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1 ABSTRACT

There is remarkable potential for research at the interface between the earth sciences and
environmental microbiology that may lead to advances in our understanding of the role of bacterial
communities in the surface or subsurface environment of our planet. One mainstay of sedimentary
classification is the concept of differential soil and/or paleosol horizons being the result of primarily
physical and chemical weathering, with relatively little understanding of how microbial communities
between these stratified horizons differ, if at all. In this study we evaluate the differences in
microbial community taxonomy and biogeochemical functional potential between stratified soil
horizons in an alpine paleosol environment using next-generation sequencing (NGS) shotgun
sequencing. Paleosols represent a unique environment to study the effect of differences soil horizon
environments on the microbial community due to their relative isolation, and the fact that three
distinct stratified soil horizons can be identified within the top 30cm of the soil. This enables us to

assess variation in microbial community composition that will be relatively distinct from variation
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due to distance alone. We test the hypothesis that variation in soil community composition is linked
to variation in the physical and chemical parameters that define stratigraphy. Multivariate statistical
analysis of sequencing reads from soil horizons across five sampling sites revealed that 1223
microbial genera vary significantly and consistently in abundance across stratified soil horizons at
class level. Specifically Ktedonobacter, Bacilli and Betaproteobacteria responded most strongly to
soil depth. Alpha diversity showed a positive correlation with soil depth. Beta diversity, however, did
not differ significantly between horizons. Genes involved in carbohydrate and nitrogen metabolism
were found to be more abundant in Ah horizon samples. Closer inspection of carbohydrate
metabolism genes revealed that genes involved in CO; fixation, fermentation and saccharide
metabolism decreased in abundance with depth while one-carbon metabolism increased down

profile.

2 INTRODUCTION

Soil microbiology is a rapidly growing discipline, driven by the advances in high throughput
sequencing and bioinformatic techniques. Microbiological studies on alpine soils to date
have focused mainly on alpine forest, meadow and grassland soils (Ding et al., 2015; Yashiro
et al., 2016; Zhang et al., 2013), comparatively little work has been carried out on cold, high
altitude alpine soils and paleosols above the timberline (termed the alpine zone; Mahaney
et al., 2016). Studies which have focused on soils/paleosols within the alpine zone, such as
glacier forefields, have utilised techniques such as amplicon sequencing of the 16S rRNA
gene, restriction fragment length polymorphism (RFLP) and/or GeoChip microarrays (He et

al., 2007) to assess microbial populations (Lazzaro et al., 2015; Zhang et al., 2013). These
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techniques are subject to significant limitations and potential biases, that can now be

addressed using shotgun sequencing approaches coupled with bioinformatics.

Several studies have shown that the number of high alpine ecosystems may be expanding
worldwide, due to an increase in glacier and ice cap thawing rates (King et al., 2011; Byers,
2008; Zemp et al., 2006) ), although there is a chance that increased temperature may
reverse this trend by expanding forest to higher elevations (Kérner and Paulsen 2004).
Regardless, concerns are rising regarding the potential implications this may have for global
atmospheric carbon levels as soils are a major carbon sink: soil organic matter contains
approximately 3 times the size of the atmospheric pool of carbon and 4.5 times that of the
biotic pool (Lal, 2004). Much more organic carbon exists in soils than in vegetation and the
atmosphere combined, and the global carbon budget can be strongly influenced by changes
in soil carbon content (Fierer et al, 2009; Serna-Chavez et al, 2013). Thawing permafrost in
soils newly exposed to increased temperature may increase the rate at which soil microbes
degrade soil organic carbon thus leading to a net increase in CO, emissions (Davidson and
Janssens, 2006). Additionally, the rate of methanogenesis could potentially increase, due to
an increase in available metabolites for methanogens (such as acetate), generated as by-
products from organisms carrying out soil organic carbon degradation, which could lead to a
net increase in methane emissions. Though these sediments are not completely anaerobic,
soils in general become more anoxic with increasing depth (Yu et al., 2006). Additionally
even in well oxygenated soils, methanogenesis can still occur due to the presence of anoxic
microenvironments within soil aggregates (Fierer 2017). Without a more thorough
understanding of the functional potential of the microbial communities present in these
soils we cannot make predictions as to the possible effects of an increase in exposed alpine

soils.
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The alpine paleosols studied in this report have developed from the weathering of parent
material deposited during two periods following the last glaciation: The Bglling — Allergd
warming of ~15-12.8 ka and the Younger Dryas (YD) from 12.8-~11.5 ka (Mahaney et al.,
2017). Moraines (deposits of glacial debris described here) from both pre-YD and YD time
are evident at elevations greater than 2400m above sea level in this region of France/Italy.
The paleosols in these deposits are classified as Cryochrepts ( i.e. cold-climate pedons) with
Ah/Bw/Cox profiles over fresh undifferentiated, unweathered substrates. In geological
terms the soils are identified as paleosols, and they possess distinct stratigraphy with
‘classically’ identified Ah/Bw/Cox soil horizons (Mahaney et al., 2013). The soils in this study

are generally acidic with pH ranging from 4.0-6.0 (supplementary data file 1).

