisson’s ratio νs of 0.3 and yield stress of 335 MPa with strain hardening modulus of 
5% of the elastic value. It should be noted that the tube is considered thick, with an R/t ratio of 
about 19. The 0.53mm thick (tf) three-ply GFRP jacket was modelled over the entire height of 
the tube as in the experiment. The GFRP sheet was modelled as an orthotropic material with 
Efθ = 80.1GPa, Efz = 3 GPa, νfθz =0.35 and νfzθ =0.013. 
 
It is worth mentioning that Teng and Hu modelled their tests using the B33 element in ABAQUS 
(Version 6.12-1) oriented in the hoop direction to model the FRP and S4R shell elements to 
model the tube.  B33 is a bi-cubic beam element with six degrees of freedom per node. The 
height of the B33 element was taken as the height of the shell element. S4R is 4-node doubly 
curved general-purpose shell, with reduced integration with hourglass control and the effect of 
transverse shear deformation included. Each node has six degrees of freedom, comprising of 
three displacements and three rotations. 
 
Figure 2 shows the experimental load-deflection curves for a pair of experiments with and 
without GFRP strengthening. The test loading capacity was 782.2 kN for the former and 717.5 
kN for the latter. The finite element curves of Teng and Hu are also shown, together with the 
curves predicted from the FE model in this study. Teng and Hu modelled the GFRP using beam 
elements and predicted a loading capacity of 800 and 709 kN respectively for the specimens with 
and without FRP strengthening. The GFRP was modelled using shell elements here and the 
predicted corresponding loading capacities were 787 and 709 kN respectively when the vertical 
stiffness of the FRP was neglected (Efz = 0).  Clearly the loading capacities predicted by both FE 
models are very close to the test values. All results show that the GFRP strengthening increased 
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whereas the GFRP wrap significantly reduces this phenomenon. Fig. 3 also shows that the von 
Mises stress predicted by the FE shortly after the peak load is much higher in the elephant’s 
buckling zone than elsewhere.  

 
4.3. Application to thin cylindrical shells  
 
To explore the strengthening effect of FRP on a thin cylindrical steel shell, a steel cylinder of 
R/t=1000 as described in Section 2 was analysed with an externally bonded FRP composite. The 
FRP was assumed to have a Young’s modulus Efθ = 230 GPa in the circumferential direction, 
and Efz = 3GPa in the meridional direction. Its Poisson’s ratios were νfθz = 0.35 and νfzθ = 0.0045. 
An internal pressure of 200 kPa (0.2 N/mm2) was applied, resulting in a circumferential 
membrane stress equal to 66% of the membrane yield stress. Different FRP thicknesses were 
considered using a normalised FRP height hf/λ = 1, in which λ is the linear bending half 
wavelength:   	 = ( ( )) / = 2.444  (11) 

Note that the linear bending half-wavelength λ  here corresponds to meridional bending without 
the effect of the axial stress. Under axial compressive stresses that are significantly large 
compared with the elastic critical value (Eq. 5), the half-wavelength of bending is reduced 
(Rotter, 1989).   
 
For the reference case, the FRP strip was assumed to be located directly above the base, i.e. the 
normalised starting level above the base xf/λ = 0. The quantity of FRP is here characterised by 
the relative circumferential membrane stiffness κ: 

 =        (12) 

 
Figure 4a shows the effect of κ, here termed the stiffness ratio, on the load-axial shortening 
relationship. The corresponding deformed shapes after buckling are shown in Fig. 4b. As κ 
increases, the buckling strength initially increases (Fig. 4) but it reaches a peak at about κ = 0.4.  
The strengthening effect is sensitive to the circumferential membrane stiffness of the FRP.  Both 
too little and too much FRP lead to lower strengths. A small amount of FRP strengthening (e.g. 
κ=0.2) does not change the location or the form of the elephant’s foot buckle (Fig. 4b) and the 
failure is gentle without any snap-back. However, as the stiffness ratio κ is further increased, the 
deformed shape is changed, resulting in two buckles: a smaller, lower buckle in the original 
location within the FRP zone and a large one directly above the FRP causing a severe snap-back 
response. As the amount of FRP is further increased, the lower buckle is further reduced and 
eventually declines to zero (i.e. no buckling within the FRP strengthening). The snap-back 
behaviour is eliminated but the buckling capacity is steadily reduced. When κ increases to very 
large values (e.g. 100), the elephant’s foot buckle moves to directly above the FRP strengthened 
zone and the stress-axial shortening curve becomes almost parallel to the one without FRP 
strengthening. Such large amounts of FRP strengthening, represented by a high value of κ, has 
two consequences: 1) it moves the boundary restraint at the bottom of the cylinder up to where 
the FRP ends; and 2) the buckling capacity is slightly increased because this ‘new’ boundary is 
effectively built-in, rather than hinged as in the un-strengthened case. 
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In the normalised FRP height parameter ( fh ), the meridional bending half-wavelength has been 

