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SETS OF p-MULTIPLICITY IN LOCALLY COMPACT
GROUPS

I. G. TODOROV AND L. TUROWSKA

ABSTRACT. We initiate the study of sets of p-multiplicity in locally com-
pact groups and their operator versions. We show that a closed subset E
of a second countable locally compact group G is a set of p-multiplicity
if and only if the set E* = {(s,t) : ts~! € E} is a set of operator
p-multiplicity. We exhibit examples of sets of p-multiplicity, establish
preservation properties for unions and direct products, and prove a p-
version of the Stone-von Neumann Theorem.

1. INTRODUCTION

The existence of non-zero compact operators acting on a Hilbert space
and leaving invariant a given commutative subspace lattice was first exam-
ined in [10] (see also [6] and the references therein). That work followed W.
B. Arveson’s seminal paper [1], and showed that the presence of non-zero
compact operators in CSL algebras is closely related to the notion of multi-
plicity sets in commutative Harmonic Analysis. This relation was formalised,
and generalised to non-commutative locally compact groups, in [17], where
the notion of sets of operator multiplicity was introduced, and [18], where it
was shown that a closed subset E of a (second countable) locally compact
group G is a set of multiplicity if and only if the set E* = {(s,t) : ts™* € E}
is a set of operator multiplicity.

The study of non-zero operators from Schatten p-classes in CSL algebras
was also initiated in [10], where a link between such operators and pseu-
domeasures on compact abelian groups, whose Fourier transforms belong to
the sequence space (7, was exhibited. In the case 7 is replaced by cy, this
turns into a special case of the result described in the previous paragraph.
It is thus natural to define and study sets of p-multiplicity, their operator
analogues, and the relation between these two notions.

This is the aim of the present article. In Section 3, given a locally compact
group G, we define a subspace S,(G) of the reduced group C*-algebra C(G)
of G that plays a role analogous to the role of the Schatten p-class within
the C*-algebra of all compact operators on a Hilbert space. In the case
the group G is compact, the space S,(G) coincides with the intersection of
C#(G) with the Schatten p-class on L?(G). It should be noted that if G is
discrete, S,(G) is equal to C}(G), and thus the interest in our work lies in
the case where G is locally compact and non-discrete; for example, in the
case where (G is connected. After defining sets of p-multiplicity and their
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2 I. G. TODOROV AND L. TUROWSKA

operator versions, we show that a closed set £ C G is a set of p-multiplicity
if and only if £* is a set of operator p-multiplicity. We give a number of
examples of sets of p-multiplicity, and establish preservation properties for
unions and direct products. We include characterisations of the sets of p-
multiplicity in the case p =1 and p = 2.

In Section 4, we prove a p-version of the Stone-von Neumann Theorem.
Recall that this result can be stated by saying that the C*-algebra of all
compact operators on L?*(G) is generated by C(G) and the multiplication
algebra of the space Cy(G) of all continuous functions on G vanishing at
infinity. Here, we obtain an analogous result for the Schatten p-class, using
the space S,(G) in the place of C}¥(G).

In Section 5, using the Fourier theory of compact groups, we give a
different proof of the aforementioned transference theorem for sets of p-
multiplicity, which we believe is interesting in its own right.

Finally, in Section 2 we collect the necessary background material and
set notation.

2. PRELIMINARIES

Let (X,u) and (Y,v) be standard (o-finite) measure spaces. A subset
E C X xY is called marginally null if E C (M x Y)U (X x N), where
M C X and N C Y are null sets. Let T(X,Y") be the projective tensor
product L2(X)®L*(Y). Every element h € T(X,Y) can be written as a
series

h=Y fi®g fiel*X),gel(Y)ieN,
=1

where 3°%° ||fill7 < oo and 3%, ||lgill5 < oo. Such an element h may be
considered either as a function h : X x Y — C, defined up to a marginally
null set and given by

h(z,y) = Z fi(x)g:(y),

or as an element of the predual of the space B(L*(X), L*(Y)) of all bounded
linear operators from L?(X) into L*(Y') via the pairing
(T, h) = Z (Tfi,9:) -
i=1
We denote by ||| the norm of h € T(X,Y).

Let 6(X,Y) be the multiplier algebra of T'(X,Y'); by definition, a mea-
surable function w : X xY — C belongs to &(X,Y') if the map m,, : h — wh
leaves T'(X,Y") invariant, that is, if wh coincides almost everywhere with a
function from T'(X,Y), for every h € T(X,Y). The elements of §(X,Y) are
called (measurable) Schur multipliers; we refer the reader to [15] for relevant
details. If w € &(X,Y), the adjoint of m,,, acting on B(L?(X), L*(Y)), will
be denoted by S,

Throughout the paper, G is a locally compact group. The Lebesgue
spaces LP(G), p = 1,2, 00, are with respect to left Haar measure m; dm(z)
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is shortened to dr and the modular function of G is denoted by A. Let
A : G — B(L*(G)), s — A, be the left regular representation. The symbol
A is used also for the corresponding representation of L'(G) on L*(G); thus,
if f € LY(G) then A(f) is the operator on L?(G) given by A(f)(g) = f * g