How microbial communities vary with respect to these soil horizons still remains an
underexplored avenue of research in soil-paleosol microbial ecology. Of very few relevant
published studies, those which compare soil-paleosol horizons either employed 16S rRNA
gene amplicon sequencing (Baldrian et al., 2012; Mahaney et al. 2016) or focused
specifically on certain functional enzymes, such as dehalogenation enzymes (Weigold et al.,
2016). No studies have focused on changes in overall microbial community structure in

relation to paleosol stratigraphy.

The alpine paleosols studied here present a unique opportunity to address this apparent

gap in knowledge due to:

i The fact that they possess well stratified horizons, being distinguishable horizons in

physical terms.

ii. The wealth of geochemical data already available for the region (e.g. Mahaney et al.,

2016; Mahaney and Keiser, 2013).
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iii. Their isolation from the Anthropocene: as paleosols these soils are relatively
undisturbed by human activity until now, allowing us to assess the effect of >10,000 years of
isolated soil development. Their evolutionary history initiated in the Late Pleistocene
coming up to their present state in the Late Holocene entitles them to the ‘paleo’

designation.

There are a number of soil classification systems in current use (Eswaran, 2003), these
varying by country and utility (e.g. assessing the suitability of the soil for agricultural use, or
inferring its geological origin). In this study soils have been classified according to the United
States Department of Agriculture (USDA) soil taxonomy system (USDA, 1999). In this system,
a distinct soil horizon is classified as a layer of minerals and organic material, which differs
from the parent material in mineral, physical, chemical, morphological, and biological

features.

In this study, using high throughput shotgun sequencing, we first aimed to test the
hypothesis that microbial communities vary significantly and consistently between stratified
soil horizons in an alpine paleosol environment, both in terms of their taxonomic profile and
functional potential. We then test the hypothesis that variations in the soil microbiome can
be linked to variations in the physical and chemical properties of the soil horizons. Finally,
we investigated which taxa and functional gene categories showed the strongest changes in

abundance between soil horizons.

3 Methods

Sites were selected on the basis of air photo interpretation (1:20,000 scale) of deposits.

Clasts embedded in major landform surfaces and profiles (Fig. 1) were sampled following
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excavation of sections to depths of ~0.8 m. Profiles extend to depths of ~40-50 cm + 5 cm.
Paleosol descriptions follow standard nomenclature (NSSC, 1995) and Birkeland (1999). The
‘Cox’ horizon designation, originally defined by Birkeland (1999), is applied to strata with
detectable levels of secondary Fe hydroxides and oxides, whereas ‘Cu’ refers to
unweathered parent material (Hodgson, 1976). The 'Ah’ horizon designation is applied
when surface color is stronger than 10YR 3/1, an indication of appreciable organic carbon
accumulation (Canada Soil Survey Comm., 1998). Soil colors were assigned using Oyama and
Takehara's (1970) soil colour chips. Bulk samples (250-300 g) were collected from paleosol

horizons for particle size, clay mineral, geochemical and microbiological analyses.

DNA was extracted from alpine paleosol samples using a PowerSoil DNA extraction kit (Mo
Bio). For each DNA extraction 0.25g of sample was used per extraction, extractions were
performed in triplicate and pooled. Extractions were performed according to the
manufacturer’s protocol with the following modifications: samples were homogenised using
a FastPrep 120 cell disrupter system (Thermo-Fisher) at 5.5 m.s* for 2 minutes, rather than
a standard bench top vortex. The eluted and pooled DNA was further purified via two
rounds of ethanol precipitation; DNA solution was suspended in 3 volumes of ice cold 100%
ethanol, 0.1 volumes 5 M sodium acetate solution (pH 5.2) and 2 uL of linearized
polyacrylamide (LPA), the solution was then incubated overnight at -20°C and centrifuged at
18000 x g at 4°C for 30 minutes. The supernatant was discarded and the pellet washed in
70% ice cold ethanol and again centrifuged at 18000 x g at 4°C for 5 minutes. Finally, the
supernatant was discarded and the pellet allowed to air dry for 15 minutes before
resuspension in 50 uL molecular grade H,0. Final DNA concentrations were measured using

a Quantus Fluorometer (Promega) in conjunction with the Quantiflour DsDNA dye system
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(Promega). Soil physical and chemical variables were measured as previously described

