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Downlink Beamforming for Energy-Efficient
Heterogeneous Networks with Massive MIMO and

Small Cells
Long D. Nguyen, Student Member, IEEE, Hoang D. Tuan, Trung Q. Duong, Senior Member, IEEE,

Octavia A. Dobre and H. Vincent Poor, Fellow, IEEE

Abstract—A heterogeneous network (HetNet) of a macro-cell
base station equipped with a large-scale antenna array (massive
MIMO) overlaying a number of small cell base stations (small
cells) can provide high quality of service (QoS) to multiple users
under low transmit power budget. However, the circuit power for
operating such a network, which is proportional to the number
of transmit antennas, poses a problem in terms of its energy
efficiency. This paper addresses the beamforming design at the
base stations to optimize the network energy efficiency under QoS
constraints and a transmit power budget. Beamforming tailored
for weak, strong and medium cross-tier interference HetNets
is proposed. In contrast to the conventional transmit strategy
for power efficiency in meeting the users’ QoS requirements,
which suggests the use of a few hundred antennas, it is found
out that the overall network energy efficiency quickly drops if
this number exceeds 50. It is found that, for a given number of
antennas, HetNet is more energy-efficient than massive MIMO
when considering overall energy consumption.

Index Terms—Heterogeneous networks, massive MIMO, small
cell, beamformer design, energy efficiency, optimization

I. INTRODUCTION

Massive MIMO [1], [2] and small cell networks [3] are
presently envisioned as two key technologies of the emerging
generation of communication networks (5G) to support a
1000-fold increase in network capacity. Since each of these
technologies alone is not expected to meet both the quality-of-
service (QoS) and ubiquitous access requirements for 5G [4],
combinations of the former overlaying the latter have attracted
considerable research interest [5], [6]. In such heterogeneous
networks (HetNets), the small cell base stations (SBSs) serve
static and low mobility users (SUEs) to explore their proximity
to these users, while the massive MIMO base station (MBS)
serves higher mobility users (MUEs) to explore its high
coverage area and favored channel characteristics. A main
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issue of HetNets is to manage both intra-tier interferences
and cross-tier interference between the MBS and SBSs [7],
[8]. In [9], the SBSs were proposed to be turned-off if they
cause an excessive interference to the MBS. Minimization of
the downlink transmit power by multiflow-regularized-zero-
forcing beamforming subject to users’ QoS constraints was
considered in [10], which involves a large-scale semi-definite
program of dramatically high computational complexity. The
so-called reserve time-division-duplexing of MBS operating
in downlink mode while the SBSs operate in uplink mode
and vice versa was proposed in [6]. Being free of cross-
tier interference, both MBS and SBSs when in downlink are
supposed to exploit the cross-tier channel state information
(CSI) in suppressing their inter-link interference.

With the irreversible trend of network densification in 5G
and beyond [11], [12], a natural concern is its consumed power
[13]. To meet the requirement of 1000-fold energy efficiency
for new technologies [14], the energy efficiency (EE) in terms
of the ratio between the information throughput and consumed
power has been introduced as a new figure of merit in assessing
communication systems (see, e.g., [15]–[17] and references
therein). While achieving lower transmit power in offering
better QoS with using more antennas, it should be realized that
both MBS and SBSs then consume more circuit powers, which
are proportional to the number of their antennas. Since the
large-scale analysis [6], [18], which is solely based on arbitrary
large numbers of antennas and thus does not control the
consumed power, does not readily apply in the EE context, the
problem of determining the numbers of base stations, antennas
and users in uplink to improve the EE was considered in [19].
As surveyed in [17], so far the main tool for addressing the EE
maximization problems is Dinkelbach’s procedure of fractional
programming [20], even though the objective functions are
no longer ratios of concave and convex functions; hence in
this case each Dinkelbach’s iteration invokes solution of a
difficult nonconvex optimization problem, which is not easier
than the original optimization problem. Two separated energy-
efficient beamforming problems were considered in [21]. The
first problem is energy-efficient MBS beamforming under
constrained interference to the SBSs’ users, while the second
problem is the energy-efficient SBS beamforming ignoring the
interference from the MBSs. Each stationary point computed
in each Dinkelbach’s iteration is not necessarily feasible. D.C.
(difference of two convex functions) iterations [22] were em-
ployed in [23] for computation of the nonconvex optimization
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problem arisen in each Dinkelbach’s iteration for the SBSs
under constrained interference to the MBS-tier users. Each
Dinkelbach’s iteration in joint power allocation and remote
radio head (RRH)/high-power node (HPN) association for
heterogeneous cloud radio access networks (H-CRAN) invokes
computation of a difficult mixed-integer optimization problem.
Each Dinkelbach’s iteration in HetNets with fixed service rate
constraints [24] invokes computation of a very difficult mixed-
combinatorial and nonconvex optimization problem, which is
then addressed by semi-definite relaxation.

This paper considers a HetNet of an MBS equipped with a
large antenna array overlaying multiple SBSs in serving both
MUEs and SUEs. The aim is beamforming design at both the
MBS and SBSs to maximize the network EE under the users’
QoS constraints. Such design problems under different beam-
forming classes are formulated as maximizations of fractional
functions subject to convex constraints. Avoiding Dinkelbach’s
computationally inefficient iterations, path-following compu-
tational procedures are developed; these invoke computation
of a simple convex program to generate a better feasible point
and at least converge to a locally optimal solution. Simulations
under different scenarios show that it is important to control
the number of the MBS antennas maximizing the network EE,
which is indeed in sharp contrast to the spectral efficiency (SE)
orientated massive MIMO. Moreover, it is also shown in the
paper that indeed underlaid small cells are an effective tool
for substantially improving the network EE.

The paper is organized as follows. After the Introduction,
Section II is devoted to the EE problem statement. Zero-
forcing (ZF) MBS beamforming is addressed in Section III.
Section IV considers other beamforming classes. A special
class of the ZF MBS and SBS beamforming, with a different
solution method, is treated in Section V. Simulation results are
presented in Section VI, which is followed by the Conclusions.
Some fundamental inequalities used in the paper are provided
in the Appendix.

Notation. Boldface uppercase and lowercase letters denote
matrices and vectors, respectively. [x]+ , max{0, x} for a
scalar x. The transpose and conjugate transpose of a matrix
XXX are respectively represented by XXXT and XXXH . III and 000 stand
for identity and zero matrices of appropriate dimensions. Tr(.)
is the trace operator. ||xxx|| is the Euclidean norm of a vector xxx
and ||XXX|| is the Frobenius norm of a matrix XXX . A complex-
valued Gaussian random vector with mean x̄xx and covariance
RRRxxx is denoted by xxx ∼ CN (x̄xx,RRRxxx). For matrices XXX1, . . . ,XXXk

of appropriate dimension, denote by [XXX1; ...;XXXk] the matrix
[XXXT

1 . . .XXXT
k ]T .