The reduced group C*-algebra C*(G) of G is the operator norm closure
of {\(f) : f € LY@G)}, while the group von Neumann algebra of G is its
weak™ closure. The Fourier algebra A(G) of G is the (commutative, regular,
semi-simple) Banach algebra consisting of all complex functions u on G of
the form

(2.1) r = u(z) = (A, m),

where £, € L?*(G). The norm of an element v € A(G) is by definition the
infimum of the products ||£||||n||, where £ and 7 are functions from L?(G)
for which (2.1) holds. The Banach space dual of A(G) can be canonically
identified with VN(G): for T' € VN(G) and u as in (2.1), the pairing is given
by

<T7 U’> - (Tf, 77);

we refer the reader to [8] for this and further properties of A(G).

We set T(G) = T(G, ), 6(G) = &(G,G) and B(L*(Q)) = B(L*(G),
L*(G)). The map P : T(G) — A(G), given by
(22) P(f@g)(t) = (M f @ g) = (Mf9) /f (s)ds = g+ F(1)

(where f(t) = f(t~1)) is the predual of the inclusion VN(G) — B(L*(G)).
Moreover, the following holds (see [18] for a proof):

Proposition 2.1. For every h € T(G), we have

Define
N:L®(G) = L®(G x G) by N(f)(s,t)=f(ts™h).

We will often use the fact that if v € A(G) then N(u) € &(G). More
generally, the set of all continuous functions u : G — C such that N(u) €
S(G) coincides with the algebra M A(G) of all completely bounded, or
Herz-Schur, multipliers of A(G) [3], [19] (see also [11]). For v € A(G) and
T € VN(G), let v- T € VN(G) be the element of VN(G) given by

(v-T,u)y = (T,vu), ue AG);

we have v - T' = Sy (T) (see, e.g., [13]).

We denote by S,(H) the Schatten p-class on a Hilbert space H (here,
1 < p < o0),and we let Sy, (H) be the space of all compact operators on H.
If H is clear from the context, we simply write S,. We write |||, for the
Schatten p-norm of an element 7' € S, 1 < p < oo, and let ||T||» = ||T||
for the usual operator norm of an element T' € S...
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For a function h € L*(G x G), we let T}, € So(L*(G)) be the operator
given by

(2.3) To(6)(y) = / Wy, o)e(x)de, €€ L7(C),y < C.

G

We call the function h the integral kernel of T,. We note that if h € T(G)
then T}, € S1(L*(G)); conversely, for every operator T € S;(L*(G)) there
exists h € T'(G) such that T' = T,

For a measure space (X, pu), and a function a € L*®(X, ), we let M,
denote the (bounded) operator on L?(X) of multiplication by a and Pk
the multiplication by the characteristic function yx of measurable subset
K CX.

3. DEFINITIONS AND PROPERTIES

Let G be a locally compact group. For each 1 < p < oo, let
S,(G) ={T € C}(G) : PkTPk € S,, for all compact subsets K C G}.

Note first that, if f € C.(G) then PxA(f)Pk is an integral operator with
integral kernel

(5,1) = X (s, 1) A f(st™).
Thus, PxA(f)Pk is a Hilbert-Schmidt operator. Since every T' € C(G)
can be approximated in the operator norm by operators of the form A(f)

with f € C.(G), we conclude that PxT Pk € So, whenever T € C}(G) and
K C @G is compact; thus, S (G) = CH(G).

Remarks (i) Let v € MPA(G) and T € S,(G). Then v - T € S,(G).
Indeed, for every compact set K C G, we have that

PK(’U . T)PK = PKSN(U)(T)PK = SN(U)(PKTPK) < Sp,

since Schur multipliers leave S, invariant (the latter fact can be easily seen
by using a complex interpolation argument, see [2, 16] and the proof of
Theorem 3.3).

(ii) If p < ¢ then S,(G) C S,(G).

(iii) If G is discrete, K C G is compact precisely when it is finite; thus,
in this case, S,(G) = C}(G) for all values of p.

(iv) If G is compact then S,(G) = Cf(G) N'S,. Indeed, the inclusion
S,NCH(G) € S,(G) holds trivially for any G. If G is compact and T € S,(G)
then, taking K = G in the definition of S,(G), we see that T € S,.

In case G is compact, the previous paragraph shows that S,(G) is an
ideal of C}(G). Moreover, the inclusion S,(G) C S,(G), p < g, is proper if
G is infinite (see Remark 5.2). We do not know whether the spaces S,(G)
are ideals for other classes of locally compact groups G.

(v) The identity from Remark (iv) fails when G is not compact. Indeed,
it is known (see, e.g., [20]) that in this case VN(G) N Sy = {0}.