(Mahaney et al., 2016)

Sequencing read quality, length and adapter contamination were initially assessed using
Fastqc (Andrews, 2010). Adapter trimming was performed using bbduk from the bbtools
package (Bushnell, 2015) using the provided library of lllumina adapters. Quality trimming
was also performed using bbduk form the bbtools package, reads were trimmed to a
minimum quality score of 20 over a sliding window of 10 bases, additionally the flag
‘modulo = 5’ was used to remove trailing single odd numbered bases (i.e. the 3015 base in a
300bp library, or the 1015 base in 100bp library), which are common error bases in Illumina
datasets. Read merging was performed using bbmerge from the bbtools package. Human
DNA contaminants were removed by using removehuman.sh from the bbtools package.
Briefly, raw reads are mapped onto a prebuilt index of the human genome which had been
masked to hide 1) any low complexity repeat regions and 2) any regions which showed >
85% identity to any sequence in the Silva rRNA database (Quast et al., 2013) over a 70 base-
pair window. This method removes potential human DNA contamination while minimising

false positive hits to low complexity regions and ribosomal RNA sequences

Assembly benchmarking was performed using three de-novo genome assemblers optimized
for metagenomic data, Megabhit (Li et al., 2016), SPAdes (Bankevich et al., 2012) (with the
flag: — meta), and IDBA-UD (Peng et al., 2012), using kmers ranging from 27-127 in steps of
10. Benchmarking was performed against un-normalized raw reads and reads normalized to
minimum kmer depth of 3 and maximum kmer depth of 100 for kmers of size 32.
Normalization was performed using bbnorm form the bbtools package, with the flags

min=3, max=100, k = 32. Read recruitment for each assembly was estimated using bbmap
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with the flags k=13 vslow=t. Annotation of quality trimmed reads was achieved using Kaiju
(Menzel et al., 2016). A database of all proteins from all bacteria, archaea, single celled
eukaryotes and viruses in the NCBI non-redundant protein database

(NCBI Resource Coordinators, 2017) was constructed using the makeDB.sh script supplied
with Kaiju. Nucleotide reads were translated into amino acid sequence in all 6 reading
frames and taxonomically annotated by alignment against this database using Kaiju, with a
maximum of 5 mismatches allowed and a minimum bit score of 60. Reads were projected
onto all taxonomic ranks from phylum to species and per-sample abundances were
compiled into single data tables for downstream statistical analysis using a custom bash
script. Functional annotations were assigned by mapping NCBI accession IDs from the Kaiju
analysis onto functional classifications from the SEED subsystems protein hierarchy

(Overbeek et al., 2005) at levels 1, 2 and 3 using MEGAN 6 (Huson et al., 2016).

All taxonomic and functional annotations and read counts were concatenated and
downstream analysis was performed using R 3.4.1 (R Core Team, 2011). Taxonomic and
functional abundances were summed at each taxonomic and functional rank and
normalized by dividing counts for each sample by the total number of reads that were
annotated for that sample using the aggregate function. Prior to statistical analysis,
taxonomic and functional abundance values were Hellinger transformed as described in
Legendre and Gallagher, (2001) using the function decostand from the package vegan
(Oksanen et al., 2016). Soil abiotic variables were log transformed and standardized such

that each variable had a mean of zero and standard deviation of 1 across all samples.



188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

Euclidean distance dissimilarity matrices were produced for normalized abundance and
abiotic variable tables using the vegdist function from vegan. Principal component analysis
was performed using the capscale function in vegan, samples were plotted in two
dimensional space using their first two principal components, plots were produced for
taxonomic abundances at the class and genus levels, for functional abundances, and for soil
abioitic variables. For taxonomic annotation tables, genus-level richness and Shannon-
Weaver diversity indices were computed using the diversity function from the package
vegan. Beta diversity for each soil horizon was inferred for all taxonomic and functional
ranks as the distance to the group centroid in Euclidean space using the betadisper function
from the package vegan. Analysis of variance (ANOVA) tests were performed to test for
significant differences between group beta dispersions using the function anova. Analysis of
similarities (ANOSIM) (Clarke, 1993) was performed on all samples grouped by biome type,
sample site (for Alpine soils only) and soil horizon using the function anosim from the
package vegan. Analysis of variance using distance matrices was performed on all samples
grouped by, sample site and soil horizon using the adonis function from the package vegan
with 9999 permutations. Taxa and functions whose abundances differed significantly
between horizons depths were identified by applying the Kruskal-Wallis H test (Kruskal and
Wallis, 1952) using the function kruskal.test, p-values were adjusted for multiple testing
using the Benjamin-Hochberg false discovery rate method (Benjamini and Hochberg, 1995)
with the function p.adjust, only taxa with an adjusted p-value < 0.05 were considered

significant.