II. PROBLEM STATEMENT FOR HETNETS

Consider a HetNet of an MBS of a large-scale NM antenna
array with NM up to several hundred and S SBSs, which
are referred as SBS 1, ...., SBS S. Each SBS s is equipped
with Ns antennas. The MBS serves M downlink MUEs, while
SBS s serves Ks downlink SUEs within its cell. All users are
equipped with a single antenna. For convenience, denote by
KM = {1, . . . ,M} the set of the MUEs and by {(s, `)|` ∈
Ks , {1, . . . ,Ks}} the set of those SUEs that are served

TABLE I: Summation of used notations

Notation Description
NM number of MBS antennas
Ns number of SBS antennas
M number of users served by MBS (MUEs)
Ks number of users served by SBS s (SUEs)
KM {1, . . . ,M}
Ks {1, . . . ,Ks}
k an MUE
(s, `) an SUE served by SBS s
Is set of MUEs interfered by SBS s
Nk set of SBS interfering to MUE k√
βkhk channel from MBS to MUE k√
βs,`χs,` channel from MBS to SUE (s, `)

hs,` channel from SBS s to SUE (s, `)
fk MBS beamforming vector for MUE k
fs,` SBS s’ beamforming vector for SUE (s, `)
FM set of MBS beamforming vectors
Fs set of SBS s’ beamforming vectors
FS {Fs, s = 1, . . . , S}
FNk

{Fs, s ∈ Nk}
F {FM ,FS} (set of all beamforming vectors)
σ̃mui
k (FM ) inter-MUE interference to MUE k
σ̃s,`(Fs) inter-SUE interference to SUE (s, `)
σ̃mbi
s,` (FM ) MBS interference to SUE (s, `)

σ̃sbi
k (FNk) SBS interference to MUE k

by SBS s. As Fig. 1 shows, in sharing the same spectrum at
the same time, the MBS interferes to all SUEs (s, `), while
the SBSs interfere to those MUEs in their coverage range.
Accordingly, Is with cardinality Is is defined as the set of
those MUEs that are interfered by SBS s and Nk is the set of
those SBSs that interfere to MUE k.

Fig. 1: Illustration to the HetNet. The dash lines denote the interference signals and
interference area for SBSs.

Similar to [1], [25] and [18], we will exploit the fol-
lowing structure of the massive MIMO channel from the
MBS to the MUEs:

√
βkhk, and to the SUEs:

√
βs,`χχχs,`,

where
√
βk and

√
βs,` model the path loss and large-scale

fading from the MBS to MUE k and SUE (s, `), while
hk = (h1,k, ..., hNM ,k)T with hmk ∈ CN (0, 1) and χχχs,` =
(χ1,s,`, . . . , χNM ,s,`)

T with χj,s,` ∈ CN (0, 1) represent the
small-scale fading.
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The complex baseband signal received by MUE k is

yk =
√
βk hhh

H
k fffkxk︸ ︷︷ ︸

desired signal

+
∑

i∈KM\{k}

√
βkhhh

H
k fff ixi︸ ︷︷ ︸

inter-MUE (co-tier) interference

+
∑
s∈Nk

Ks∑
j=1

ηηηHs,kfffs,jxs,j︸ ︷︷ ︸
SBS (cross-tier) interference

+nk, (1)

where fk ∈ CNM and xk are the beamforming vector and
information from the MBS intended to MUE k, respectively,
ηηηs,k is the channel vector from SBS s ∈ Nk to MUE k,
fs,` ∈ CNs and xs,` are beamforming vector and information
from SBS s intended for SUE (s, `), and nk ∼ CN (0, σ2

k) is
the additive white Gaussian noise at MUE k.

The complex baseband signal received by SUE (s, `) is 1

ys,` = hhhHs,`fffs,`xs,`︸ ︷︷ ︸
desired signal

+

M∑
i=1

√
βs,`χχχ

H
s,`fff ixi︸ ︷︷ ︸

MBS (cross-tier) interference

+
∑

j′∈Ks\{`}

hhhHs,`fffs,j′xs,j′︸ ︷︷ ︸
inter-SUE (co-tier) interference

+ns,`, (2)

where hs,` ∈ CNs is the channel vector and ns,` ∼
CN (0, σ2

s,`) is the additive white Gaussian noise at SUE (s, `).
Let

FM , [fk]k=1,...,M ∈ CNM×M ,Fs , [fs,`]`=1,...,Ks ∈ CNs×Ks

and

FS , {Fs, s = 1, . . . , S},FNk
= {Fs, s ∈ Nk},

F , {FM ,FS}.

The network’s co-tier interferences are characterized by the
inter-MUE and inter-SUE interference functions defined as

σ̃mui
k (FM ) , βk

∑
i∈KM\{k}

|hhhHk fff i|2, k = 1, . . . ,M, (3)

and

σ̃sui
s,`(Fs) ,

∑
j∈Ks\{`}

|hhhHs,`fffs,j |2, ` = 1, . . . ,Ks; s = 1, . . . , S,

(4)
respectively. On the other hand, the network’s cross-tier inter-
ferences are characterized by the MBS and SBSs interference
functions defined as

σ̃mbi
s,` (FM ) , βs,`

M∑
i=1

|χχχHs,`fff i|2 (5)

and

σ̃sbi
k (FNk

) ,
∑
s∈Nk

Ks∑
j=1

|ηηηHs,kfffs,j |2, k = 1, . . . ,M, (6)

1Note that in (2) we assume that the small cells are sufficiently far apart
from each other so that the inter-small-cell interference can be ignored.
This is also true for dense small cells where orthogonal frequency division
multiplexing is used to allow sufficiently far apart from each other cells to
use the same carrier [26], [27].

respectively.
The information throughputs at MUE k and SUE (s, `) (in

nats) are

rk(FM ,FNk
) = ln

(
1 +

βk|hhhHk fffk|2

σ̃mui
k (FM ) + σ̃sbi

k (FNk
) + σ2

k

)
(7)

and

rs,`(Fs,FM ) = ln

(
1 +

|hhhHs,`fffs,`|2

σ̃sui
s,`(Fs) + σ̃mbi

s,` (FM ) + σ2
s,`

)
.

(8)

The entire consumed power for the downlink transmission can
be expressed as

P (F) = Pmbs(FM ) +

S∑
s=1

Ps(Fs), (9)

where

Pmbs(FM ) = α

M∑
k=1

||fffk||2 +MPa + Pc (10)

is the power consumed by the MBS and

Ps(Fs) = αs

Ks∑
`=1

||fffs,`||2 +NsPa,s + Pc,s (11)

is the power consumed by SBS s. There, α > 1 and αs > 1
are the reciprocal of the drain efficiency of the amplifier of
the MBS and SBS s, Pa and Pa,s represent the per-antenna
circuit power of the MBS and SBS s, and Pc and Pc,s are the
non-transmission power of the MBS and SBS s, respectively.
Accordingly, the total SBSs consumed power is

Psbs(FS) =

S∑
s=1

Ps(Fs).

The EE maximization problem under QoS constraints and
power budget is formulated as

max
F

∑M
k=1 rk(FM ,FNk

) +
∑S
s=1

∑Ks

`=1 rs,`(Fs,FM )

Pmbs(FM ) + Psbs(FS)

(12a)
s.t. rk(FM ,FNk

) ≥ rk, k = 1, . . . ,M, (12b)
rs,`(Fs,FM ) ≥ rs,` , ` = 1, . . . , Ns; s = 1, . . . , S,

(12c)
M∑
k=1

||fk||2 ≤ Pmax
M , (12d)

Ks∑
`=1

||fffs,`||2 ≤ Pmax
s , s = 1, ..., S, (12e)

where the constraints (12b)-(12c) set the QoS data rate require-
ment at each MUE and SUE, and the constraints (12d)-(12e)
keep the sum of the transmit power constraints at the MBS
and SBSs under predefined budgets.

