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SETS OF p-MULTIPLICITY IN LOCALLY COMPACT
GROUPS

I. G. TODOROV AND L. TUROWSKA

Abstract. We initiate the study of sets of p-multiplicity in locally com-
pact groups and their operator versions. We show that a closed subset E
of a second countable locally compact group G is a set of p-multiplicity
if and only if the set E∗ = {(s, t) : ts−1 ∈ E} is a set of operator
p-multiplicity. We exhibit examples of sets of p-multiplicity, establish
preservation properties for unions and direct products, and prove a p-
version of the Stone-von Neumann Theorem.

1. Introduction

The existence of non-zero compact operators acting on a Hilbert space
and leaving invariant a given commutative subspace lattice was first exam-
ined in [10] (see also [6] and the references therein). That work followed W.
B. Arveson’s seminal paper [1], and showed that the presence of non-zero
compact operators in CSL algebras is closely related to the notion of multi-
plicity sets in commutative Harmonic Analysis. This relation was formalised,
and generalised to non-commutative locally compact groups, in [17], where
the notion of sets of operator multiplicity was introduced, and [18], where it
was shown that a closed subset E of a (second countable) locally compact
group G is a set of multiplicity if and only if the set E∗ = {(s, t) : ts−1 ∈ E}
is a set of operator multiplicity.

The study of non-zero operators from Schatten p-classes in CSL algebras
was also initiated in [10], where a link between such operators and pseu-
domeasures on compact abelian groups, whose Fourier transforms belong to
the sequence space `p, was exhibited. In the case `p is replaced by c0, this
turns into a special case of the result described in the previous paragraph.
It is thus natural to define and study sets of p-multiplicity, their operator
analogues, and the relation between these two notions.

This is the aim of the present article. In Section 3, given a locally compact
group G, we define a subspace Sp(G) of the reduced group C*-algebra C∗r (G)
of G that plays a role analogous to the role of the Schatten p-class within
the C*-algebra of all compact operators on a Hilbert space. In the case
the group G is compact, the space Sp(G) coincides with the intersection of
C∗r (G) with the Schatten p-class on L2(G). It should be noted that if G is
discrete, Sp(G) is equal to C∗r (G), and thus the interest in our work lies in
the case where G is locally compact and non-discrete; for example, in the
case where G is connected. After defining sets of p-multiplicity and their
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2 I. G. TODOROV AND L. TUROWSKA

operator versions, we show that a closed set E ⊆ G is a set of p-multiplicity
if and only if E∗ is a set of operator p-multiplicity. We give a number of
examples of sets of p-multiplicity, and establish preservation properties for
unions and direct products. We include characterisations of the sets of p-
multiplicity in the case p = 1 and p = 2.

In Section 4, we prove a p-version of the Stone-von Neumann Theorem.
Recall that this result can be stated by saying that the C*-algebra of all
compact operators on L2(G) is generated by C∗r (G) and the multiplication
algebra of the space C0(G) of all continuous functions on G vanishing at
infinity. Here, we obtain an analogous result for the Schatten p-class, using
the space Sp(G) in the place of C∗r (G).

In Section 5, using the Fourier theory of compact groups, we give a
different proof of the aforementioned transference theorem for sets of p-
multiplicity, which we believe is interesting in its own right.

Finally, in Section 2 we collect the necessary background material and
set notation.

2. Preliminaries

Let (X,µ) and (Y, ν) be standard (σ-finite) measure spaces. A subset
E ⊆ X × Y is called marginally null if E ⊆ (M × Y ) ∪ (X × N), where
M ⊆ X and N ⊆ Y are null sets. Let T (X, Y ) be the projective tensor
product L2(X)⊗̂L2(Y ). Every element h ∈ T (X, Y ) can be written as a
series

h =
∞∑
i=1

fi ⊗ gi, fi ∈ L2(X), gi ∈ L2(Y ), i ∈ N,

where
∑∞

i=1 ‖fi‖
2
2 < ∞ and

∑∞
i=1 ‖gi‖

2
2 < ∞. Such an element h may be

considered either as a function h : X × Y → C, defined up to a marginally
null set and given by

h(x, y) =
∞∑
i=1

fi(x)gi(y),

or as an element of the predual of the space B(L2(X), L2(Y )) of all bounded
linear operators from L2(X) into L2(Y ) via the pairing

〈T, h〉 :=
∞∑
i=1

(Tfi, ḡi) .

We denote by ‖h‖T the norm of h ∈ T (X, Y ).
Let S(X, Y ) be the multiplier algebra of T (X, Y ); by definition, a mea-

surable function w : X×Y → C belongs to S(X, Y ) if the mapmw : h→ wh
leaves T (X, Y ) invariant, that is, if wh coincides almost everywhere with a
function from T (X, Y ), for every h ∈ T (X, Y ). The elements of S(X, Y ) are
called (measurable) Schur multipliers ; we refer the reader to [15] for relevant
details. If w ∈ S(X, Y ), the adjoint of mw, acting on B(L2(X), L2(Y )), will
be denoted by Sw.

Throughout the paper, G is a locally compact group. The Lebesgue
spaces Lp(G), p = 1, 2,∞, are with respect to left Haar measure m; dm(x)



SETS OF p-MULTIPLICITY IN LOCALLY COMPACT GROUPS 3

is shortened to dx and the modular function of G is denoted by ∆. Let
λ : G → B(L2(G)), s 7→ λs, be the left regular representation. The symbol
λ is used also for the corresponding representation of L1(G) on L2(G); thus,
if f ∈ L1(G) then λ(f) is the operator on L2(G) given by λ(f)(g) = f ∗ g.