Data availability
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Raw Sequence data files are available in the NCBI sequence read archive under Bioproject

number PRINA39461.

4 RESULTS

DNA EXTRACTION, SEQUENCING DATA QC AND PROCESSING

Vertical sections of weathered sediment (paleosols) in a series of five moraines in the Guil
river valley of the French Alps, (G1, G2, G3a, G9, and G11) were sampled at three discrete
stratified soil horizons (Ah, Bw and Cox) and were classified as previously described
(Mahaney et al., 2016; 2017) (Figure 1). The geology of these paleosols is an active area of
glacial, cosmic and microbiological research as described in several related geological papers

to date (Mahaney et al., 2013, 2016, 2017; Mahaney and Keiser, 2013).

Total DNA per gram of soil generally decreased with increasing depth, indicating a lower
total biomass at lower depths in the soil profile (supplementary table S3). Average sequence
read lengths were as expected (300bp), average sequence quality was found to be > 20 for
the full length of each read for all samples. Adapter contamination was also found to be low,
on average < 1% per library. Although merging of the paired end reads was attempted, on
average < 30% of reads could be merged, indicating that the average insert size of the
sequencing libraries exceeded 600bp, therefore downstream processing was performed on

interleaved PE reads.

Attempts at assembly of the metagenomic libraries revealed generally poor assemblies
(supplementary table S4) and a significant loss of information (i.e. the percentage of raw reads
which could be mapped onto the assembly). Since the goal here was to characterize these soil

samples in a general sense it was decided that the loss of information during assembly and
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overall poor assembly statistics were deemed unacceptable. Therefore annotation was
performed using only the raw PE read files, since the reads were on average 300bp in length,
a reasonable level of taxonomic resolution can still be obtained, and in most cases
assignments could be made down to the genus level without much further loss of information

(supplementary figure S1).

On average ~ 80% of all reads could be assigned to at least the Phylum level, the functional
gene assignment rates were significantly lower at ranging from 17-26% depending on the
SEED subsystem level used. As taxonomic resolution increases so the number of reads which
can be confidently assigned to a taxon decreases, with a significant drop-off in the number of
reads which can be assigned to the species level, therefor for downstream analysis, the genus

level was the minimum taxonomic rank which was analysed..

TAXONOMIC/ FUNCTIONAL ANNOTATION

At the class level it is apparent that the community is dominated by four major taxa (Figure
2), the Actinobacteria, Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria
all of which are common genera of soil microbes which appear to be ubiquitous in soils
(Barberan et al., 2014). The Actinobacteria account for roughly 30% of the total annotated
reads in all samples. The Bacilli and Acidobacteriia also appear to be reasonably abundant,
as might be expected for paleosols with low pH 4.0-6.0. Certain horizon dependent patterns
in the data also emerge even in these boxplots, for example, the Betaproteobacteria and
Gammaproteobacteria appear to be generally more abundant in the Bw and Cox horizon
samples while the Ktedonobacteria appear to be generally more abundant in the Ah horizon

samples.
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ALPHA / BETA DIVERSITY ANALYSIS

Alpha diversity was estimated for each sample at each taxonomic level using the Shannon—
Weaver diversity index (Shannon and Weaver, 1964), Inverse Simpson diversity index
(Simpson, 1949) and genus-level richness (i.e. number of unique genera per sample). Linear
regression of alpha diversity measures against sample depth reveals a fairly strong,
statistically significant linear relationship between soil depth and alpha diversity (Figure 3).
Interestingly while richness appears to decrease with depth, the diversity indices appear to
increase. Both inverse Simpson and Shannon diversity indices account for taxon abundances,
where a lower value indicates more uneven taxon abundances, suggesting that while the
number of unique genera decrease while moving down a soil profile, the relative abundances

of these genera become more even.

In order to test the statistical significance of differences in community structure between
horizons, ANOSIM (Figure 3) and Adonis tests (supplementary table S2) were applied. It was
necessary to test for homogeneity of group dispersions, i.e. whether or not the multivariate
spread of the samples from their group centroids are significantly different (Figure 3 panel
B). Homogeneity of group dispersion tests were performed for samples grouped by both soil
horizon and sample site, results were not statistically significant in any case, meaning that
downstream ANOSIM tests may be interpreted confidently without any caveats. The results
of both ANOSIM and Adonis tests indicate that soil horizon has a much stronger effect on
microbial community than sampling site: the ADONIS R statistic is reasonably high for all ranks
when grouped by soil horizon and much lower when grouped by sampling site, indicating that
the effect is genuine. Statistical significance is strong with all ranks showing three star

significance (P <0.001) when grouped by soil horizon, apart from the phylum level which
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shows two star significance (P < 0.01) (supplementary table S3). When grouped by sampling
site, there is a marginally significant effect at the phylum level although this is not seen at

lower levels of taxonomic resolution, or at the functional gene level.