(vi) Since for any compact subset K C G and f € C.(G) the operator
Py \(f) Px is Hilbert-Schmidt, A\(C.(G)) C Sy(G).
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(vii) Let G be a compact abelian group and G be its dual group. Then
VN(G) and C}(G) can be identified, via Fourier transform, with the spaces
(>(G) and co(G). It is easily seen that, under this identification, S,(G) is
sent onto the sequence space Zp(é). Thus, in this case we have S,(G) =
VN(G)NS, =CHG)NS,.

(viii) Let G =R and L C R = R be a compact interval. Then x;, €
L®(R) \ Co(R). Thus, if T is the operator in VN(R) corresponding to x1
via Fourier transform, then T' ¢ C*(R). However, if K C R is compact then
the operator PxT Pk is easily seen to be an integral operator with integral
kernel

(s,t) — Xrxr(s,t) / e~ gy,
L
Since UL e_”(s_t)dx| < m(L) for all s,t € R, the operator PxT P belongs
to Ss. This example shows that, in contrast to the compact case, replacing
Cx(G) by VN(G) in the definition of S,(G) will in general yield different
spaces.

Recall that, given a closed subset E C G, I(E) (resp. J(F£)) is the largest
(resp. the smallest) ideal of A(G) with null set E:

I(E)={ue€ A(G) :u(s) =0,s € E}

and

J(E) ={u € A(G) : u has compact support disjoint from E}.

For J C A(G) we denote by J* the annihilator of J in VN(G).

Sets of multiplicity (or M-sets) in (general) locally compact groups were
introduced in [4] (see also [5]), while in [18], the notion of M;-set was defined.
We next formulate p-versions of these concepts as follows.

Definition 3.1. A closed subset £ C G will be called
(i) an MP-set (or a set of p-multiplicity) if J(E)* N S,(G) # {0};
(ii) an M7P-set if I(E)* N S,(G) # {0}.

It is clear that every M?-set is an MP-set, and that M{®-sets (resp. M-
sets) coincide precisely with Mj-sets (resp. M-sets) studied in [18].

Recall that the support supp(7’) of an operator 7' € VN(G) is defined
by letting

supp(T) ={t € G: u-T # 0 whenever u € A(G) and u(t) # 0}.

Note that J(E)* coincides with the space of all operators T € VN(G) for
which supp(7’) C E. Hence a susbet E is an MP-set if and only if there
exists a non-zero operator 1" in S,(G) with supp(T’) C E.

Our next aim is to define operator versions of sets of p-multiplicity. We
first recall some concepts from [1] and [7]. Given standard measure spaces
(X, ) and (Y,v), a subset E of X x Y is called w-open if it is marginally
equivalent to the union of a countable set of Borel rectangles. The comple-
ments of w-open sets are called w-closed. A function w : X xY — C is
called w-continuous if w™!(U) is an w-open set for every open set U C C.
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If F C X xY is an w-closed set, an operator T' € B(L*(X), L*(Y)) is said
to be supported on F if

(AXB)QFE@ = PTP,=0,

for all measurable rectangles Ax B C X xY. A masa-bimodule is a subspace
U C B(L*(X), L*(Y)) such that DyUDx C U (where Dy (resp. Dy) is the
multiplication masa of L>(X) (resp. L>*(Y)). Given a masa-bimodule U,
there exists a smallest, up to marginal equivalence, w-closed subset x C
X x Y such that every operator in U is supported by F'; we call F' the
support of U. Given an w-closed set kK C X x Y, there exist [1], [7] a largest
weak™ closed masa-bimodule M,..(x) and a smallest weak™ closed masa-
bimodule 9M,,;, (£) with support x. The masa-bimodule MM, (k) is the space
of all T € B(L*(X), L*(Y)) supported on .

Definition 3.2. An w-closed subset xk C X x Y will be called
(i) an operator MP-set (or a set of operator p-multiplicity) if Mpax(k) N

Sp # {0}
(ii) an operator M7 -set if Muyin(x) NS, # {0}.

Remarks (i) Note that, if 1 < p < 2 then the two notions introduced in
Definition 3.2 agree; this follows from the fact that every Hilbert-Schmidt
operator is pseudo-integral, while the pseudo-integral operators supported
on a subset x are contained (in fact, weak® dense) in M, (k). We refer the
reader to [1] for the definition and more details about the class of pseudo-
integral operators.

(ii) A subset x C X xY is an operator M?-set if and only if (uxv)(k) >
0; indeed, the latter condition is equivalent to the existence of non-zero
functions h € L?(X x Y) supported on k.

In [18] we established a connection between sets of multiplicity and sets
of operator multiplicity. The next theorem is a generalisation of this result
to sets of p-multiplicity. For ¢ € T(G), let E,, : B(L*(G)) — VN(G) be the
map given by

(Eo(T),u) = (T, oN(u)), T €B(L*(G)),u€ A(G),

where the pairing on the left hand side is the one between VN(G) and
A(G), and on the right hand side — the one between B(L?*(G)) and T(G).
It was proved in [18, Theorem 3.8] that E,(T") € C}(G) for any ¢ € T(G)
whenever 7' is compact.