The reduced group C*-algebra C∗r (G) of G is the operator norm closure
of {λ(f) : f ∈ L1(G)}, while the group von Neumann algebra of G is its
weak* closure. The Fourier algebra A(G) of G is the (commutative, regular,
semi-simple) Banach algebra consisting of all complex functions u on G of
the form

(2.1) x→ u(x) = (λxξ, η),

where ξ, η ∈ L2(G). The norm of an element u ∈ A(G) is by definition the
infimum of the products ‖ξ‖‖η‖, where ξ and η are functions from L2(G)
for which (2.1) holds. The Banach space dual of A(G) can be canonically
identified with VN(G): for T ∈ VN(G) and u as in (2.1), the pairing is given
by

〈T, u〉 = (Tξ, η);

we refer the reader to [8] for this and further properties of A(G).
We set T (G) = T (G,G), S(G) = S(G,G) and B(L2(G)) = B(L2(G),

L2(G)). The map P : T (G)→ A(G), given by

(2.2) P (f ⊗ g)(t) = 〈λt, f ⊗ g〉 = (λtf, g) =

∫
G

f(t−1s)g(s)ds = g ∗ f̌(t)

(where f̌(t) = f(t−1)) is the predual of the inclusion VN(G) → B(L2(G)).
Moreover, the following holds (see [18] for a proof):

Proposition 2.1. For every h ∈ T (G), we have

P (h)(t) =

∫
G

h(t−1s, s)ds, t ∈ G.

Define

N : L∞(G)→ L∞(G×G) by N(f)(s, t) = f(ts−1).

We will often use the fact that if u ∈ A(G) then N(u) ∈ S(G). More
generally, the set of all continuous functions u : G → C such that N(u) ∈
S(G) coincides with the algebra M cbA(G) of all completely bounded, or
Herz-Schur, multipliers of A(G) [3], [19] (see also [11]). For v ∈ A(G) and
T ∈ VN(G), let v · T ∈ VN(G) be the element of VN(G) given by

〈v · T, u〉 = 〈T, vu〉, u ∈ A(G);

we have v · T = SN(v)(T ) (see, e.g., [13]).
We denote by Sp(H) the Schatten p-class on a Hilbert space H (here,

1 ≤ p <∞), and we let S∞(H) be the space of all compact operators on H.
If H is clear from the context, we simply write Sp. We write ‖T‖p for the
Schatten p-norm of an element T ∈ Sp, 1 ≤ p < ∞, and let ‖T‖∞ = ‖T‖
for the usual operator norm of an element T ∈ S∞.
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For a function h ∈ L2(G × G), we let Th ∈ S2(L2(G)) be the operator
given by

(2.3) Th(ξ)(y) =

∫
G

h(y, x)ξ(x)dx, ξ ∈ L2(G), y ∈ G.

We call the function h the integral kernel of Th. We note that if h ∈ T (G)
then Th ∈ S1(L2(G)); conversely, for every operator T ∈ S1(L2(G)) there
exists h ∈ T (G) such that T = Th.

For a measure space (X,µ), and a function a ∈ L∞(X,µ), we let Ma

denote the (bounded) operator on L2(X) of multiplication by a and PK
the multiplication by the characteristic function χK of measurable subset
K ⊆ X.

3. Definitions and properties

Let G be a locally compact group. For each 1 ≤ p ≤ ∞, let

Sp(G) = {T ∈ C∗r (G) : PKTPK ∈ Sp, for all compact subsets K ⊆ G}.
Note first that, if f ∈ Cc(G) then PKλ(f)PK is an integral operator with
integral kernel

(s, t) 7→ χK×K(s, t)∆(t)−1f(st−1).

Thus, PKλ(f)PK is a Hilbert-Schmidt operator. Since every T ∈ C∗r (G)
can be approximated in the operator norm by operators of the form λ(f)
with f ∈ Cc(G), we conclude that PKTPK ∈ S∞ whenever T ∈ C∗r (G) and
K ⊆ G is compact; thus, S∞(G) = C∗r (G).

Remarks (i) Let v ∈ M cbA(G) and T ∈ Sp(G). Then v · T ∈ Sp(G).
Indeed, for every compact set K ⊆ G, we have that

PK(v · T )PK = PKSN(v)(T )PK = SN(v)(PKTPK) ∈ Sp,
since Schur multipliers leave Sp invariant (the latter fact can be easily seen
by using a complex interpolation argument, see [2, 16] and the proof of
Theorem 3.3).

(ii) If p ≤ q then Sp(G) ⊆ Sq(G).

(iii) If G is discrete, K ⊆ G is compact precisely when it is finite; thus,
in this case, Sp(G) = C∗r (G) for all values of p.

(iv) If G is compact then Sp(G) = C∗r (G) ∩ Sp. Indeed, the inclusion
Sp∩C∗r (G) ⊆ Sp(G) holds trivially for any G. If G is compact and T ∈ Sp(G)
then, taking K = G in the definition of Sp(G), we see that T ∈ Sp.

In case G is compact, the previous paragraph shows that Sp(G) is an
ideal of C∗r (G). Moreover, the inclusion Sp(G) ⊆ Sq(G), p < q, is proper if
G is infinite (see Remark 5.2). We do not know whether the spaces Sp(G)
are ideals for other classes of locally compact groups G.

(v) The identity from Remark (iv) fails when G is not compact. Indeed,
it is known (see, e.g., [20]) that in this case VN(G) ∩ S∞ = {0}.

(vi) Since for any compact subset K ⊆ G and f ∈ Cc(G) the operator
PKλ(f)PK is Hilbert-Schmidt, λ(Cc(G)) ⊆ S2(G).
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(vii) Let G be a compact abelian group and Ĝ be its dual group. Then
VN(G) and C∗r (G) can be identified, via Fourier transform, with the spaces

`∞(Ĝ) and c0(Ĝ). It is easily seen that, under this identification, Sp(G) is

sent onto the sequence space `p(Ĝ). Thus, in this case we have Sp(G) =
VN(G) ∩ Sp = C∗r (G) ∩ Sp.

(viii) Let G = R and L ⊆ R̂ = R be a compact interval. Then χL ∈
L∞(R̂) \ C0(R̂). Thus, if T is the operator in VN(R) corresponding to χL
via Fourier transform, then T 6∈ C∗r (R). However, if K ⊆ R is compact then
the operator PKTPK is easily seen to be an integral operator with integral
kernel

(s, t) 7→ χK×K(s, t)

∫
L

e−ix(s−t)dx.