The paper follows the network centric techniques like
Cloud-RAN and cooperative multipoint (CoMP) [28], where
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the MBS and SBSs cooperate to solve the EE maximization
problem (12) in a central manner. The conventional assumption
is that full channel state information (CSI) is available for the
optimization of problem (12).

The above problem is very complicated due the presence
of both intra-tier and cross-tier interferences, and the large
dimension NM of the MBS beamforming vectors fk ∈ CNM .
One can see from (1) and (2) that the MBS contributes a severe
interference to all MUEs and SUEs.

The next sections propose computational solutions for (12)
by different classes of MBS and SBS beamforming.

III. ZERO-FORCING INTER-MUE INTERFERENCE BASED
BEAMFORMING (MZF)

For H = [h1 h2 ... hM ] ∈ CNM xM , which is very tall due
to NM >> M , there is the right inverse of the fat matrix
HH = [hH1 ;hH2 ... ;hM ] ∈ CMxNM defined by

F̄FFM =
[
fff1 . . . fffM

]
= HHH(HHHHHHH)−1, (13)

i.e.

III = HHHHF̄FFM = [hhhH1 F̄FFM ; . . . ;hhhHMF̄FFM ]

= [hhhHi fff j ](i,j)∈KM×KM
. (14)

which means that hhhHi fff i = 1 and hhhHi fff j = 0 for i 6= j. Using
the normalized vectors f̃ffk , fffk/‖fffk‖ , k = 1, ...,M , the
MBS beamforming vector fk is sought in the class of

fk = pkf̃ffk, k = 1, . . . ,M (15)

to cancel the inter-MUE interference σ̃mui
k (FM ) in (3):

hhhHk f̃ff i = hhhHk f̄ff i/||f̄ff i|| = 0 for i 6= k.
For p = (p1, ..., pM )T ∈ RM and

β̄k , βk|hhhHk f̃ffk|2, (16)

the information throughput (in nats) for MUE k in (7) is

rk(pk,FNk
) = ln(1 +

p2
kβ̄k

σ2
k + σ̃sbi

k (FNk
)
), (17)

with the SBS interference σ̃sbi
k (FNk

) defined from (6), while
the consumed power by the MBS transmission defined by (9)
is now a quadratic form of p:

πmbs(p) = α

M∑
k=1

p2
k +MPa + Pc. (18)

The power constraint (12d) is now
M∑
k=1

p2
k ≤ Pmax

M , pk ≥ 0 , k = 1, ...,M. (19)

The information throughput for SUE (s, `) in (8) is re-
expressed by

rs,`(Fs,p) = ln(1 +
|hHs,`fffs,`|2

σmbi
s,` (p) + σ̃sui

s,`(Fs) + σ2
s,`

), (20)

where

σmbi
s,` (p) , βs,`

M∑
i=1

p2
i ||χχχHs,`f̃ff i||2 (21)

is the MBS interference function (see (5)), and σ̃sui
s,`(Fs) is the

inter-SUE interference function defined from (4).
Under the class of MZF, the EE maximization problem (12)

is now expressed by

max
p,FS

Φ(p,FS) ,(
M∑
k=1

ln(1 +
p2
kβ̄k

σ2
k + σ̃sbi

k (FNk
)
)

+

S∑
s=1

Ks∑
`=1

ln(1 +
|hHs,`fffs,`|2

σmbi
s,` (p) + σ̃sui

s,`(Fs) + σ2
s,`

)

)
/

(πmbs(p) + Psbs(FS))

s.t. (12e), (19), (22a)

ln

(
1 +

p2
kβ̄k

σ2
k + σ̃sbi

k (FNk
)

)
≥ r̄k, k = 1, . . . ,M, (22b)

ln

(
1 +

|hHs,`fffs,`|2

σmbi
s,` (p) + σ̃sui

s,`(Fs) + σ2
s,`

)
≥ r̄s,`,

` = 1, . . . ,Ks; s = 1, ..., S. (22c)

The nonconvex constraint (22b) is seen equivalent to the
following second-order cone (SOC) constraint

pk

√
β̄k ≥

√
er̄k − 1

√
σ2
k + σ̃sbi

k (FNk
), k = 1, . . . ,M. (23)

As observed in [29], for f̄ffs,` , e−.arg(hhhH
s,`fffs,`)fffs,`, one

has |hhhHs,`fffs,`| = hhhHs,`f̄ffs,` = <{hhhHs,`f̄ffs,`} ≥ 0 in (20).
Therefore, |hhhHs,`fffs,`|2 in (20) can be equivalently replaced by
(<{hhhHs,`fffs,`})2 with <{hhhHs,`fffs,`} ≥ 0, ` = 1, . . . , Ns; s =
1, . . . , S. Consequently, the nonconvex constraint (22c) is also
equivalent to the SOC constraint

<{hHs,`fffs,`} ≥
√

(er̄s,` − 1)
√
σmbi
s,` (p) + σ̃sui

s,`(Fs) + σ2
s,`,

` = 1, . . . ,Ks; s = 1, ..., S. (24)

Therefore, the EE maximization problem (22) is a nonconcave
function maximization under convex constraints. Our focus
now is to handle its objective function. Let (p(n),F

(n)
S ) be

a feasible point for (22) found from the (n − 1)th iteration.
Using inequality (69) in the Appendix for

x = xk ,
p2
kβ̄k

σ2
k + σ̃sbi

k (FNk
)
, t , πmbs(p) + Psbs(FS)

and
x̄ = x

(n)
k ,

(p
(n)
k )2β̄k

σ2
k+σ̃sbi

k (F
(n)
Nk

)
,

t̄ = t(n) , πmbs(p
(n)) + Psbs(F

(n)
S ),

yields the following lower bounding approximation for the first
term in the objective function in (22a):

ln

(
1 +

p2
kβ̄k

σ2
k + σ̃sbi

k (FNk
)

)
P (p,FS)

≥

a
(n)
k − b(n)

k

σ2
k + σ̃sbi

k (FNk
)

β̄kp2
k

− c(n)
k (πmbs(p) + Psbs(FS)) ≥

g
(n)
k (p,FS) (25)
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over the trust region

2pk − p(n)
k > 0, (26)

for

g
(n)
k (p,FS) , a

(n)
k − b(n)

k

σ2
k + σ̃sbi

k (FNk
)

β̄kp
(n)
k (2pk − p(n)

k )

−c(n)
k (πmbs(p) + Psbs(FS)), (27)

where

0 < a
(n)
k , 2

ln(1 + x
(n)
k )

t(n)
+

x
(n)
k

t(n)(x
(n)
k + 1)

,

0 < b
(n)
k ,

(x
(n)
k )2

t(n)(x
(n)
k + 1)

,

0 < c
(n)
k ,

ln(1 + x
(n)
k )

(t(n))2
.