For £ C G, we let E* = {(s,t) : ts™' € E} C G x G. We will assume,
for the rest of the paper, that G is second countable.

Theorem 3.3. Let G be a locally compact group, E C G be a closed subset
and p > 1. The following are equivalent:

(i) E is an MP-set (resp. an M} -set);

(i) E* is an operator MP-set (resp. an operator MY -set).
Proof. (1)=(ii) Suppose that £ C G is an MP-set and let T be a non-zero

operator in J(E)* N S,(G). Then there exists a compact set K C G such
that PxT Pk is non-zero; by [18, Lemma 3.11], PkT P € Muax(E*) N S,.
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Let E C G be an M?-set. The proof of [18, Theorem 3.12 (b)] shows that
I(E)* € Muim(E*). As in the previous paragraph, one can find a non-zero
operator in My (£*) N'S,,.

(ii)=(i) Assume that E* is an operator MP-set; we will show that F
is an MP-set. If p = oo, this follows from [18, Theorem 3.11]. Let p = 1
and 7" be a non-zero trace class operator in M. (E*); by virtue of (2.3)
and the remark following it, write T' = T}, where h = >.°, f; ® g;, with

>y Ifill3 < oo and 377%, [|gi|3 < oo
Fix ¢ € T(G) N 6(G) such that the function 1 = p(1 ® A) belongs to

S(G). We will show that E,(T) € Si(G). For every u € A(G), we have
(E(T),u) = / / (5, 8)o(s, t)u(ts—)dsdt
GxG

_ / /G B () Al v
= /G(/Gh(r_lt,t)gp(r_lt,t)A(t)dt> u(r)A(r—Y)dr.

By assumption, ¢ € &(G) and hence ¥h € T(G). By Proposition 2.1,

Ph)(r) = /G Bt (1, ) A(E)dt

and hence
(3.1) (B (T),u) = / P(h)(r)u(r) A )dr.
Let £, € L?(G) be such that u(r A(€),m), 7 € G. Then, by (3.1),
(Ep(T)E,m) = / /G y P@h)(r)A(rDE(r ey (x)drd
(32) - / / PR ey A Ay
= [ Pwhey a6 sndyds
GxG
Let
(33) w(z,y) = PWh)(zy )A(x™), z,yeC.

Identity (3.2) shows that w is an integral kernel and E,(T) =T,. If K C G

is compact then PxT, Px = Ty, and
(3.4) wxkxkx = N(Ph) (A xk) ® xk),

where N(v)(s,t) = v(st™"), s,t € G. We have that P(yh) € A(G); thus
N(P(yh)) € &(G) and hence N(P(¢h)) € &(G). Since (A~*yg) ® xx €
T(G), identity (3.4) shows that wxxxx € T(G) and hence PxE,(T)Pk €
Si. Thus, E,(T) € $1(G).
By [18, Lemma 3.10], there exist elements ¢, d € L?(G) such that E.gq(T)
# 0. Since the space F of all compactly supported functions in L>(G) is
dense in L?(G), the continuity of the map ¢ — E,(T) and [18, Proposition
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3.8] imply that we may choose ¢ and d from F. However, in this case dA €
L>(@) and hence (¢c®d)(1®A) € &(G). Letting ¢ = ¢®d, we then have by
the previous paragraphs that E,(7) # 0, and by the proof of [18, Theorem
3.11] that E,(T) € J(E)*. It follows that E is an M'-set.

To prove the statement for an arbitrary p, we use complex interpolation.
Recall [16] that (S1,Sx) is a compatible couple, and S, coincides with the
interpolation space between S; and S, with parameter § = p~!. Let, as
above, ¢ € T(G) N S(G) be such that the function ¢ = (1 ® A) is an
element of &(G). For a fixed compact set K C G and p = 1,00, let ®,, :
S, = B(L*(G)) be the operator given by

Q,(T) = PkE,(T)Px, TE€S,.
By the previous paragraphs, the image of ®; is in §;. Moreover,

[@1(T) s, Ixrexxwlre = IN(PR) (A xk) @ xi)llr@)
IN(P(¥h))ls@) (A xK) @ xx) @)
1P| a@ (A" xx) ® xx) @)
[ohllr@) (A xK) @ xi) @)

m(K) ¥ le@ 1Pllme 1A Xkl
m(K)[¢lle@ 1A Xl T s
which shows that the operator ®; : §; — &7 is bounded. On the other hand,
the image of ®, is in S, and, by [18, Theorem 3.8],

[P (D < Nl 1T, T € Seo

By complex interpolation, the image of the operator @, is in S,. The proof
is now completed by choosing ¢ for which E,(T) is non-zero.

We have thus shown that if £* is an operator MP-set then F is an MP-
set. The proof of the case where E* is an operator M?-set follows similar
arguments and uses the fact that E,(T') belongs to I(E)* if T' € My (E*)
(see [18, Theorem 3.11]). O

VAN VAN VANRVAN

Corollary 3.4. A closed subset E of a locally compact group G is an M*-set
if and only if it has a non-empty interior.