Since
∣∣∫
L
e−ix(s−t)dx

∣∣ ≤ m(L) for all s, t ∈ R, the operator PKTPK belongs
to S2. This example shows that, in contrast to the compact case, replacing
C∗r (G) by VN(G) in the definition of Sp(G) will in general yield different
spaces.

Recall that, given a closed subset E ⊆ G, I(E) (resp. J(E)) is the largest
(resp. the smallest) ideal of A(G) with null set E:

I(E) = {u ∈ A(G) : u(s) = 0, s ∈ E}
and

J(E) = {u ∈ A(G) : u has compact support disjoint from E}.
For J ⊆ A(G) we denote by J⊥ the annihilator of J in VN(G).

Sets of multiplicity (or M -sets) in (general) locally compact groups were
introduced in [4] (see also [5]), while in [18], the notion ofM1-set was defined.
We next formulate p-versions of these concepts as follows.

Definition 3.1. A closed subset E ⊆ G will be called
(i) an Mp-set (or a set of p-multiplicity) if J(E)⊥ ∩ Sp(G) 6= {0};
(ii) an Mp

1 -set if I(E)⊥ ∩ Sp(G) 6= {0}.

It is clear that every Mp
1 -set is an Mp-set, and that M∞

1 -sets (resp. M∞-
sets) coincide precisely with M1-sets (resp. M -sets) studied in [18].

Recall that the support supp(T ) of an operator T ∈ VN(G) is defined
by letting

supp(T ) = {t ∈ G : u · T 6= 0 whenever u ∈ A(G) and u(t) 6= 0}.
Note that J(E)⊥ coincides with the space of all operators T ∈ VN(G) for
which supp(T ) ⊆ E. Hence a susbet E is an Mp-set if and only if there
exists a non-zero operator T in Sp(G) with supp(T ) ⊆ E.

Our next aim is to define operator versions of sets of p-multiplicity. We
first recall some concepts from [1] and [7]. Given standard measure spaces
(X,µ) and (Y, ν), a subset E of X × Y is called ω-open if it is marginally
equivalent to the union of a countable set of Borel rectangles. The comple-
ments of ω-open sets are called ω-closed. A function w : X × Y → C is
called ω-continuous if w−1(U) is an ω-open set for every open set U ⊆ C.
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If F ⊆ X × Y is an ω-closed set, an operator T ∈ B(L2(X), L2(Y )) is said
to be supported on F if

(A×B) ∩ F ' ∅ =⇒ PBTPA = 0,

for all measurable rectangles A×B ⊆ X×Y . A masa-bimodule is a subspace
U ⊆ B(L2(X), L2(Y )) such that DY UDX ⊆ U (where DX (resp. DY ) is the
multiplication masa of L∞(X) (resp. L∞(Y )). Given a masa-bimodule U ,
there exists a smallest, up to marginal equivalence, ω-closed subset κ ⊆
X × Y such that every operator in U is supported by F ; we call F the
support of U . Given an ω-closed set κ ⊆ X × Y , there exist [1], [7] a largest
weak* closed masa-bimodule Mmax(κ) and a smallest weak* closed masa-
bimodule Mmin(κ) with support κ. The masa-bimodule Mmax(κ) is the space
of all T ∈ B(L2(X), L2(Y )) supported on κ.

Definition 3.2. An ω-closed subset κ ⊆ X × Y will be called
(i) an operator Mp-set (or a set of operator p-multiplicity) if Mmax(κ)∩

Sp 6= {0};
(ii) an operator Mp

1 -set if Mmin(κ) ∩ Sp 6= {0}.

Remarks (i) Note that, if 1 ≤ p ≤ 2 then the two notions introduced in
Definition 3.2 agree; this follows from the fact that every Hilbert-Schmidt
operator is pseudo-integral, while the pseudo-integral operators supported
on a subset κ are contained (in fact, weak* dense) in Mmin(κ). We refer the
reader to [1] for the definition and more details about the class of pseudo-
integral operators.

(ii) A subset κ ⊆ X×Y is an operator M2-set if and only if (µ×ν)(κ) >
0; indeed, the latter condition is equivalent to the existence of non-zero
functions h ∈ L2(X × Y ) supported on κ.

In [18] we established a connection between sets of multiplicity and sets
of operator multiplicity. The next theorem is a generalisation of this result
to sets of p-multiplicity. For ϕ ∈ T (G), let Eϕ : B(L2(G))→ V N(G) be the
map given by

〈Eϕ(T ), u〉 = 〈T, ϕN(u)〉, T ∈ B(L2(G)), u ∈ A(G),

where the pairing on the left hand side is the one between VN(G) and
A(G), and on the right hand side – the one between B(L2(G)) and T (G).
It was proved in [18, Theorem 3.8] that Eϕ(T ) ∈ C∗r (G) for any ϕ ∈ T (G)
whenever T is compact.

For E ⊆ G, we let E∗ = {(s, t) : ts−1 ∈ E} ⊆ G × G. We will assume,
for the rest of the paper, that G is second countable.

Theorem 3.3. Let G be a locally compact group, E ⊆ G be a closed subset
and p ≥ 1. The following are equivalent:

(i) E is an Mp-set (resp. an Mp
1 -set);

(ii) E∗ is an operator Mp-set (resp. an operator Mp
1 -set).

Proof. (i)⇒(ii) Suppose that E ⊆ G is an Mp-set and let T be a non-zero
operator in J(E)⊥ ∩ Sp(G). Then there exists a compact set K ⊆ G such
that PKTPK is non-zero; by [18, Lemma 3.11], PKTPK ∈Mmax(E∗) ∩ Sp.
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Let E ⊆ G be an Mp
1 -set. The proof of [18, Theorem 3.12 (b)] shows that

I(E)⊥ ⊆Mmin(E∗). As in the previous paragraph, one can find a non-zero
operator in Mmin(E∗) ∩ Sp.