(28)

To address the second term in the objective function in (22a),
by substituting

x = xs,` ,
(<{hH

s,`fffs,`})2

σmbi
s,`(p)+σ̃sui

s,`(Fs)+σ2
s,`

,

t , πmbs(p) + Psbs(FS)

and

x̄ = x
(n)
s,` ,

(<{hHs,`fff
(n)
s,` })2

σmbi
s,` (p(n)) + σ̃sui

s,`(F
(n)
s ) + σ2

s,`

,

t̄ = t(n) , πmbs(p
(n)) + Psbs(F

(n)
S ),

into (69) in the Appendix again and using the inequality
(72) in the Appendix, we obtain its following lower bounding
approximation:

ln

(
1 +

(<{hHs,`fffs,`})2

σmbi
s,` (p) + σ̃sui

s,`(Fs) + σ2
s,`

)
/P (p,FS) ≥

a
(n)
s,` − b

(n)
s,`

σmbi
s,` (p) + σ̃sui

s,`(Fs) + σ2
s,`

(<{hHs,`fffs,`})2

−c(n)
s,` (πmbs(p) + Psbs(FS)) ≥ (29)

g
(n)
s,` (p,FS), (30)

for

g
(n)
s,` (p,FS) ,

a
(n)
s,` − b

(n)
s,`

σmbi
s,` (p) + σ̃sui

s,`(Fs) + σ2
s,`

2<{hHs,`fff
(n)
s,` }<{hHs,`fffs,`} − (<{hHs,`fff

(n)
s,` })2

−c(n)
s,` (πmbs(p) + Psbs(FS)) (31)

over the trust region

2<{hhhHs,`ttts,`} ≥ <{hhhHs,`ttt
(n)
s,` }, ` = 1, . . . , Ns; s = 1, . . . , S,

(32)

where

0 < a
(n)
s,` , 2

ln(1 + x
(n)
s,` )

t(n)
+

x
(n)
s,`

t(n)(x
(n)
s,` + 1)

,

0 < b
(n)
s,` ,

(x
(n)
s,` )2

t(n)(x
(n)
s,` + 1)

,

0 < c
(n)
s,` ,

ln(1 + x
(n)
s,` )

(t(n))2
.

(33)

At the nth iteration, the following convex program is solved
to generate the next feasible point (p(n+1),F

(n+1)
S ) for (22):

max
p,FS

Φ(n)(p,FS) , [

M∑
k=1

g
(n)
k (p,FS) +

S∑
s=1

Ks∑
`=1

g
(n)
s,` (p,Fs)]

s.t. (12e), (19), (32), (23), (24), (26). (34)

It follows from (25) and (30) that

Φ(p,FS) ≥ Φ(n)(p,FS) ∀(p,FS) (35)

while it is trivial to check that

Φ(p(n),F
(n)
S ) = Φ(n)(p(n),F

(n)
S ). (36)

As (p(n),F
(n)
S ) and (p(n+1),F

(n+1)
S ) are a feasible point and

the optimal solution of the convex program (34), respectively,
it also follows that

Φ(n)(p(n+1),F
(n+1)
S ) > Φ(n)(p(n),F

(n)
S ), (37)

as far as
(p(n+1),F

(n+1)
S ) 6= (p(n),F

(n)
S ), (38)

which together with (35) and (36) yield

Φ(p(n+1),F
(n+1)
S ) > Φ(p(n),F

(n)
S ), (39)

showing that (p(n+1),F
(n+1)
S ) is a better feasible point for

(22) than (p(n),F
(n)
S ). Thus, in Algorithm 1, we propose a

path-following computational procedure for the EE maximiza-
tion problem (22). An initial point (p(0),F

(0)
S ) for (22) is

easily located because all the constraints in (22) are convex.
For instance, it can be found from the following convex
program:

min
p,FS

πmbs(p)+Psbs(FS) s.t. (12e), (19), (23), (24). (40)

Algorithm 1 : Path-following algorithm for solving problem
(22)

1: Initialization: Choose a feasible point (p(0),F
(0)
S ) for

(22). Set n := 0.
2: Repeat
3: Solve the problem (34) for its optimal solution

(p(n+1),F
(n+1)
S ).

4: Set n := n+ 1.
5: Until convergence of the objective in (22).

Similar to [30, Prop. 1] we have the following result.
Proposition 1: At least, Algorithm 1 converges to a locally

optimal solution of (22) satisfying the Karush-Kuhn-Tucker
(KKT) conditions of optimality.
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IV. OTHER SCHEMES

The MZF as given by (15) cancels only the inter-MUE
interference, under which the MBS interference σ̃mbi(FM ) is
not controlled. In this section we consider other classes of
MBS and SBSs beamforming to enhance both cross-tier and
co-tier interferences in optimizing the EE of the system.

A. Zero forcing co-tier interference based beamforming
(MZF+SZF)

In this scheme, referred as MZF+SZF with SZF used as an
abbreviation to represent ”zero-forcing inter-SUE interference
based beamforming”, the MBS beamforming vector fk is
sought in the class of MZF, while the SBS beamforming vector
fs,` is designed to force the inter-SUE interference to zero.
For each SUE (s, `) define the interfering channel

Hs,` , [hs,j ]j∈Ks\{`} ∈ CNs×(Ks−1), (41)

which stacks all channels from SBS s to its SUEs except that
to SUE (s, `). To nullify the inter-SUE interference in (4), the
following condition must be fulfilled:

HH
s,`fffs,` = 000 ∈ CKs−1, ` = 1, . . . ,Ks, (42)

requiring

Ns > Ks.

Such fs,` is parametrized as

fs,` = GGGs,`ttts,`, (43)

where GGGs,` ∈ CNs×(Ns−Ks+1) is an orthogonal basis for the
null space of HH

s,` and ttts,` ∈ CNs−Ks+1. Consequently, the
information throughput at SUE (s, `) in (8) is

r
(2)
s,` (ts,`) = ln

(
1 + |h̄Hs,`ttts,`|2/(σmbi

s,` (p) + σ2
s,`)
)

(44)

with σmbi
s,` (p) defined in (21) and h̄s,` , GH

s,`hs,`.
For ΘΘΘ`,ks , GGGHs,`hhhs,ks ∈ CNs−Ks+1 and TNk

, [Ts]s∈Nk
,

the SBSs interference to MUE k in (6) is

σsbi
k (TNk

) , σ̃sbi
k ([Gs,`ts,`]s∈Nk,`=1,...,Ks

)

=
∑
s∈Nk

Ks∑
`=1

|ΘΘΘH
`,ksttts,`|

2. (45)

Now, recalling the definition (21) for the MBS interference to
the SUEs, the EE maximization problem is formulated as

max
p,T

M∑
k=1

ln(1 +
p2
kβ̄k

σ2
k + σsbi

k (TNk
)
)

π(p,T)

+

S∑
s=1

Ks∑
`=1

ln(1 +
(<{h̄Hs,`ttts,`})2

σmbi
s,` (p) + σ2

s,`

)

π(p,T)
(46a)

s.t. (19),

pk

√
β̄k ≥

√
er̄k − 1

√
σ2
k + σsbi

k (TNk
), k = 1, . . . ,M,

(46b)

<{h̄Hs,`ttts,`} ≥
√

(er̄s,` − 1)
√
σmbi
s,` (p) + σ2

s,`,

` = 1, . . . ,Ks; s = 1, ..., S, (46c)
Ks∑
`=1

||ttts,`||2 ≤ Pmax
s , s = 1, ..., S. (46d)