Proof. Suppose that F is an M'-set. By Theorem 3.3, M. (E*) contains a
non-zero trace class operator; by [7, Theorem 6.7], E* contains a non-trivial
measurable rectangle, say, o x 5. Thus Ba~! C E. By Steinhaus’ Theorem,
Ba~t, and hence E, has a non-empty interior.

Conversely, assume that U is an open subset of E; we may further as-
sume that U has a compact closure contained in E. Let v € A(G) be a
function supported in U; then v € L'(G) and thus A(u) € C}(G). It is easy
to see that A\(u) € J(E)*. Let K C G be a compact set. Then Pg(u)Pg is
an integral operator with integral kernel (¢, s) — u(ts™')xx (t)xx (s)A(s) 1.
The function (t,s) — xx(t)xx(s)A(s)~! belongs to T'(G) since x is com-
pactly supported and A is continuous. Since N(u) € &(G), we conclude
that the function (¢, s) — u(ts™)xx (t)xx (s)A(s) ™! belongs to T(G); since
this holds for all compact sets K, we conclude that A\(u) € S1(G). O
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Corollary 3.5. A closed subset E of a locally compact group G is an M?-set
if and only if it has positive Haar measure.

Proof. Note that m(E) > 0 if and only if m x m(E*) > 0. The claim follows
from Theorem 3.3 and Remark (ii) after Definition 3.2. O

We next include some examples.

Examples (i) J. Froelich [10, p. 13-14] has shown that there exists a closed
set £ C T of Lebesgue measure zero which supports a non-zero measure
1 whose Fourier transform vanishes at infinity but which does not support
a non-zero pseudomeasure with Fourier transform in /. The set E is an
M-set that is not an MP-set for any p > 1.

(ii) Let T be the group of the unit circle, realised additively as R/27Z.
We identify T" with [—7,7)", and view the sphere S"! = {z € R" :
|| = 1} as a subset of T™. Let p be the normalised surface area mea-
sure of S"1. A direct calculation (see, e.g., [21, p.154]) shows that (k) =
Clk|="=2/2 ], ) 2(]k|) for some constant C, where fi is the Fourier trans-
form of p and Ji,_g)2 is a Bessel function. As |J,(r)| < C,r=1/2 (see [9,
Theorem 5.1]), for large enough r > 0, we obtain (k) = O (W), as

|k| — 0.

We have
1
kP < ¢ <C / e
kezzn kGZ”Zk|>1 | ’p n=1)/2 z€RM |z|>1 "CC‘ n=Lp/2

00 7’”_1
- /1 e

Therefore for p > 2 and n > 1+ _=;, the sequence {/i(k)}rezn belongs to

(P(Z™) and hence A\(u) € S,(T"). As Ap) € I(S™ 1)L, we conclude that
Sl C T is an M{-set for p > 2 whenever n > 1 + p%Z' Note that, by
Corollary 3.5, S"~ ! n > 1, is not an M?-set since S"~! has zero Lebesgue
measure (see Corollary 3.5).

(iii) There exists a closed set F C T of Lebesgue measure zero and a
non-zero measure p with supp g = E such that g € P for any p > 2 (see
23, Theorem 10.12]). Hence F is an M?-set for all p > 2 but not an M?>-set
(see Corollary 3.5).

(iv) In [7, p. 579] an example is given of a set £ C T and a function
f € L*(T) such that A(f) is supported in E and A\(f) € S, for any p > 1
but A\(f) ¢ Si. Remark (iv) from the start of Section 3 implies that E is an
MP-set for all p > 1 but not an M!-set.

Following the established terminology in the classical case, let us call a
closed subset £ C G a set of p-uniqueness if it is not a set of p-multiplicity.
In the remainder of this section, we apply Theorem 3.3 to establish some
preservation results for sets of p-uniqueness and sets of p-multiplicity.
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Proposition 3.6. Let G be a locally compact group, 1 < p < o0 and E; C G
be a closed subset, i = 1,2. Then Fy U FEy is a set of p-uniqueness if and
only if By and Ey are sets of p-uniqueness.

Proof. To see the ”if” part of the statement, it suffices, by Theorem 3.3, to
show that if M. (EF)NS, = {0} for i = 1,2, then My (B UEL)*)NS, =
{0}.

Let D; = Muax(ES) 1, i = 1,2, and suppose that T € Myyax ((E1UES)*)N
S,. For each 0, € D; N &(G), i = 1,2, we have that 6,0, € D; N Dy and,
since Dy N Dy = Myax((E1 U Es)*) 1, we conclude that

(So, (), 02) = (T, 6,65) = 0.

However, Schur multipliers leave S, invariant; since Dy N &(G) is dense in
Dy and FEj; is a set of p-uniqueness, Sy, (T') = 0. Thus, (7,6,) = 0 for all
0, € Dy NS(G). Now the density of Dy N &(G) in Dy and the fact that £
is a set of p-uniqueness imply that 7" = 0.