(ii)⇒(i) Assume that E∗ is an operator Mp-set; we will show that E
is an Mp-set. If p = ∞, this follows from [18, Theorem 3.11]. Let p = 1
and T be a non-zero trace class operator in Mmax(E∗); by virtue of (2.3)
and the remark following it, write T = Th, where h =

∑∞
i=1 fi ⊗ gi, with∑∞

i=1 ‖fi‖2
2 <∞ and

∑∞
i=1 ‖gi‖2

2 <∞.
Fix ϕ ∈ T (G) ∩S(G) such that the function ψ = ϕ(1 ⊗∆) belongs to

S(G). We will show that Eϕ(T ) ∈ S1(G). For every u ∈ A(G), we have

〈Eϕ(T ), u〉 = 〈T, ϕN(u)〉 =

∫∫
G×G

h(s, t)ϕ(s, t)u(ts−1)dsdt

=

∫∫
G×G

h(r−1t, t)ϕ(r−1t, t)u(r)∆(tr−1)drdt

=

∫
G

(∫
G

h(r−1t, t)ϕ(r−1t, t)∆(t)dt

)
u(r)∆(r−1)dr.

By assumption, ψ ∈ S(G) and hence ψh ∈ T (G). By Proposition 2.1,

P (ψh)(r) =

∫
G

h(r−1t, t)ϕ(r−1t, t)∆(t)dt

and hence

(3.1) 〈Eϕ(T ), u〉 =

∫
G

P (ψh)(r)u(r)∆(r−1)dr.

Let ξ, η ∈ L2(G) be such that u(r) = (λr(ξ), η), r ∈ G. Then, by (3.1),

(Eϕ(T )ξ, η) = 〈Eϕ(T ), u〉 =

∫∫
G×G

P (ψh)(r)∆(r−1)ξ(r−1x)η(x)drdx

=

∫∫
G×G

P (ψh)(xy−1)∆(yx−1)ξ(y)η(x)∆(y−1)dydx(3.2)

=

∫∫
G×G

P (ψh)(xy−1)∆(x−1)ξ(y)η(x)dydx.

Let

(3.3) w(x, y) = P (ψh)(xy−1)∆(x−1), x, y ∈ G.
Identity (3.2) shows that w is an integral kernel and Eϕ(T ) = Tw. If K ⊆ G
is compact then PKTwPK = TwχK×K and

(3.4) wχK×K = N̂(P (ψh))((∆−1χK)⊗ χK),

where N̂(v)(s, t) = v(st−1), s, t ∈ G. We have that P (ψh) ∈ A(G); thus

N(P (ψh)) ∈ S(G) and hence N̂(P (ψh)) ∈ S(G). Since (∆−1χK) ⊗ χK ∈
T (G), identity (3.4) shows that wχK×K ∈ T (G) and hence PKEϕ(T )PK ∈
S1. Thus, Eϕ(T ) ∈ S1(G).

By [18, Lemma 3.10], there exist elements c, d ∈ L2(G) such that Ec⊗d(T )
6= 0. Since the space F of all compactly supported functions in L∞(G) is
dense in L2(G), the continuity of the map ϕ→ Eϕ(T ) and [18, Proposition
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3.8] imply that we may choose c and d from F . However, in this case d∆ ∈
L∞(G) and hence (c⊗d)(1⊗∆) ∈ S(G). Letting ϕ = c⊗d, we then have by
the previous paragraphs that Eϕ(T ) 6= 0, and by the proof of [18, Theorem
3.11] that Eϕ(T ) ∈ J(E)⊥. It follows that E is an M1-set.

To prove the statement for an arbitrary p, we use complex interpolation.
Recall [16] that (S1,S∞) is a compatible couple, and Sp coincides with the
interpolation space between S1 and S∞ with parameter θ = p−1. Let, as
above, ϕ ∈ T (G) ∩ S(G) be such that the function ψ = ϕ(1 ⊗ ∆) is an
element of S(G). For a fixed compact set K ⊆ G and p = 1,∞, let Φp :
Sp → B(L2(G)) be the operator given by

Φp(T ) = PKEϕ(T )PK , T ∈ Sp.
By the previous paragraphs, the image of Φ1 is in S1. Moreover,

‖Φ1(T )‖S1 = ‖χK×Kw‖T (G) = ‖N̂(P (ψh))((∆−1χK)⊗ χK)‖T (G)

≤ ‖N̂(P (ψh))‖S(G)‖((∆−1χK)⊗ χK)‖T (G)

≤ ‖P (ψh)‖A(G)‖((∆−1χK)⊗ χK)‖T (G)

≤ ‖ψh‖T (G)‖((∆−1χK)⊗ χK)‖T (G)

≤ m(K)‖ψ‖S(G)‖h‖T (G)‖∆−1χK‖∞
= m(K)‖ψ‖S(G)‖∆−1χK‖∞‖T‖S1 ,

which shows that the operator Φ1 : S1 → S1 is bounded. On the other hand,
the image of Φ∞ is in S∞ and, by [18, Theorem 3.8],

‖Φ∞(T )‖ ≤ ‖ϕ‖T (G)‖T‖, T ∈ S∞.
By complex interpolation, the image of the operator Φp is in Sp. The proof
is now completed by choosing ϕ for which Eϕ(T ) is non-zero.

We have thus shown that if E∗ is an operator Mp-set then E is an Mp-
set. The proof of the case where E∗ is an operator Mp

1 -set follows similar
arguments and uses the fact that Eϕ(T ) belongs to I(E)⊥ if T ∈Mmin(E∗)
(see [18, Theorem 3.11]). �

Corollary 3.4. A closed subset E of a locally compact group G is anM1-set
if and only if it has a non-empty interior.

Proof. Suppose that E is an M1-set. By Theorem 3.3, Mmax(E∗) contains a
non-zero trace class operator; by [7, Theorem 6.7], E∗ contains a non-trivial
measurable rectangle, say, α× β. Thus βα−1 ⊆ E. By Steinhaus’ Theorem,
βα−1, and hence E, has a non-empty interior.