Initialized from a feasible point (p(0),T(0)), which is found
from the convex program

min
p,T

π(p,T) s.t. (19), (46b), (46c), (46d) (47)

at the nth iteration the following convex program is solved to
generate the next iterative point (p(n+1),T(n+1)) for (46):

max
p,T

[

M∑
k=1

g
(n)
k (p,T) +

S∑
s=1

Ks∑
`=1

f
(n)
s,` (p,T)]

s.t. (19), (26), (32), (46d), (46b), (46c),

(48)

where

g
(n)
k (p,T) , a

(n)
k − b(n)

k

σ2
k + σsbi

k (TNk
)

β̄kp
(n)
k (2pk − p(n)

k )

−c(n)
k π(p,T), (49)

with a(n)
k , b(n)

k and c(n)
k defined from (28) for

x
(n)
k ,

(p
(n)
k )2β̄k

σ2
k + σsbi

k (T
(n)
Nk

)
, t(n) , π(p(n),T(n)),

and

f
(n)
s,` (p,T) ,

a
(n)
s,` − b

(n)
s,`

σmbi
s,` (p) + σ2

s,`

2<{h̄Hs,`ttt
(n)
s,` }<{h̄Hs,`ttts,`} − (<{h̄Hs,`ttt

(n)
s,` })2

−c(n)
s,` π(p,T) (50)

with a(n)
s,` , b(n)

s,` and c(n)
s,` defined by (33) for

x
(n)
s,` , (<{h̄Hs,`ttt

(n)
s,` })

2/σmbi
s,` (p(n))), t(n) , π(p(n),T(n)).

Similar to Proposition 1, it can be easily shown that the
computational procedure that invokes the convex program
(48) to generate the next iterative point, is path-following for
(46), which at least converges to its locally optimal solution
satisfying the KKT conditions.



7

B. Zero-forcing inter-MUE and MBS and inter-SUE interfer-
ence beamforming (ZMI+SZF)

In this scheme, referred as ZMI+SZF with ZMI used as an
abbreviation to represent ”zero-forcing inter-MUE and MBS
interferences based beamforming”, the MBS beamforming
vector fk is designed to force both inter-MUE interference
and MBS interference to zero, while the SBS beamforming
vector fs,` is parametrized by (43) in forcing the inter-SUE
interference to zero.

Define the interfering channels from the MBS to the SUEs

χχχs = [χχχs,`]`=1,...,Ks
∈ CNM×Ks ,

χχχ , [χχχs]s=1,...,S ∈ CNM×
∑S

s=1Ks

and
HHHmbs , [HHH χχχ] ∈ CNM×(M+

∑S
s=1Ks),

which is still a very tall as the total number M +
∑S
s=1Ks of

users is still small compared to the number NM of the MBS’s
antennas. Then the right inverse of the fat matrix HHHH

mbs is
defined as

F̄FFmbs =
[
ḡ1 . . . ḡM . . . ḡM+

∑S
s=1Ks

]
, HHHmbs(HHH

H
mbsHHHmbs)

−1 (51)

∈ CNM×(M+
∑S

s=1Ks),

i.e., [
HH

mbs

[
ḡ1 . . . ḡM

]
HH

mbs

[
ḡM+1 . . . ḡM+

∑S
s=1Ks

]]
= HH

mbsF̄FFmbs

= I ∈ R(M+
∑S

s=1Ks)×(M+
∑S

s=1Ks).

Particularly,

HHHH
mbs [ḡ1 . . . ḡM ] =

[
I
O

]
∈ C(M+

∑S
s=1Ks)×M .

Using the normalized vectors

f̃k , ḡk/||ḡk||, k = 1, ...,M, (52)

the MBS beamforming vector fk is sough in the class of (15) to
nullify the inter-MUE interference and the MBS interference
to the SUEs. Under the definition (16) for β̄k with f̃k defined
in (52) and the definition (43) for parametrizing beamforming
vectors fs,` of SZF, the EE maximization problem (12) is now
formulated as

max
p,T

M∑
k=1

ln
(
1 + p2

kβ̄k/(σ
sbi
k (TNk

) + σ2
k)
)

π(p,T)

+

S∑
s=1

Ks∑
`=1

ln
(

1 + (<{h̄hhHs,`ttts,`})2/σ2
s,`

)
π(p,T)

(53a)

s.t. (19), (46b), (46d), (53b)

<{h̄Hs,`ttts,`} ≥
√

(er̄s,` − 1)σs,`, (53c)

` = 1, . . . ,Ks; s = 1, ..., S.

Initialized from a feasible point (p(0),T(0)), which is found
from the convex program

min
p,T

π(p,T) s.t. (19), (46b), (46d), (53c) (54)

at the nth iteration the following convex program is solved to
generate the next iterative feasible point (p(n+1),T(n+1)) for
(53):

max
p,T

[

M∑
k=1

g
(n)
k (p,T) +

S∑
s=1

Ks∑
`=1

f
(n)
s,` (p,T)]

s.t. (19), (26), (32), (46b), (46d), (53c),

(55)

where g(n)
k (p,T) is defined in (49), and

f
(n)
s,` (p,T) ,

a
(n)
s,` − b

(n)
s,`

σsui
s,`(Ts) + σ2

s,`

2<{h̄hhHs,`ttt
(n)
s,` }<{h̄hh

H
s,`ttts,`} − (<{h̄hhHs,`ttt

(n)
s,` })2

−c(n)
s,` π(p,T), (56)

with a(n)
s,` , b(n)

s,` and c(n)
s,` defined by (33) for

x
(n)
s,` ,

(<{h̄hhHs,`ttt
(n)
s,` })2

σsui
s,`(T

(n)
s ) + σ2

s,`

, t(n) , π(p(n),T(n)).

Similar to Proposition 1, it can be easily shown that the
computational procedure that invokes the convex program
(55) to generate the next iterative point, is path-following for
(53), which at least converges to its locally optimal solution
satisfying the KKT conditions.

C. Adaptively suppressed co-interference based beamforming
(AZMI+SZF)

Denote by S1 = {1, ..., S1} the set of those SBSs that
are located sufficiently near to the MBS, and thus, their
SUEs are under the strong MBS interference, while denote by
S2 = {S1+1, ..., S} the set of those SBSs located far to MBS,
and thus, their SUEs are under the weak MBS interference.
In this scheme, referred to as AZMI+SZF with AZMI used as
an abbreviation to represent ”adaptively zero-forcing MBS in-
terference based beamforming”, the SBS beamforming vector
fs,` is parametrized by (43) to force the inter-SUE interference
to zero. On the other hand, the MBS beamforming vector fk
is designed based on (15) with f̃k defined in (52) with[

ḡ1 . . . ḡM . . . ḡ
M+

∑S1
s1=1Ks1

]
,

HHHmbs,1(HHH
H
mbs,1HHHmbs,1)

−1 ∈ CNM×(M+
∑S1

s1=1Ks1
) (57)

and

χχχs1 = [χχχs1,`]`=1,...,Ks1
∈ CNM×Ks1 ,

χχχ1 , [χχχs1 ]s1=1,...,S1 ∈ CNM×
∑S1

s1=1Ks1 ,

HHHmbs,1 , [HHH χχχ1] ∈ CNM×(M+
∑S1

s1=1Ks1
),
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to nullify the inter-MUE interference and the strong MBS
interference to SUEs (s1, `), s1 ∈ S1. The EE maximization
problem (12) becomes

max
p,T

M∑
k=1

ln(1 +
p2
kβ̄k

σ2
k + σsbi

k (TNk
)
)

π(p,T)