The ‘only if’ part of the statement follows from the fact that any closed
subset of a set of p-uniqueness is a set of p-uniqueness. Il

Proposition 3.7. Let G; be a locally compact group, 1 < p < oo and
E; C G; be a closed set, i = 1,2. If E; is an MP-set (resp. M} -set), i = 1,2,
then Ey X Ey C Gy X Go is an MP-set (resp. MY -set).

Proof. Let
p:G1XG1XG2XG2—>G1XGQXG1XG2

be the map given by p(si,t1,s9,t2) = (81, S2,t1,t2). We have that (E; X
Ey)" = p(E} x E3).

By Theorem 3.3, it suffices to show that p(E} x E}) is an operator M?-
set (resp. an operator M?-set). Denoting by ® the algebraic tensor product,
we have

9()/zmau}c(Elik) ® mmax(Eg) g mmax(p(Eik X E;))
and
Mumin (E]) @ Muin(£3) € Muin(p(E] X E3))

(see [18]). It follows that if 7; € Myax(ET) NS, (resp. S; € Mumax(ET)NS,),
i =1,2, then T1 ® Ty (resp. S; ® S) is a non-zero operator in M. (p( £ X
E3) NS, (resp. Muin(p(EY X E5))NS,). O

We finish this section with explicit descriptions of the spaces S;(G) and
S2(G). For the next lemma, recall that, if G is compact then &(G) C T(G)
and hence N(u) € T(Q) for every u € A(G).

Lemma 3.8. Let G be a compact group. If u € A(G) then Ty = Mu).
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Proof. 1t £, € L*(G) then, using the unimodulrity of G, we have

Twwsn) = || GN(u)(us)s(sstdt

_ / /G PRGLEG Jn(&)drdt = (A(u)(€),n).
]

We say that a function f belongs to A(G) at the point t € G if there exists
a neighbourhood U of t and a function u € A(G) such that f(s) = u(s)
for all s € U. We let A(G)°° denote the set of all functions that belong to
A(G) at every point t € G.

Lemma 3.9. Let w: G x G — C be a measurable (with respect to product
measure) function, such that, for every r € G, w(zxr,yr) = w(x,y) for
marginally almost all (x,y). Then there exists a measurable function u :
G — C such that, up to a null set, w = N(u).

Proof. Let x € G, and v, : G — C be given by v,(s) = w(s,xs), s € G. For
r € (G, the set
{(y,2) e G X G :w(yr,zr) #w(y,2)}
is marginally null. In particular,
AY (s,xs) € G x G :w(sr,xsr) #w(s,zs)}

is marginally null. This easily implies that the set {s € G : (s,xs) € A,}
is null and hence v,(sr) = v,(s) for almost all s. Using arguments similar
o [14, Lemma 3.2, one can prove that the function f.(s,r) = v,(sr) is

m X m-measurable. For every r € G, the set {s € G : v, (sr) = v,(s)} is
null. By the Fubini theorem,

// |z (s1) — v (s)|dsdr = / (/ vz (s1) — vx(s)]ds> dr =0,

giving v, (sr) = v,(s) for almost all pairs (s,r). Thus there exists sg € G
such that v, (sor) = v (s¢) for almost all € G. Hence, there exists u(z) € C
such that v,(s) = u(z) for almost all s € G.

The function u : G — C is measurable as the composition of w and
the measurable functions © — (s, xs). Since the functions w and N(u) are
equal almost everywhere on each set of the form {x}*, applying the above
arguments we have that w = N(u) almost everywhere. O

Theorem 3.10. Let G be a locally compact group. Then
(3.5) SI(G) ={T € C:(G) : there exists u € A(G)*° such that
PrT Py = Tnwya-101)xxxx fOr each compact K C G}.

Moreover, if G is compact then

S1(G) ={A\(u) :u € A(G)}.
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Proof. We first show that S;(G) is contained in the right hand side of (3.5).
By assumption, for every compact set K C G there exists a function hy €
T(G) such that PkT Pk = Tj,.. If L C G is compact then
Thie( Prnr Pk T Pk Pxnr, = PrartT Prar = Thy,,
= PrrrPLTPLPrar = Thy(

XKNLOXKNL)
XKNL®XKNL)"

Thus, hx(Xxnr @ Xkxnr) = hr(XknL @ Xkxnr) almost everywhere. Since the
functions hx(Xknr ® Xxnr) and hr(xknr ® Xknr) are w-continuous, [17,
Lemma 2.2] implies that they are equal up to a marginally null set. Let
(K,)22, be an increasing sequence of compact sets such that G = U | K,,.
Setting h(s,t) = hg, (s,t) if s,t € K,,, we obtain a function h: G x G — C,
defined up to a marginally null set, which has the property that h|x s is
marginally equivalent to hx«x for every compact set K C G.