Conversely, assume that U is an open subset of E; we may further as-
sume that U has a compact closure contained in E. Let u ∈ A(G) be a
function supported in U ; then u ∈ L1(G) and thus λ(u) ∈ C∗r (G). It is easy
to see that λ(u) ∈ J(E)⊥. Let K ⊆ G be a compact set. Then PKλ(u)PK is
an integral operator with integral kernel (t, s)→ u(ts−1)χK(t)χK(s)∆(s)−1.
The function (t, s) 7→ χK(t)χK(s)∆(s)−1 belongs to T (G) since χK is com-
pactly supported and ∆ is continuous. Since N(u) ∈ S(G), we conclude
that the function (t, s) 7→ u(ts−1)χK(t)χK(s)∆(s)−1 belongs to T (G); since
this holds for all compact sets K, we conclude that λ(u) ∈ S1(G). �
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Corollary 3.5. A closed subset E of a locally compact group G is anM2-set
if and only if it has positive Haar measure.

Proof. Note that m(E) > 0 if and only if m×m(E∗) > 0. The claim follows
from Theorem 3.3 and Remark (ii) after Definition 3.2. �

We next include some examples.

Examples (i) J. Froelich [10, p. 13-14] has shown that there exists a closed
set E ⊆ T of Lebesgue measure zero which supports a non-zero measure
µ whose Fourier transform vanishes at infinity but which does not support
a non-zero pseudomeasure with Fourier transform in `p. The set E is an
M -set that is not an Mp-set for any p ≥ 1.

(ii) Let T be the group of the unit circle, realised additively as R/2πZ.
We identify Tn with [−π, π)n, and view the sphere Sn−1 = {x ∈ Rn :
|x| = 1} as a subset of Tn. Let µ be the normalised surface area mea-
sure of Sn−1. A direct calculation (see, e.g., [21, p.154]) shows that µ̂(k) =
C|k|−(n−2)/2J(n−2)/2(|k|) for some constant C, where µ̂ is the Fourier trans-

form of µ and J(n−2)/2 is a Bessel function. As |Jν(r)| ≤ Cνr
−1/2 (see [9,

Theorem 5.1]), for large enough r > 0, we obtain µ̂(k) = O
(

1
|k|(n−1)/2

)
, as

|k| → ∞.
We have∑
k∈Zn
|µ̂(k)|p ≤ C

∑
k∈Zn,|k|≥1

1

|k|p(n−1)/2
≤ C

∫
x∈Rn,|x|≥1

1

|x|(n−1)p/2
dx

=

∫ ∞
1

rn−1

r(n−1)p/2
dr.

Therefore for p > 2 and n > 1 + 2
p−2

, the sequence {µ̂(k)}k∈Zn belongs to

`p(Zn) and hence λ(µ) ∈ Sp(Tn). As λ(µ) ∈ I(Sn−1)⊥, we conclude that
Sn−1 ⊆ Tn is an Mp

1 -set for p > 2 whenever n > 1 + 2
p−2

. Note that, by

Corollary 3.5, Sn−1, n > 1, is not an M2
1 -set since Sn−1 has zero Lebesgue

measure (see Corollary 3.5).

(iii) There exists a closed set E ⊆ T of Lebesgue measure zero and a
non-zero measure µ with suppµ = E such that µ̂ ∈ `p for any p > 2 (see
[23, Theorem 10.12]). Hence E is an Mp

1 -set for all p > 2 but not an M2-set
(see Corollary 3.5).

(iv) In [7, p. 579] an example is given of a set E ⊆ T and a function
f ∈ L2(T) such that λ(f) is supported in E and λ(f) ∈ Sp for any p > 1
but λ(f) /∈ S1. Remark (iv) from the start of Section 3 implies that E is an
Mp-set for all p > 1 but not an M1-set.

Following the established terminology in the classical case, let us call a
closed subset E ⊆ G a set of p-uniqueness if it is not a set of p-multiplicity.
In the remainder of this section, we apply Theorem 3.3 to establish some
preservation results for sets of p-uniqueness and sets of p-multiplicity.
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Proposition 3.6. Let G be a locally compact group, 1 ≤ p ≤ ∞ and Ei ⊆ G
be a closed subset, i = 1, 2. Then E1 ∪ E2 is a set of p-uniqueness if and
only if E1 and E2 are sets of p-uniqueness.

Proof. To see the ”if” part of the statement, it suffices, by Theorem 3.3, to
show that if Mmax(E∗i )∩Sp = {0} for i = 1, 2, then Mmax((E1∪E2)∗)∩Sp =
{0}.

Let Di = Mmax(E∗i )⊥, i = 1, 2, and suppose that T ∈Mmax((E1∪E2)∗)∩
Sp. For each θi ∈ Di ∩ S(G), i = 1, 2, we have that θ1θ2 ∈ D1 ∩ D2 and,
since D1 ∩D2 = Mmax((E1 ∪ E2)∗)⊥, we conclude that

〈Sθ1(T ), θ2〉 = 〈T, θ1θ2〉 = 0.

However, Schur multipliers leave Sp invariant; since D2 ∩S(G) is dense in
D2 and E2 is a set of p-uniqueness, Sθ1(T ) = 0. Thus, 〈T, θ1〉 = 0 for all
θ1 ∈ D1 ∩S(G). Now the density of D1 ∩S(G) in D1 and the fact that E1

is a set of p-uniqueness imply that T = 0.
The ‘only if’ part of the statement follows from the fact that any closed

subset of a set of p-uniqueness is a set of p-uniqueness. �

Proposition 3.7. Let Gi be a locally compact group, 1 ≤ p ≤ ∞ and
Ei ⊆ Gi be a closed set, i = 1, 2. If Ei is an M

p-set (resp. Mp
1 -set), i = 1, 2,

then E1 × E2 ⊆ G1 ×G2 is an Mp-set (resp. Mp
1 -set).