+

S∑
s=1

Ks∑
`=1

ln(1 +
(<{h̄hhHs,`ttts,`})2

σmbi
s,` (p) + σ2

s,`

)

π(p,T)
(58a)

s.t. (19), (46d), (58b)

pk

√
β̄k ≥

√
er̄k − 1

√
σ2
k + σsbi

k (TNk
), k = 1, . . . ,M,

(58c)

<{h̄hhHs,`ttts,`} ≥ σs,`
√
ers,` − 1,

` = 1, . . . ,Ks; s = 1, ..., S1, (58d)

<{h̄Hs,`ttts,`} ≥
√

(er̄s,` − 1)
√
σmbi
s,` (p) + σ2

s,`,

` = 1, . . . ,Ks; s = 1, ..., S2. (58e)

Initialized from a feasible point, which is found from the
convex program

min
p,T

π(p,T) s.t. (19), (46d), (58c), (58d), (58e), (59)

at the nth iteration, the following convex program is solved
to generate a feasible point (p(n+1),T(n+1)) for (58):

max
p,T

M∑
k=1

g
(n)
k (p,T) +

S∑
s=1

Ks∑
`=1

f
(n)
s,` (p,T) (60a)

s.t. (19), (26), (32), (46d), (58c), (58d), (58e), (60b)

where g(n)
k (p,T) is defined in (49), with a(n)

k , b(n)
k and c(n)

k

from (28), for

x
(n)
k ,

(p
(n)
k )2β̄k

σ2
k + σsbi

k (T
(n)
Nk

)
, t(n) , π(p(n),T(n)),

and f (n)
s,` (p,T) is defined from (50), with a(n)

s,` , b(n)
s,` and c(n)

s,`

from (33), for

x
(n)
s,` ,

(<{h̄Hs,`ttt
(n)
s,` })2

σmbi
s,` (p(n)) + σ2

s,`

, t(n) , π(p(n),T(n)).

Similar to Proposition 1, it can be easily shown that the
computational procedure that invokes the convex program
(60) to generate the next iterative point, is path-following for
(58), which at least converges to its locally optimal solution
satisfying the KKT conditions.

V. ENERGY-EFFICIENT ZERO-FORCING HETNET
BEAMFORMING (EE ZF)

To show the advantage of HetNets over massive MIMO in
terms of the EE, in this section we address the EE maximiza-
tion problems in the class of zero-forcing beamforming at both
MBS and SBSs, i.e. the the BMS beamforming vector fk is
sought in the class of (15) with f̃k defined from (51) and (52)
to cancel both inter-MUE and MBS interferences while the

SBS beamforming vector fs,` is also sought to cancel both
inter-SUE and SBS interferences as detailed below.

With Hs ∈ CNs×Is defined from (41) and

Hsbs,s , [ [hs,`]`=1,...,Ks
Hs] ∈ CNs×(Ks+Is)

the right inverse of HH
sbs,s is

[f̄s,1 . . . f̄s,Ks
. . . f̄s,Ks+Is ] , Hsbs,s(H

H
sbs,sHsbs,s)

−1.

Using the normalized vectors f̃s,` = f̄s,`/||f̄s,`||, ` =
1, . . . ,Ks, to cancel both inter-SUE and SBS interferences
the SUE beamformers fs,` is sought in the form

fs,` = ps,`f̃s,`, ` = 1, . . . , Ns; s = 1, . . . , S. (61)

For β̄k defined from (16) and β̄s,` , |hHs,`f̃s,`|2, while ps ,
(ps,`)s=1,...,S;`=1,...,Ns

, the EE maximization problem (12) is
thus

max
p,pS

∑M
k=1 ln

(
1 + β̄kp

2
k/σ

2
k

)
πmbs(p) + πsbs(pS)

+

∑S
s=1

∑Ks

`=1 ln
(

1 + β̄s,`p
2
s,`/σ

2
s,`

)
πmbs(p) + πsbs(pS)

(62a)

s.t. (19),

ln
(
1 + β̄kp

2
k/σ

2
k

)
≥ rk , k = 1, ...,M, (62b)

ln
(
1 + β̄s,`p

2
s,`/σ

2
s,`

)
≥ rs,`,

` = 1, . . . ,Ks; s = 1, . . . , S, (62c)
Ks∑
`=1

p2
s,` ≤ Pmax

s , s = 1, .., S, (62d)

where

πsbs(pS) ,
S∑
s=1

[αs

Ks∑
`=1

p2
s,` +NsPa,s + Pc,s].

One can see that the objective in (62a) is the ratio of con-
cave and convex functions, for which Dinkelbach’s algorithm
[20] is applicable. In what follows, we will show that each
Dinkelbach’s iteration admits a closed-form solution; thus,
Dinkelbach’s algorithm is very computationally efficient.

First, it follows from (62b) and (62c) that

p2
k ≥ p̄k := σ2

k(er̄k − 1)/β̄k,
p2
s,` ≥ p̄s,` := σ2

s,`(e
r̄s,` − 1)/β̄s,`.

By making the variable change

p2
k = p̃k + p̄k, p

2
s,` = p̃s,` + p̄s,`,

it is straightforward to solve (62) by applying Dinkelbach’s
algorithm, which seeks τ > 0 such that the optimal solution



9

of the following optimization problem is zero:

max
p̃,p̃S

M∑
k=1

ln
(
ak + β̄kp̃k/σ

2
k

)
+

S∑
s=1

Ks∑
`=1

ln
(
as,` + β̄s,`p̃s,`/σ

2
s,`

)
− τ(π̃mbs(p̃) + π̃sbs(p̃S)) (63a)

s.t.
M∑
k=1

p̃k ≤ P̄max
M , p̃k ≥ 0 , k = 1, ...,M, (63b)

Ks∑
`=1

p̃s,` ≤ P̄max
s , s = 1, .., S, (63c)

where ak = 1 + β̄kp̄k/σ
2
k, P̄Mcir = α

∑M
k=1 p̄k + MPa + Pc,

P̄max
M = Pmax

M −
∑M
k=1 p̄k, π̃mbs(p̃) , α

∑M
k=1 p̃k + P̄Mcir, and

as,` = 1+ β̄s,`p̄s,`/σ
2
s,`, P̄s,cir = αs

∑Ks

`=1 p̄s,`+Ps,cir, P̄max
s =

Pmax
s −

∑Ks

`=1 p̄s,`, π̃sbs(p̃S) ,
∑S
s=1[αs

∑Ks

`=1 p̃s,` + P̄s,cir].
Problem (63) admits the optimal solution in the closed-form:

p̃∗k =

[
1

(τα+ λM )
− akσ

2
k

β̄k

]+

, k = 1, . . . ,M,

p̃∗s,` =

[
1

(ταs + λs)
−
as,`σ

2
s,`

β̄s,`

]+

,

` = 1, . . . ,Ks; s = 1, . . . , S,

(64)

where λM = 0 when
M∑
k=1

[
1

τα
− akσ

2
k

β̄k

]+

≤ P̄max
M .

Otherwise, λM > 0 is located through the bisection method
such that

M∑
k=1

[
1

(τα+ λM )
− akσ

2
k

β̄k

]+

= P̄max
M . (65)

Analogously, λs = 0 when

Ks∑
`=1

[
1

ταs
−
as,`σ

2
s,`

β̄s,`

]+

≤ P̄max
s .