Let L C G be a compact set and &, € L?*(G) be supported on L. Fix
s € G and let M C G be a compact set containing both L and Ls™!. Let
p: G — B(L*(@)), s = ps, be the right regular representation given by

ps&(x) = \/A(s)é(xs). Then
(Tps€777) = (PMTPMps‘faTD - <ThMps§777)

= [ hnpeus e /AT dady
= /GGh(:c,zs1)§(z)m\/A(sl)dxdz.

On the other hand,
(psTéu 77) = <T§7 ps*”]) = (PMTPM§7 ps*”]) - (ThMﬁ,Ps%??)
= [ e e VAL s
GxG

— /GGh(ms,z)g(z)m\/A(s)dwdz.

Since T € C¥(G), we have Tp, = p,T, and hence \/A(s™1)h(x,zs7!) =
VA(s)h(xs, z) for marginally almost all (x, z) € L x L. Since this holds for
every compact set L, we have that /A(s™)h(z,zs7!) = /A(s)h(zs, 2)
for marginally almost all (z,2) € G x G. Thus, h(z,y) = A(s)h(xs,ys) for
marginally almost all (z,y) € G x G.

Let h: G x G — C be given by h(z,y) = A(z)h(z,y). If s € G then

h(zs,ys) = A(xs)h(zs,ys) = A(x)A(s)h(zs,ys) = A(z)h(x,y) = h(z,y),

for marginally almost all (x,y). By Lemma 3.9, there exists a measurable
function u : G — C such that, up to a null set, h = N(w). Thus, up to a
null set, h = (A~ @ 1)N(u).

Note that, for every compact set K C G, we have hygxx € T(G) and
PxTPg = Thyp.x- Thus, it remains to show that u € A(G)"°. We have

that hygxx € T(G) for every compact set K C G. Since T(G) consists of
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local Schur multipliers (see [17]), the o-compactness of G implies that A is
a local Schur multiplier. By [18, Theorem 8.2], u € A(G)"*.

To see that the right hand side of (3.5) is contaied in S;(G), note first
that for any compact set L and u € A(G)"°° there exists v € A(G) such that
u(t) = v(t) for any t € L (see the discussion before [18, Lemma 6.1]). Let
K be a compact set and let v € A(G) such that w = v on L = KK~!. Then
N(u)xgxx = N(v)xxxr. Since N(v) is a Schur multiplier and (A™! ®
Dxxxx € T(G), we have that h(z,y) = N(u)(z,y) A (x)xkxx(z,y) €

T(G).
If G is compact then G is unimodular and A(G) = A(G)"°. By Lemma
3.8, Tn(ay = A(u), and the proof is complete. O

The proof of the next proposition is similar to that of Theorem 3.10 and
is omitted.

Proposition 3.11. Let G be a locally compact group. The following are
equivalent, for an operator T' € C*(G):

(i) T € S(G);

(i1) there exists a measurable function v : G — C such that, for every
compact set K C G, we have N(u)xgxx € L*(G x G) and PxTPx =

TN (u) (A~ 91Xk -
4. A p-VERSION OF THE STONE-VON NEUMANN THEOREM

The aim of this section is to establish the following p-version of the Stone-
von Neumann Theorem ([22, Theorem 4.23]). We let D = {M, : a € Cy(G)}.

Theorem 4.1. Let G be a locally compact group and 1 < p < oco. Then the
|| - |l,-closed D-bimodule generated by S,(G) coincides with S,.

Proof. For p = 0o, the statement reduces to the Stone-von Neumann The-
orem. Fix p with 1 < p < oco. Let

S,(G) ={T € C}(G) : PkT,TPg € S, for every compact set K C G’}

and

Z/{p - Span{MaTMb La, be Cc(G)7T c Szl)(G)}””p
We note first that S,(G) C S,(G) and, by the definition of S,(G), we have

U, C span{M,TM, : a,b € C.(G),T € Sp(G)}”.Hp CS,.

It follows from the proof of Theorem 3.10, that for u € A(G) N C.(G),
P A(u), Mu)Px € S € Sp, p > 1 and giving that both S/ (G) and U, are
non-zero.

We claim that U, is an ideal of S,. First note that if b € C.(G) and
f € L*(@) then by the Stone-von Neumann theorem M,\(f) can be approx-
imated in the operator norm by linear combinations » ; A(g7") Mcn. Suppose
that T' € §)(G), S € So and a, b, c € Ce(G). Since M, T € S, we have

”MaTMb)‘(f)_MaTZ /\(gf)MC?Hp < ”MaT”p”Mb)‘(f)_Z /\(gf)MC?H —0
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and therefore M,TM,\(f) € U,. Again by the Stone-von-Neumann Theo-
rem, S can be approximated by linear combinations of operators of the form
A f)M., where f € L'(G) and ¢ € C.(G). Hence the corresponding linear
combination of M,TMy\(f)M. converges in || - ||,-norm to M,T'M,S. Thus,
M,TM,S € U, and hence U, is a right ideal of S; one similarly shows that
U, is a left ideal in S.,. Thus, U, is a non-zero ideal of S, closed in the
Schatten p-norm. This easily implies that