Proof. Let

ρ : G1 ×G1 ×G2 ×G2 → G1 ×G2 ×G1 ×G2

be the map given by ρ(s1, t1, s2, t2) = (s1, s2, t1, t2). We have that (E1 ×
E2)∗ = ρ(E∗1 × E∗2).

By Theorem 3.3, it suffices to show that ρ(E∗1 ×E∗2) is an operator Mp-
set (resp. an operator Mp

1 -set). Denoting by ⊗ the algebraic tensor product,
we have

Mmax(E∗1)⊗Mmax(E∗2) ⊆Mmax(ρ(E∗1 × E∗2))

and

Mmin(E∗1)⊗Mmin(E∗2) ⊆Mmin(ρ(E∗1 × E∗2))

(see [18]). It follows that if Ti ∈Mmax(E∗1)∩Sp (resp. Si ∈Mmax(E∗1)∩Sp),
i = 1, 2, then T1⊗T2 (resp. S1⊗S2) is a non-zero operator in Mmax(ρ(E∗1 ×
E∗2)) ∩ Sp (resp. Mmin(ρ(E∗1 × E∗2)) ∩ Sp). �

We finish this section with explicit descriptions of the spaces S1(G) and
S2(G). For the next lemma, recall that, if G is compact then S(G) ⊆ T (G)
and hence N(u) ∈ T (G) for every u ∈ A(G).

Lemma 3.8. Let G be a compact group. If u ∈ A(G) then TN(ǔ) = λ(u).



SETS OF p-MULTIPLICITY IN LOCALLY COMPACT GROUPS 11

Proof. If ξ, η ∈ L2(G) then, using the unimodulrity of G, we have

(TN(ǔ)ξ, η) =

∫∫
G×G

N(ǔ)(t, s)ξ(s)η(t)dsdt

=

∫∫
G×G

u(ts−1)ξ(s)η(t)dsdt

=

∫∫
G×G

u(r)ξ(r−1t)η(t)drdt = (λ(u)(ξ), η).

�

We say that a function f belongs to A(G) at the point t ∈ G if there exists
a neighbourhood U of t and a function u ∈ A(G) such that f(s) = u(s)
for all s ∈ U . We let A(G)loc denote the set of all functions that belong to
A(G) at every point t ∈ G.

Lemma 3.9. Let w : G×G→ C be a measurable (with respect to product
measure) function, such that, for every r ∈ G, w(xr, yr) = w(x, y) for
marginally almost all (x, y). Then there exists a measurable function u :
G→ C such that, up to a null set, w = N(u).

Proof. Let x ∈ G, and vx : G→ C be given by vx(s) = w(s, xs), s ∈ G. For
r ∈ G, the set

{(y, z) ∈ G×G : w(yr, zr) 6= w(y, z)}
is marginally null. In particular,

Λx
def
= {(s, xs) ∈ G×G : w(sr, xsr) 6= w(s, xs)}

is marginally null. This easily implies that the set {s ∈ G : (s, xs) ∈ Λx}
is null and hence vx(sr) = vx(s) for almost all s. Using arguments similar
to [14, Lemma 3.2], one can prove that the function fx(s, r) = vx(sr) is
m × m-measurable. For every r ∈ G, the set {s ∈ G : vx(sr) = vx(s)} is
null. By the Fubini theorem,∫∫

|vx(sr)− vx(s)|dsdr =

∫ (∫
|vx(sr)− vx(s)|ds

)
dr = 0,

giving vx(sr) = vx(s) for almost all pairs (s, r). Thus there exists s0 ∈ G
such that vx(s0r) = vx(s0) for almost all r ∈ G. Hence, there exists u(x) ∈ C
such that vx(s) = u(x) for almost all s ∈ G.

The function u : G → C is measurable as the composition of w and
the measurable functions x → (s, xs). Since the functions w and N(u) are
equal almost everywhere on each set of the form {x}∗, applying the above
arguments we have that w = N(u) almost everywhere. �

Theorem 3.10. Let G be a locally compact group. Then

(3.5) S1(G) = {T ∈ C∗r (G) : there exists u ∈ A(G)loc such that

PKTPK = TN(u)(∆−1⊗1)χK×K for each compact K ⊆ G}.
Moreover, if G is compact then

S1(G) = {λ(u) : u ∈ A(G)}.
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Proof. We first show that S1(G) is contained in the right hand side of (3.5).
By assumption, for every compact set K ⊆ G there exists a function hK ∈
T (G) such that PKTPK = ThK . If L ⊆ G is compact then

ThK(χK∩L⊗χK∩L) = PK∩LPKTPKPK∩L = PK∩LTPK∩L = ThK∩L
= PK∩LPLTPLPK∩L = ThL(χK∩L⊗χK∩L).

Thus, hK(χK∩L ⊗ χK∩L) = hL(χK∩L ⊗ χK∩L) almost everywhere. Since the
functions hK(χK∩L ⊗ χK∩L) and hL(χK∩L ⊗ χK∩L) are ω-continuous, [17,
Lemma 2.2] implies that they are equal up to a marginally null set. Let
(Kn)∞n=1 be an increasing sequence of compact sets such that G = ∪∞n=1Kn.
Setting h(s, t) = hKn(s, t) if s, t ∈ Kn, we obtain a function h : G×G→ C,
defined up to a marginally null set, which has the property that h|K×K is
marginally equivalent to hK×K for every compact set K ⊆ G.

Let L ⊆ G be a compact set and ξ, η ∈ L2(G) be supported on L. Fix
s ∈ G and let M ⊆ G be a compact set containing both L and Ls−1. Let
ρ : G → B(L2(G)), s 7→ ρs, be the right regular representation given by

ρsξ(x) =
√

∆(s)ξ(xs). Then

(Tρsξ, η) = (PMTPMρsξ, η) = (ThMρsξ, η)

=

∫
G×G

h(x, y)ξ(ys)η(x)
√

∆(s)dxdy

=

∫
G×G

h(x, zs−1)ξ(z)η(x)
√

∆(s−1)dxdz.