re-evaluated as bλ  to account for the effect of the FRP on this half-wavelength in the section 

where FRP is attached (Batikha et al. 2007b and Batikha et al. 2009):  = 2.444               (17)  
in which tb is a modified shell thickness accounting for the FRP circumferential membrane 
stiffness (κ) into consideration: = √           (18) 

 
The results are shown in Figs 10-12.  Figure 10 shows that when the internal pressure is low 
(e.g. 0 65.p < for Class A), elastic buckling dominates and FRP strengthening cannot increase 
the buckling strength. For intermediate pressures (e.g. 0 65 0 75. .p< <  for Class A), FRP 
strengthening is required to raise the elephant’s foot buckling strength to a level above the 
elastic buckling strength of the un-strengthened section of the shell so that the final failure 
mode is elastic buckling above the base boundary. The amount of FRP required increases with 
increasing pressure in this range, but it also depends on the elastic buckling resistance to be 
achieved, which in turn depends on the amplitude of the imperfections elsewhere in the shell, so 
the curves for FRP requirement depend on the fabrication quality class of the cylindrical shell.  
 
When the pressure is even higher (e.g. 0 75.p >  for Class A), elastic-plastic elephant’s foot 
buckling dominates and FRP strengthening can increase the buckling strength up to the 
membrane yield strength. The amount of FRP required to achieve becomes less as the pressure 
increases further.  
 
Figure 11 shows the optimum normalised FRP height fh .  It increases at higher internal 

pressures, irrespective of whether elastic buckling or elephant’s foot buckling dominates. 
Figure 12 shows that, for all cases, the optimum normalised FRP starting level fx  is lower at 

higher levels of normalised internal pressure p  . 
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Table 2. The coefficients in Eq. 19 for the optimum values of the three FRP parameters 
 

Optimum value of the FRP parameter Coefficients 
A B C = = 	 − ( ̄) ( ̄ ) 0.66 7.4 7.3 

=πhf /λb = − ( ̄) ( ̄ ) 1.79 10.5 9.6 

= πxf /λ = − ( ̄) ( ̄ )  0.59 7.3 7.5 

 
 
6.2. The required parameters for elastic buckling part 
 
For the elastic buckling region, the optimum values of the FRP parameters can be closely 
modelled by: ± ( ̄ )        (20) 
where the coefficients A, B and C were obtained by regression for each fabrication quality class 
and are given in Table 3. 
  
Table 3. Coefficients in Eq. 20 for elastic buckling  
 
FRP Parameter Class A Class B Class C 

A B C A B C A B C = = ± ( ̄ ) -1.31 2.48 1.24 -1.1 3.81 2.49 -1.72 3.64 2.1 

=πhf /λb= ± ( ̄ ) 1.47 8.8 6.7 1.59 14 11 1.66 21.8 17.6

= πxf /λ = ± ( ̄ ) 0.64 6.07 1.96 0.65 6.87 5.65 1.02 5.07 3.96
 
 

6.3. Validation of the empirical formulas 
 
Comparisons between the identified optimum values of the FRP parameters from the FE 
analyses and the empirical formulas (Eqs 19 and 20) are shown in Figures 13-15, where the close 
fits are evident.  The sensitivity of selecting values that differ from the optimum ones is 
illustrated in Figs 16 and 17 for quality Class A as an example. It is clear that even small 
variations from the optimum values lead to noticeable strength losses. Significant departures 
from the optimum FRP stiffness κ (Fig. 16) clearly lead to very poor outcomes, whilst the elastic 
buckling zone is sensitive to even small changes.  In the membrane yield zone, the buckling 
strength is very sensitive to the FRP height fh  (Fig. 17) with even a 10% change in height 

producing quite significant strength losses.   
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