U, = span{M,TM, - a,b € Co(G), T € S,(G)} " =S,

5. THE CASE OF COMPACT GROUPS

In this section, we include a direct proof of Theorem 3.3, that is, a proof
that does not use interpolation, in the case G is a compact group. We first
recall some notions from the Fourier theory for compact groups (see, e.g,
[12]). R R

Let G be a compact group with dual G; thus, G is a complete family of
pairwise inequivalent continuous unitary representations 7 : G — B(H,) of
G. We let d, = dim(H,). For u € A(G) we set

() = / u(s)m(s~Y)ds,
G
understood as a linear operator on the finite-dimensional space H,. Then

> dalli(m)ll < oo,

e

where || - ||; is the trace norm. Moreover, the Fourier algebra A(G) can be
identified with the space of operator fields, indexed over G,

{(F(M)req : f(m) € B(Hz), Y dell f(m)[ly < 00},

WGG

the identification being given by the map (which we call the Fourier trans-
form) sending an element u € A(G) to (u(7)), g Its inverse sends (f(7)),..a
to the funtion f given by f(s) = > _sd.Tr(f(m)n(s)) (where Tr de-

el
notes the trace). We can therefore identify the dual space of A(G) with

[1,ca B(H;) through the duality

1) (1)) = 3 de Te(Tyi().
el
In particular, the evaluation functional at s corresponds to (7(s)), .a, s € G.
The dual space of A(G) is isomorphic to VN(G), and the identification of
VN(G) with []_.g B(H,) is given by (T%), . — ®, 5T\ € VN(G), where
T® =Tq@---@T. It follows from Remark (iv) at the start of Section 3
k
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that

(5.2) S)(G) =T € CHG) Y dn||Tx|lb < o0

WGG

Thus, S,(G) is an ideal not only in C(G) but also in VN(G).

Theorem 5.1. Let G be a compact group, p > 1 and E C G be a closed
subset. The following are equivalent:

(i) E is an MP-set (resp. an MY -set);

(i) E* is an operator MP-set (resp. an operator M7 -set).

Proof. (i)=-(ii) follows as in Theorem 3.3.

(ii)=-(i) Suppose that E* is an operator MP-set. If T" € M. (E*) NS, is
non-zero, by [18, Lemma 3.10], there exist a, b € L*(G) such that E,gu(T) €
C*(@) is non-zero.

By the definition of the map E,g;, and Lemma 3.8, for u € A(G) we have

(53)  (Bagp(T),u) = (T,N(u)(a®@b)) = (MyT M, N(u))

= Tr((MyTM,)Tnww) = Tr((MyTM)A(@)).
Let u € A(G) be such that ) _ad|a(7)|§ < oo, where ¢ is conjugate
to p. The space of all such elements is dense in A(G) (indeed, it contains

all elements of A(G) whose Fourier transform is finitely supported). By the
the Peter-Weyl Theorem, A = @ éw(d“), where 709%) = 7@ ... @ 7, and
—_——

S
d7r

Aw)| g, = u(m). Thus,
(5:4) M@= della(m)g < oo

el
By (5.3) and (5.4),

1/q
(5.5) (Eass(T),w)] < llallocllblloclTlly | Y drlla(m)]d
el
Let S = E,e(T). By (5.1), (S,u) =) . d:Tr(Sru(m)). We claim that
(5.6) > de||Sh < 0.
nedG

In fact, let S, = V;|S,| be the polar decomposition of S,. For any finite
family F C G, let u € A(G) be such that,

(p=1)/p
a(m) = (|SL))PVE)/ (Zd“SH) JifreF

TeF

and
u(r) =0, if 7 ¢ F.
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We have
> della(m))|d = daTr(1S")/ > dellSHllh = 1

rel TeF TeF

and

(»=1)/p
S doTe(Spa(r)) > dTr(|SA|7)/ (Z deISwHi)

ple TeF TeF

1/p
(Z dWHSsz) :

TeF

Inequality (5.5) now implies (3 dr[|Sz|[2)/? < ||also||blloc]| T ||, for any
finite F. Inequality (5.6) follows; by (5.2), E.ep(T") € S,p(G). By the proof
of [18, Theorem 3.11], E,eu(T) € J(E)*, and the proof is complete for MP-
sets. The proof of the statement for M} -sets is similar and uses the fact that
Booy(T) € I(B)- if T € Myin (E7). O

Remark 5.2. If G is a compact infinite group, then S,(G) is a proper
ideal of S4(G) if p < ¢. In fact, one can easily find {as}, .o € C such
that ) & dr|ox[P < oo while ) dr|az|? = oco. Letting now T = o P,
where P, is a projection on a one-dimensional subspace of H;, and T' =
EBﬂGGAT#d“), we have T' € S,(G) but T' ¢ S,(G). For general locally compact
groups the classes S,(G) may coincide, e.g. in the case of discrete groups,

where S,(G), p > 1, are all equal to C(G).
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