Otherwise, λs > 0 is located through the bisection method
such that

Ks∑
`=1

[
1

(ταs + λs)
−
as,`σ

2
s,`

β̄s,`

]+

= P̄max
s . (66)

The above proposed Dinkelbach’s computational procedure
for (62) is summarized in Algorithm 2.

VI. NUMERICAL SIMULATIONS

In this section, we evaluate the performance of the proposed
algorithms by numerical simulations. Consider a circular cell
HetNet with radius 1 km, where the MBS is at the center
and S = 6 underlaid SBSs are distributed either equally
at the cell edge or nearly the MBS, or half of which are
equally distributed at the cell edge with another half distributed
nearly the MBS as depicted in Fig. 2a, Fig. 2b or Fig. 2c,

Algorithm 2 : Dinkelbach’s algorithm for solving problem
(62)

1: Initialization: Solve (63) for initial τ > 0. If its optimal
value is greater than zero, set τ = τ and reset τ ← 2τ
and solve (63) again. Otherwise (its optimal value is lower
than zero) set τ̄ = τ . End up by having τ and τ̄ such that
the optimal value of (63) is positive for τ = τ and is
negative for τ = τ̄ . The optimal τ for zero optimal value
of (63) lies on [τ , τ̄ ];

2: Bisection Method
3: Repeat
4: Solve (63) for τ = (τ + τ̄)/2. If its optimal value is

positive, then reset τ ← τ . Otherwise (its optimal value
is negative), reset τ̄ ← τ .

5: Until τ̄ − τ ≤ ε (tolerance) to have the optimal value of
(63) equal to zero.

respectively. These scenarios correspond to weakly coupled,
strongly coupled and mixed-coupled HetNets, respectively.
The radius of each small cell is 50 m and the radius of the
interference area of each SBS is 50 m×3 = 150m. The MBS
is equipped with NM > 32 antennas and each SBS is equipped
with Ns = 4 antennas. The other simulation parameters are
provided in Table I, which follow the prior works [10], [31].
The channel vector hs,` from SBS s in (2) is still genereated
by √qs,`h̃s,` with √qs,` and h̃s,` = (h̃1,s,`, ...., h̃Ns,s,`)

T ,
h̃i,s,` ∈ CN (0, 1) representing the path loss and large-scale
fading and the small-scale fading, respectively. There are
M = 16 MUEs with 10 MUEs uniformly distributed outside
the SBSs’ coverage and each of the remaining 6 MUEs
located in the interference area of one of SBSs. Thus, the
SBS’s interference to the MUEs is the same under these three
settings. Each SBS serves two SUEs. The QoS requirement
for all users is 0.4 bps/Hz or 4 Mbps [32, Table I].

TABLE II: Simulation Setup

Parameter Assumption
Carrier frequency / Bandwidth 2 GHz / 10 MHz
MBS transmission power 46 dBm
SBS transmission power 30 dBm
Path loss from MBS to user 148.1 + 37.6log10R [dB], R in km
Path loss from SBSs to user 127 + 30log10R [dB], R in km
Shadowing standard deviation 8 dB
Noise power density -174 dBm/Hz
The power amplifiers parameter α0 = 1/0.388, αs = 1/0.052
The circuit power per antenna Pa,0 = 189 mW, Pa,s = 5.6 mW
The non-transmission power Pc,0 = 40 dBm, Pc,s = 20 dBm
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(b) A strongly coupled HetNet
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(c) A mixed-coupled HetNet

Fig. 2: Three examples of HetNets with different locations of SBSs.

A. Weakly coupled HetNet

Fig. 3 provides the typical convergence of the proposed
path-following computational procedures for solving each par-
ticular EE maximization problem in the scenario of weakly
coupled HetNets. which is also observed in other scenarios.

The EE objective is iteratively increase and converges rapidly
within several iterations.
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Fig. 3: The convergence vs. iteration number under NM = 64 and QoS r̄k = r̄(s,`) ≡
4 Mbps.

Note that MZF and MZF+SZF use the same class (13), (15)
of zero forcing inter-MUE interference MBS beamforming
vector fk for the EE maximization problems (22) and (46).
They achieve the same EE performance but MZF+SZF is
obviously more computationally efficient; as such only the
curve of MZF+SZF’s EE is provided in the next simulations.
This observation implies that:
(i) The SBSs’ interference to the MUEs can be easily com-
pensated in HetNets without hurting the network’s EE, and
(ii) The zero-forcing inter-SUE interference SBS beamform-
ing vector fs,` as parametrized by (43) provides interference
enhancement means in HetNets.
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Fig. 4: The EE performance vs. the number of MBS antennas in weakly coupled HetNets.
QoS r̄k = r̄(s,`) ≡ 4 Mbps.

Fig. 4 depicts the EE performance vs. the number NM of
the MBS antennas. Under the weakly coupled scenario, the
MBS interference to the SUEs is weak, leaving its cancelation
unnecessary. This explains why MZF, which ignores this in-
terference in the EE maximization problem (22), outperforms
ZMI+SZF, which nullifies it in the EE maximization problem
(53).

The performance gap between MZF and ZMI+SZF is
narrower as NM increases, making the MBS interference
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stronger. However, there is a huge gap at both NM = 40 and
NM = 60, under which either MZF or ZMI+SZF achieves
their maximum EE.

It has been shown in [33] that the following conventional
SBS beamforming vector fs,` to force the inter-SUE inter-
ference to zero is not quite energy-efficient for multi-small-
cell networks: fs,` = ps,`f̄s,`/||f̄s,`|| with [f̄s,1 . . . f̄s,`] =
H̄s(H̄

H
s H̄s)

−1 and H̄s = [hs,j ]j∈Ks
∈ CNs×Ks , which

stacks all channels from SBS s to its SUEs. Figures 4 to 7 also
plot the EE by these conventional class of zero-forcing SBS
beamforming under different classes of MBS beamforming,
which also demonstrates that this conventional zero-forcing
SBS beamforming is not energy-efficient for HetNets and is
clearly outperformed by the SBS beamforming with beam-
forming vectors parametrized by (43).
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(a) MBS transmission
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(b) SBSs transmission

Fig. 5: The transmit power at MBS and SBSs in weakly coupled HetNet.

On the other hand, observe that ZMI+SZF and EE ZF,
which use the same class of MBS beamforming, achieve
the same EE. Both schemes particularly force the inter-SUE
interference to zero. SBS interference is compensated by MBS
beamforming without hurting the network’s EE in ZMI+SZF
but is nullified by SBS beamforming in EE ZF. Fig. 5 shows
that, as expected, the former requires less SBSs’ transmission
power to optimize the EE than the latter. Furthermore, it also
reveals that when the number NM of the MBS antennas is
less than 60, the network’s EE is optimised by requiring less
transmission power, i.e. the spectral efficiency compensates

well the massive MIMO’s circuit power. However, when the
number NM is more than 60, the MBS interference becomes
the main factor to hurt the network’s sum throughput in the
numerator of the EE objective. SBSs also need more power
to compensate this MBS interference to maintain the QoS
requirements.

B. Strongly coupled HetNet
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Fig. 6: The EE performance vs. the number of MBS antennas in strongly coupled
HetNets. QoS r̄k = r̄(s,`) ≡ 4 Mbps.