CORRELATIONS WITH SoIL ABIOTIC VARIABLES

The effect of soil horizon classification on soil abiotic variables was also assessed (Figure 4).
Out of the 27 variables which were assessed here [supplementary data file 1], 12 were
found to correlate significantly with soil depth and between stratified soil horizons. These
12 include 5 of the 6 essential elements for life (C, H, N, P, S), it can also be presumed that
available oxygen also decreases with soil depth. Where C,N and P were compered total
rather than soluble levels were used, because we wanted to consider insoluble sources of
these elements (e.g. lignin). Given this information, it is unsurprising that the total DNA per
g of soil decreases with depth and that the microbial communities between soil horizons are
significantly different from one another (ANOSIM significance = 3.9e#) (Figure 3).
Conversely, the concentration of numerous elements important for life (Ca, Cu, Na, K and
Mn) appears to increase with soil depth — perhaps due to leaching. This is typical during
weathering of parent material, when the elements are realised they are leached down
profile (Retallack, 2001). The exception is K that follows decreasing trend toward the parent
rock. The K is most likely incorporated into secondary clay minerals like lllite, illite-smectite

and/or illite-vermiculite (Mahaney et al., 2016).

PRINCIPAL COMPONENT ANALYSIS

Principle component analysis was performed on taxon abundances (at the class and genus

levels), functional abundances (at SEED subsystems level 1) and abiotic variables (Figure 5),
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revealing strikingly similar patterns between samples in multivariate space. There is a clear
and consistent separation of soil horizons along the first principal component axis in all cases.
There is also a slight overlap between Bw and Cox horizons in the case of the Genus level
abundance and chemical variables, indicating that the Bw and Cox horizons are less strongly
differentiated from each other. This corresponds with the sedimentology - which indicates
that the Bw horizon is only weakly differentiated and still developing (hence the w
classification), and therefore it is not surprising that these data suggest a closer degree of
similarity between population in the Bw and Cox horizons (Mahaney et al., 2013). In all cases,
the first two principle component axes cumulatively explain > 70% of the total variation (>

80% in the case of the taxonomic variation).

In order to identify the taxa and functions which contribute most to the differences between
soil horizons the Kruskal-Wallace H test (Kruskal and Wallis, 1952) for differences between
groups was applied to taxonomic abundances at the class level, and functional abundances at
level 1 Of the SEED subsystems hierarchy. For clarity, plots were only produced for taxa and

functions which occurred at an abundance greater than 0.1% in at least one sample.

It is clear that the abundances of many classes of bacteria vary along the depth profile (Figure
6). Nine of the top ten most significantly variable taxa appear to increase with soil depth,
while the only one which decreases are the Ktedonobacteria. Likewise, classes which are
known to comprise many obligate and facultative anaerobes (the Bacilli, Clostridia and
Negativicutes) increase significantly with depth. The Betaproteobacteria are one of the most
abundant classes present in the dataset and show a near 3% increase in median abundance
between the Ah and Cox horizons. A total of 57 Classes were shown to vary significantly

between soil horizons, applying this analysis to genus level abundances revealed that 1223
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genera vary significantly between soil horizons. Overall, what has become clear from these
data is that a large number taxa vary significantly and consistently between soil horizons over

all six sample sites, even when measured at higher taxonomic ranks.

Similarly, many functional gene categories vary in abundance with respect to soil horizon,
although the effect is much less pronounced than for taxon abundances, with only 6 major
categories showing significant variation (Figure 7). Nitrogen metabolism and carbohydrate
metabolism are the two which can be most obviously linked to ecosystem level processes.
Both decrease with increasing depth, corresponding to the decrease in soil nitrogen and
organic carbon with depth recorded by Mahaney, et al. (2016). The low measured N
(supplementary data file 1) concentrations in these soils would suggest that the environment
is extremely nitrogen limited. Therefore we would expect that Ammonia oxidation may be an
extremely important component of the nitrogen cycle in these soils. Genes relating to central
metabolism (i.e. metabolic pathways essential for organism survival) and secondary
metabolism ( i.e. pathways which are non-essential) show a near inverse relationship, with
secondary metabolism decreasing with depth while central metabolism genes increase with
depth. This may be explained by the fact that in lower soil horizons, where nutrients are less
abundant (Fierer, 2017), functions which are non-essential for survival are less vital and thus

are selected against over time - core metabolism genes become more important.