On the other hand,

(ρsTξ, η) = (Tξ, ρs−1η) = (PMTPMξ, ρs−1η) = (ThM ξ, ρs−1η)

=

∫
G×G

h(x′, z)ξ(z)η(x′s−1)
√

∆(s−1)dx′dz

=

∫
G×G

h(xs, z)ξ(z)η(x)
√

∆(s)dxdz.

Since T ∈ C∗r (G), we have Tρs = ρsT , and hence
√

∆(s−1)h(x, zs−1) =√
∆(s)h(xs, z) for marginally almost all (x, z) ∈ L×L. Since this holds for

every compact set L, we have that
√

∆(s−1)h(x, zs−1) =
√

∆(s)h(xs, z)
for marginally almost all (x, z) ∈ G×G. Thus, h(x, y) = ∆(s)h(xs, ys) for
marginally almost all (x, y) ∈ G×G.

Let h̃ : G×G→ C be given by h̃(x, y) = ∆(x)h(x, y). If s ∈ G then

h̃(xs, ys) = ∆(xs)h(xs, ys) = ∆(x)∆(s)h(xs, ys) = ∆(x)h(x, y) = h̃(x, y),

for marginally almost all (x, y). By Lemma 3.9, there exists a measurable

function u : G → C such that, up to a null set, h̃ = N(u). Thus, up to a
null set, h = (∆−1 ⊗ 1)N(u).

Note that, for every compact set K ⊆ G, we have hχK×K ∈ T (G) and
PKTPK = ThχK×K . Thus, it remains to show that u ∈ A(G)loc. We have

that h̃χK×K ∈ T (G) for every compact set K ⊆ G. Since T (G) consists of
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local Schur multipliers (see [17]), the σ-compactness of G implies that h̃ is
a local Schur multiplier. By [18, Theorem 8.2], u ∈ A(G)loc.

To see that the right hand side of (3.5) is contaied in S1(G), note first
that for any compact set L and u ∈ A(G)loc there exists v ∈ A(G) such that
u(t) = v(t) for any t ∈ L (see the discussion before [18, Lemma 6.1]). Let
K be a compact set and let v ∈ A(G) such that u = v on L = KK−1. Then
N(u)χK×K = N(v)χK×K . Since N(v) is a Schur multiplier and (∆−1 ⊗
1)χK×K ∈ T (G), we have that h(x, y) := N(u)(x, y)∆−1(x)χK×K(x, y) ∈
T (G).

If G is compact then G is unimodular and A(G) = A(G)loc. By Lemma
3.8, TN(ǔ) = λ(u), and the proof is complete. �

The proof of the next proposition is similar to that of Theorem 3.10 and
is omitted.

Proposition 3.11. Let G be a locally compact group. The following are
equivalent, for an operator T ∈ C∗r (G):

(i) T ∈ S2(G);
(ii) there exists a measurable function u : G → C such that, for every

compact set K ⊆ G, we have N(u)χK×K ∈ L2(G × G) and PKTPK =
TN(u)(∆−1⊗1)χK×K .

4. A p-version of the Stone-von Neumann Theorem

The aim of this section is to establish the following p-version of the Stone-
von Neumann Theorem ([22, Theorem 4.23]). We letD = {Ma : a ∈ C0(G)}.

Theorem 4.1. Let G be a locally compact group and 1 ≤ p ≤ ∞. Then the
‖ · ‖p-closed D-bimodule generated by Sp(G) coincides with Sp.

Proof. For p = ∞, the statement reduces to the Stone-von Neumann The-
orem. Fix p with 1 ≤ p <∞. Let

S ′p(G) = {T ∈ C∗r (G) : PKT, TPK ∈ Sp, for every compact set K ⊆ G}
and

Up = span{MaTMb : a, b ∈ Cc(G), T ∈ S ′p(G)}
‖·‖p

.

We note first that S ′p(G) ⊆ Sp(G) and, by the definition of Sp(G), we have

Up ⊆ span{MaTMb : a, b ∈ Cc(G), T ∈ Sp(G)}
‖·‖p ⊆ Sp.

It follows from the proof of Theorem 3.10, that for u ∈ A(G) ∩ Cc(G),
PKλ(u), λ(u)PK ∈ S1 ⊆ Sp, p ≥ 1 and giving that both S ′p(G) and Up are
non-zero.

We claim that Up is an ideal of S∞. First note that if b ∈ Cc(G) and
f ∈ L1(G) then by the Stone-von Neumann theorem Mbλ(f) can be approx-
imated in the operator norm by linear combinations

∑
i λ(gni )Mcni

. Suppose
that T ∈ S ′p(G), S ∈ S∞ and a, b, c ∈ Cc(G). Since MaT ∈ Sp we have

‖MaTMbλ(f)−MaT
∑
i

λ(gni )Mcni
‖p ≤ ‖MaT‖p‖Mbλ(f)−

∑
i

λ(gni )Mcni
‖ → 0
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and therefore MaTMbλ(f) ∈ Up. Again by the Stone-von-Neumann Theo-
rem, S can be approximated by linear combinations of operators of the form
λ(f)Mc, where f ∈ L1(G) and c ∈ Cc(G). Hence the corresponding linear
combination of MaTMbλ(f)Mc converges in ‖ · ‖p-norm to MaTMbS. Thus,
MaTMbS ∈ Up and hence Up is a right ideal of S∞; one similarly shows that
Up is a left ideal in S∞. Thus, Up is a non-zero ideal of S∞, closed in the
Schatten p-norm. This easily implies that

Up = span{MaTMb : a, b ∈ Cc(G), T ∈ Sp(G)}
‖·‖p

= Sp.

�

5. The case of compact groups

In this section, we include a direct proof of Theorem 3.3, that is, a proof
that does not use interpolation, in the case G is a compact group. We first
recall some notions from the Fourier theory for compact groups (see, e.g,
[12]).