In this scenario, the MBS interference to the SUEs is very
strong as all SUEs are located sufficiently near to the MBS.
This suggests that the MBS needs to control its interference
to make the overall network energy-efficient. However, as
Fig. 6 shows, the EE performance achieved by MZF for
NM = 40, which ignores this interference while enhancing
inter-SUE interference, is almost the same as that achieved by
ZMI+SZF, which forces both the MBS interference and inter-
SUE interference to zero. This can be explained as the inter-
SUE interference enhancement in MZF could still compensate
such MBS interference. However, as NM becomes larger than
40 and the MBS interference becomes too severe, the former
cannot compensate the latter and the MZF’s performance dete-
riorates. The zero-forcing the strong MBS interference comes
into fruition, making ZMI+SZF easily outperform MZF.

C. Mixed-coupled HetNets

In this scenario, the MBS interference to the SUEs is strong
only for the half, which is located sufficiently near to the
MBS, and is weak for the other half, which is located far way
from the MBS. From the previous results, it is expected that
AZMI+SZF, which forces only the strong MBS interference
to zero and ignores the weak MBS interference in the EE max-
imization problem (58), will be efficient. Fig. 7 confirms this
intuition. Interestingly, ZMI+SZF and AZMI+SZF achieve
their best EE at NM = 50, where their performance gap is
clearly visualized.

In summary, the best beamforming strategy is to ignore the
interference when it is weak, enhance it when it is medium-
strong and cancel it when it is strong. The weak interference
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does not only make obtaining CSI difficult, but is not needed
for optimization either.
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Fig. 7: The EE performance vs. the number of MBS antennas in mixed-coupled HetNets.
QoS r̄k = r̄(s,`) ≡ 4 Mbps.

D. HetNet EE vs. massive MIMO EE

To have an appropriate setting for EE ZF in the EE opti-
mization problem (62), the number Ns of each SBS antennas
is set to 6. The effectiveness of HetNets is demonstrated by
comparing its EE performance with that achieved by a massive
MIMO with a MBS equipped with NM +

∑S
s=1Ns antennas

to serve M +
∑S
s=1Ks users in the two following schemes:

• Optimal power allocation for zero-forcing beamforming
referred as to MBS PA:

max
p

∑M+
∑S

s=1Ks

k=1 ln
(
1 + β̄kp

2
k/σ

2
k

)
πmbs(p)

(67a)

s.t.

M+
∑S

s=1Ks∑
k=1

p2
k ≤ Pmax

M , (67b)

ln
(
1 + β̄kp

2
k/σ

2
k

)
≥ rk, (67c)

k = 1, . . . , (M +

S∑
s=1

Ks),

which is solved by the same Dinkelbach’s type algorithm
proposed in Section V.

• Equal power allocation for zero-forcing
beamforming referred as to MBS EPA with the

EE [

M+
∑S

s=1Ks∑
k=1

ln
(
1 + β̄kp

2
e/σ

2
k

)
]/πmbs,EPA, where

pe =
√
Pmax
M /(M +

∑S
s=1Ks) is the equal power

allocation to all UE and πmbs,EPA = αPmax
M + PMcir.

In simulations, the proposed Dinkelbach’s type algorithm
converges within 10 iterations to the optimal solutions in all
solved problems.

Fig. 8 shows the significant benefit of using HetNets instead
of massive MIMO for the system EE. It can be seen that the
EE in massive MIMO is sensitive to the number of users,
which are near to the BS (near users). More near users lead
to a better EE in massive MIMO. There are many near users
in the massive MIMO corresponding to the strongly coupled

HetNets. The number of near users in the massive MIMO
corresponding to the mixed-coupled HetNets is more than that
in the massive MIMO corresponding to the weakly couples
HetNets. On the other hand, the EE in HetNets is dependent
on both number of near MUEs and degree of the MBS
interference to SUEs. For this reason, the EE is achieved best
in the weakly HetNets, second best in the strongly coupled
HetNets, and last in the mixed-coupled HetNets. Comparing
to the mix-coupled HetNets, the MBS interference is stronger
but the number of near MUEs is more so the former still
achieve a better EE than the latter.

70 80 90 100 110 120 130 140
0.5

1

1.5

2

2.5

3

3.5

4

4.5

Total number of antennas

E
E

 (
bi

ts
/J

ou
le

/H
z)

 

 

EE ZF
MassiveMIMO_PA
MassiveMIMO_EPA

(a) Weakly coupled HetNet
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70 80 90 100 110 120 130 140
0.5

1

1.5

2

2.5

3

3.5

4

Total number of antennas

E
E

 (
bi

ts
/J

ou
le

/H
z)

 

 

EE ZF
MassiveMIMO_PA
MassiveMIMO_EPA

(c) Mixed-coupled HetNet

Fig. 8: The EE performance vs. the number NM of MBS antennas from 40 to 100
antennas and fixed antennas per SBS with 6 SBSs. The throughput threshold per UE is
4 Mbps.
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VII. CONCLUSIONS

We have considered various classes of beamforming in
HetNets to optimize their energy-efficiency, which is expressed
as the ratio of the sum throughput and consumed power. These
problems have been formulated as maximizations of highly
difficult fractional functions, subject to nonconvex constraints
for user QoS satisfaction, and were solved by the proposed
path-following algorithms. Numerical examples have shown
the efficiency of these algorithms. More importantly, they have
shown that in contrast to maximizing the spectral efficiency,
which suggests using as many antennas as possible, the EE
drops very quickly when this number exceeds 50, which is
quite small in the massive MIMO context. HetHets exhibit
superior performance in terms of EE when compared with
massive MIMO, for a given number of antennas.

APPENDIX: FUNDAMENTAL INEQUALITIES

We exploit the fact that the function f(x, t) = ln(1+1/x)
t is

convex in x > 0, t > 0 which can be proved by examining its
Hessian. The following inequality for all x > 0, x̄ > 0, t > 0
and t̄ > 0 then holds true [34]:

ln(1 + 1/x)

t
≥ f(x̄, t̄) + 〈∇f(x̄, t̄), (x, t)− (x̄, t̄)〉

= 2
ln(1 + 1/x̄)

t̄
+

1

t̄(x̄+ 1)

− x

(x̄+ 1)x̄t̄
− ln(1 + 1/x̄)

t̄2
t, (68)

where ∇ is the gradient operation.
By replacing 1/x→ x and 1/x̄→ x̄ in (68), we have

ln(1 + x)

t
≥ a− b

x
− ct, (69)

where

a = 2 ln(1+x̄)
t̄ + x̄

t̄(x̄+1) > 0, b = x̄2

t̄(x̄+1) > 0,

c = ln(1+x̄)
t̄2 > 0.

By replacing |x|2 → x and |x̄|2 → x̄ in (69) we have

ln(1 + |x|2)

t
≥ ā− b̄

|x|2
− c̄t

≥ ā− b̄

2<{xx̄∗} − |x̄|2
− c̄t (70)

over the trust region

2<{xx̄∗} − |x̄|2 > 0, (71)

where
ā = 2 ln(1+|x̄|2)

t̄ + |x̄|2
t̄(|x̄|2+1) > 0,

b̄ = |x̄|4
t̄(|x̄|2+1) > 0,

c̄ = ln(1+|x̄|2)
t̄2 > 0.

Finally, we also have the following inequality

x2

t
≥ 2

x̄x

t̄
− x̄2

t̄2
t ∀ x > 0, x̄ > 0, t > 0, t̄ > 0. (72)
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