Additionally, in the Ah horizon where C N and P are more abundant we might expect anti-
microbial secondary metabolites biosynthesis genes to be more prevalent due to the higher
abundance of microbes competing for these nutrients. In lower soil horizons with less

microbial activity, competition for nutrients is likely to be lower leading to a drop in the
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abundance of anti-microbial biosynthesis genes, although this cannot be confirmed from the
results of this study. This does however suggest the possibility that nutrient-rich surface soil
horizons may be ideal locations to screen for the presence of novel antimicrobial compounds
and future work should endeavour to test this hypothesis. Fatty acid and isoprenoid synthesis
genes are more abundant in the Ah horizon, this may be due to the fact these genes are
heavily involved in cell membrane maintenance and manufacture (Kaneda, 1991), and may
indicate that the Ah horizon hosts the most actively growing microbial cells. Finally,
membrane transport related genes appear to be most abundant in the Cox horizons. The
reason for this trend is not immediately obvious, though one could speculate that it may be
connected to an increase in chemo-lithotrophic lifestyles in the lower mineral soil horizons —
where alternative electron donors (such as sulfide, ferric Iron or ammonia) must be
transported across the cell membrane before they can be used by the cell for ATP synthesis

(Peck 2003).

Carbohydrate metabolism is one of the largest SEED subsystem categories and contains many
subcategories of genes which are linked to the carbon cycle, therefore carbohydrate
metabolism genes were analyzed in more detail (Figure 8). After multiple test corrections
were applied 5 categories within carbohydrate metabolism show significant variation. Poly,
mono, di and oligo saccharide metabolism genes all decrease moving down the soil profile, as
do carbon dioxide fixation genes. This is hardly surprising due to the fact that organic carbon,
and carbon dioxide are generally present at higher concentrations in upper soil horizons.
However, one-carbon metabolism genes appear to increase with soil depth, as might be
expected given the importance of the methane cycle in low organic carbon environments
(Serrano-Silva et al., 2014). A picture of the carbon cycle in these soils then begins to emerge

whereby organic carbon is primary energy and provides carbon sources for many microbes in
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upper soil horizons as might be expected, while organisms in lower soil horizons gain energy
and carbon by utilizing reduced one-carbon compounds (e.g. methane) as energy sources

which are liberated from the anaerobic turnover of waste products from the upper horizons.

5 Discussion

It is clear that the abundances of many bacterial vary consistently between stratified soil
horizons (Figure 6). We found that the Ktedonobacter showed the largest differential
abundance between stratified soil horizon and was generally most abundant in the Ah
horizons, members of this class are thought to be aerobic filamentous, spore-forming, gram-
positive, heterotrophic bacteria (Yabe et al. 2017). Conversely, many classes of obligate and
facultative anaerobes decreased in abundance with soil depth (eg. the Bacilli, Clastridiales)
(Figure 3), suggesting a strong influence of oxygen availability on the community composition.
Interestingly, the most abundant classes of microbes across all samples (eg: Acinobacteria,
Proteobacteria) (Figure 2) did not show a statistically significant variation in abundance
between soil horizons (Figure 6), perhaps suggesting that the more successful microbes in
these environments are ones with mixotrophic lifestyles who can adapt to variable conditions

between soil horizons.

When comparing functional profiles between soil horizons, differences in certain
biogeochemical cycling genes become clear. It is evident that many gene abundances
correlate either positively or negatively with depth, which is understandable given that most
key nutrients will vary down profile. Nitrogen metabolism appears to decrease with

increasing depth, and likewise, carbohydrate metabolism genes appear to be significantly
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more abundant in the Ah horizon, corresponding to the zone of highest organic carbon
turnover (evident from CNP measurements, Mahaney et al., 2016). Taking a more detailed
look at carbohydrate metabolism (Figure 8) revealed that there are significant variations
even within this category. Carbon dioxide (autotrophy) and central carbohydrate
metabolism genes appear to be relatively abundant in the Ah horizon, while genes for other
one-carbon metabolism becomes more abundant in the Cox horizon. This is consistent with
increasing abundance of methane (associated with both methylotrophy and
methanogenesis) turnover processes in deeper soils (Dunfield, 2007). This is likely due to the
fact that, as complex plant polymers are broken down by microbes in the upper soil
horizons, reduced carbon compounds are produced as waste products and filter down to

the lower horizons where they are then utilized by methylotrophic microbes.