Let G be a compact group with dual Ĝ; thus, Ĝ is a complete family of
pairwise inequivalent continuous unitary representations π : G→ B(Hπ) of
G. We let dπ = dim(Hπ). For u ∈ A(G) we set

û(π) =

∫
G

u(s)π(s−1)ds,

understood as a linear operator on the finite-dimensional space Hπ. Then∑
π∈Ĝ

dπ‖û(π)‖1 <∞,

where ‖ · ‖1 is the trace norm. Moreover, the Fourier algebra A(G) can be

identified with the space of operator fields, indexed over Ĝ,

{(f(π))π∈Ĝ : f(π) ∈ B(Hπ),
∑
π∈Ĝ

dπ‖f(π)‖1 <∞},

the identification being given by the map (which we call the Fourier trans-
form) sending an element u ∈ A(G) to (û(π))π∈Ĝ. Its inverse sends (f(π))π∈Ĝ
to the funtion f given by f(s) =

∑
π∈Ĝ dπTr(f(π)π(s)) (where Tr de-

notes the trace). We can therefore identify the dual space of A(G) with∏
π∈Ĝ B(Hπ) through the duality

(5.1) 〈(Tπ)π∈Ĝ, u〉 =
∑
π∈Ĝ

dπTr(Tπû(π)).

In particular, the evaluation functional at s corresponds to (π(s))π∈Ĝ, s ∈ G.
The dual space of A(G) is isomorphic to VN(G), and the identification of

VN(G) with
∏

π∈Ĝ B(Hπ) is given by (Tπ)π∈Ĝ 7→ ⊕π∈ĜT
(dπ)
π ∈ VN(G), where

T (k) = T ⊕ · · · ⊕ T︸ ︷︷ ︸
k

. It follows from Remark (iv) at the start of Section 3
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that

(5.2) Sp(G) =

T ∈ C∗r (G) :
∑
π∈Ĝ

dπ‖Tπ‖pp <∞

 .

Thus, Sp(G) is an ideal not only in C∗r (G) but also in VN(G).

Theorem 5.1. Let G be a compact group, p ≥ 1 and E ⊆ G be a closed
subset. The following are equivalent:

(i) E is an Mp-set (resp. an Mp
1 -set);

(ii) E∗ is an operator Mp-set (resp. an operator Mp
1 -set).

Proof. (i)⇒(ii) follows as in Theorem 3.3.
(ii)⇒(i) Suppose that E∗ is an operator Mp-set. If T ∈Mmax(E∗)∩Sp is

non-zero, by [18, Lemma 3.10], there exist a, b ∈ L∞(G) such that Ea⊗b(T ) ∈
C∗r (G) is non-zero.

By the definition of the map Ea⊗b and Lemma 3.8, for u ∈ A(G) we have

〈Ea⊗b(T ), u〉 = 〈T,N(u)(a⊗ b)〉 = 〈MbTMa, N(u)〉(5.3)

= Tr((MbTMa)TN(u)) = Tr((MbTMa)λ(ǔ)).

Let u ∈ A(G) be such that
∑

π∈Ĝ dπ‖û(π)‖qq < ∞, where q is conjugate
to p. The space of all such elements is dense in A(G) (indeed, it contains
all elements of A(G) whose Fourier transform is finitely supported). By the
the Peter-Weyl Theorem, λ = ⊕π∈Ĝπ(dπ), where π(dπ) = π ⊕ · · · ⊕ π︸ ︷︷ ︸

dπ

, and

λ(ǔ)|Hπ = û(π). Thus,

(5.4) ‖λ(ǔ)‖qq =
∑
π∈Ĝ

dπ‖û(π)‖qq <∞.

By (5.3) and (5.4),

(5.5) |〈Ea⊗b(T ), u〉| ≤ ‖a‖∞‖b‖∞‖T‖p

∑
π∈Ĝ

dπ‖û(π)‖qq

1/q

.

Let S = Ea⊗b(T ). By (5.1), 〈S, u〉 =
∑

π∈Ĝ dπTr(Sπû(π)). We claim that

(5.6)
∑
π∈Ĝ

dπ‖Sπ‖pp <∞.

In fact, let Sπ = Vπ|Sπ| be the polar decomposition of Sπ. For any finite

family F ⊆ Ĝ, let u ∈ A(G) be such that,

û(π) = (|Sπ|)p−1V ∗π )/

(∑
π∈F

dπ‖Sπ‖pp

)(p−1)/p

, if π ∈ F

and

û(π) = 0, if π /∈ F .
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We have ∑
π∈Ĝ

dπ‖û(π)‖qq =
∑
π∈F

dπTr(|Sπ|p)/
∑
π∈F

dπ‖Sπ‖pp = 1

and ∑
π∈Ĝ

dπTr(Sπû(π)) =
∑
π∈F

dπTr(|Sπ|p)/

(∑
π∈F

dπ‖Sπ‖pp

)(p−1)/p

=

(∑
π∈F

dπ‖Sπ‖pp

)1/p

.

Inequality (5.5) now implies (
∑

π∈F dπ‖Sπ‖pp)1/p ≤ ‖a‖∞‖b‖∞‖T‖p, for any
finite F . Inequality (5.6) follows; by (5.2), Ea⊗b(T ) ∈ Sp(G). By the proof
of [18, Theorem 3.11], Ea⊗b(T ) ∈ J(E)⊥, and the proof is complete for Mp-
sets. The proof of the statement for Mp

1 -sets is similar and uses the fact that
Ea⊗b(T ) ∈ I(E)⊥ if T ∈Mmin(E∗). �

Remark 5.2. If G is a compact infinite group, then Sp(G) is a proper
ideal of Sq(G) if p < q. In fact, one can easily find {απ}π∈Ĝ ⊆ C such
that

∑
π∈Ĝ dπ|απ|p <∞ while

∑
π∈Ĝ dπ|απ|q =∞. Letting now Tπ = απPπ,

where Pπ is a projection on a one-dimensional subspace of Hπ, and T =

⊕π∈ĜT
(dπ)
π , we have T ∈ Sp(G) but T /∈ Sq(G). For general locally compact

groups the classes Sp(G) may coincide, e.g. in the case of discrete groups,
where Sp(G), p ≥ 1, are all equal to C∗r (G).
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