It should be noted that there is significant co-linearity between the many abiotic and biotic
variables measured and compared here. As an example, looking specifically at almost all other
abiotic and biotic parameters correlate with soil depth (in cm) to some degree (Figure 5).
Therefore it was not possible to investigate and compare correlations between individual
taxa/functions and abiotic variables as disentangling this co-linearity to reveal the true source
of variation is not possible without carefully designed laboratory experiments to control for
the effect of specific co-linear variables identified here. Indeed, any attempt to do so may be
statistically dubious and may therefore be considered as an example of “p-hacking” (Head et
al., 2015). However, this analysis makes it abundantly clear that soil horizon matters: in terms

of chemistry, taxonomy and functionality of the community.
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There are several important caveats to the results presented here that must also be
considered. Firstly, metagenomes are not expected to be static over time, so caution must
be taken when making broad statements about a microbial community. In extreme cases,
we might expect drastic changes in microbial community structure to (Mahaney et al.,
2017). Otherwise, previous studies have established that temporal variation within soil
microbiomes is generally much lower than spatial variation (Lauber et al., 2013), so the
patterns observed here are likely to persist across seasons, at least in the short term.
Secondly, for any enzyme-catalysed processes to occur, transcription and translation of
protein coding genes are essential requirements. Therefore, a positive relationship between
the abundance of gene or transcripts and corresponding process rate is not always
necessarily true, though it is often presumed. Rocca et al., (2015) indicated that functional
gene abundances are only weakly correlated to process rates, but are consistently
correlated across multiple environments. Finally, the relatively low depth of sequencing per
sample means that complete genomes cannot be resolved, (a common limitation for diverse
soil metagenomes (Nesme et al. 2016) and annotations are based on ~300bp fragments.
Much more robust results could be obtained with more complete genomes and functional
genes, allowing investigation of functional genes in their genomic context, and analysis of
complete metabolic pathways within certain species. The relatively short read length used
here may be useful for taxonomic classification but full length genes are preferable for
functional annotation. Despite this limitation, there is a growing body of evidence to suggest
that shallower sequencing across many samples with suitable replication levels is sufficient

to answer key questions about microbial ecology (Knight et al., 2012).
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Fundamentally we know that soil stratigraphy is a function of soil chemistry (USDA 1999).
Our full metagenome data, for the first time, show that soil stratigraphy is strongly
correlated with variation in microbial community composition —as shown in figures 3 and 5.
Furthermore we find that the variation seen between stratified soil horizons is greater than

the variation seen between soil sampling sites when taken as a whole (Figure 3).

Ultimately, the physical and chemical properties of a soil are the true drivers of microbial
diversity and soil horizons are a useful method for categorizing soils with similar
physicochemical characteristics. While the gene analysis presented here has provided an
overview of microbial community structure and functionality in alpine soils, it has also
highlighted a need for more specific methods in order to make definitive statements about
biogeochemical processes occurring between soil horizons. The use of more specific and
informative functional gene ontologies or the use of meta-transcriptomic information will
certainly add a further level of understanding to this field. One correlation that we did not
investigate in this study, is the relationship between oxygen concentration and/or redox
potential with metagenome composition down profile. In general we would expect these to
decrease with depth. Clearly there is abundant microbial activity in the sediments, and
oxygen — as the ultimate acceptor — would certainly become limiting to microbial

metabolism within a cm or two of the Ah horizon (Birkeland, 1999).

CONCLUSION
In conclusion, our study begins to demonstrate a clear relationship between the physico-
chemical parameters that are typically used to define soil pedons, and parallel the structure

of complex microbial communities. The ability to do so has only become available to us in



462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478
479

480

481
482
483

484

recent years due to the advent of shotgun sequencing and metagenomic analysis. The
limitations of culture-dependant microbial analysis, have previously not allowed any such
connection to be established. However, in this study some dependency is evident: the
reduction between organic carbon availability and the related genetic profile of functional
genes involved in C1 turnover is especially clear and is quite rational. The results here may
lead us to consider that the formation of paleosol horizons is inextricably linked to the
biological, not just physical and chemical transformations that occur. Critically, we
emphasise here a key finding in this study — that variation in microbial gene populations
between palesol samples sites, sometimes hundreds of metres apart, is significantly less
than that seen between soil pedons, just centimetres apart at specific sample sites. This

remarkable metagenome diversity may be exploited for gene mining applications.
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FIGURE LEGENDS

Figure 1: Overview of Sampling sites and soil stratigraphy. Panel A: Satellite map of sampling
area. Panel B: Stratigraphy of soil profiles for each sample (from Mahaney et al., 2016).
Sampling sites are shown at the top of each profiles, depth in centimeters is displayed on

the left and soil horizon classification is displayed on the right of each profile.

Figure 2: Boxplot showing the relative abundances of the 20 most abundant Taxa across all
samples at the Class level. Jittered points overlaid on boxplots represent individual sample
and are coloured by sample soil horizon classification. The bottom and top of the boxes
represent the first and third quartiles, with the central band representing the median,
whiskers represent 1.5 times the interquartile range according to Tukey’s schematic boxplot

method (Tukey, 1977)

Figure 3: Diversity analysis of alpine soils. Panel A: Alpha diversity plots for taxonomic
abundance tables at each taxonomic level. Y axis represents inverse Simpson diversity index,
Shannon-Weaver diversity index, and Genus level richness (i.e. the number of unique genera
detected per sample) respectively. X axis represents depth in cm of soil sample. Blue lines
represent linear regressions, shaded area represents the 95% confidence interval for the
regression analysis. R? values and P-values for linear regressions along with significance
codes are displayed for each plot. Panel B: homogeneity of group dispersions for samples
grouped by soil horizon, Y axis represents distance to the group centroid in 2d Euclidean

space, standard error of the mean across all samples, analysis of variance (ANOVA) test P
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value for differences between soil horizons value is displayed on the plot. Panel C: Boxplot
of analysis of similarities (ANOSIM) results, Y axis represents ranked order of dissimilarities
ANOSIM R statistic and significance level are shown on the plot, significance of the R statistic
was assessed by permutation for 9999 replicates. The bottom and top of the boxes
represent the first and third quartiles, with the central band representing the median,
whiskers represent 1.5 time the interquartile range according to Tukeys schematic boxplot

method (Tukey, 1977).

Figure 4: Analysis of effect of paleosol depth and paleosol horizon on paleosol abiotic
variables. Panel A: Spearmans rank correlation matrix for pairwise correlations between soil
geochemical variables. Points are coloured and scaled according to the value of the
correlation coefficient, only correlations with a P value < 0.05 are displayed. Variables which
correlate significantly with soil depth are highlighted in red. PanelB: Boxplots of
geochemical variables which vary significantly between stratified soil horizons. The bottom
and top of the boxes represent the first and third quartiles, with the central band
representing the median, whiskers represent 1.5 time the interquartile range according to

Tukeys schematic boxplot method (Tukey, 1977).

Figure 5: PCoA plots of abundance tables at each taxonomic and functional rank. Constrained analysis
of principal components was performed on dissimilarity matrices using the function capscale from the
package Vegan (Oksanen et al., 2016) in R version 3.4.1 (R Core Team, 2011). In each case the x and y
axis represent the first and second principal component axis respectively. Points are coloured by soil

horizon and the convex hulls are drawn and highlighted for each horizon grouping.

Figure 6: Boxplots showing relative abundance of microbial classes which differed significantly
between soil horizons. Relative abundance is expressed as a percentage of the total annotated reads.

The bottom and top of the boxes represent the first and third quartiles, with the central band
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representing the median, whiskers represent 1.5 time the interquartile range according to Tukey’s

boxplot method (Tukey, 1977). All data points are also plotted as points.

Figure 7: Boxplots of relative abundance of SEED level 1 functional categories. Relative abundance is
expressed as a percentage of the total annotated reads. The bottom and top of the boxes represent
the first and third quartiles, with the central band representing the median, whiskers represent 1.5
times the interquartile range according to Tukey’s boxplot method (Tukey, 1977). All data points are

also plotted as jittered points.

Figure 8: Abundance of SEED level 2 categories related to carbon metabolism. Relative abundance is
expressed as a percentage of the total annotated reads. The bottom and top of the boxes represent
the first and third quartiles, with the central band representing the median, whiskers represent 1.5
time the interquartile range according to Tukey’s boxplot method (Tukey, 1977). All data points are

also plotted as points.
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Figure 2: Boxplot showing the relative abundances of the 20 most abundant Taxa across all
samples at the Class level. Jittered points overlaid on boxplots represent individual sample
and are coloured by sample soil horizon classification. The bottom and top of the boxes
represent the first and third quartiles, with the central band representing the median,
whiskers represent 1.5 times the interquartile range according to Tukey’s schematic boxplot
method (Tukey, 1977)
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Figure 3: Diversity analysis of alpine soils. Panel A: Alpha diversity plots for taxonomic
abundance tables at each taxonomic level. Y axis represents inverse Simpson diversity index,
Shannon-Weaver diversity index, and Genus level richness (i.e. the number of unique genera
detected per sample) respectively. X axis represents depth in cm of soil sample. Blue lines
represent linear regressions, shaded area represents the 95% confidence interval for the
regression analysis. R2 values and P-values for linear regressions along with significance
codes are displayed for each plot. Panel B: homogeneity of group dispersions for samples
grouped by soil horizon, Y axis represents distance to the group centroid in 2d Euclidean
space, standard error of the mean across all samples, ANOVA test P value for differences
between soil Horizons value is displayed on the plot. Panel C: Boxplot of ANOSIM results, Y
axis represents ranked order of dissimilarities ANOSIM R statistic and significance level are
shown on the plot, significance of the R statistic was assessed by permutation for 9999
replicates. The bottom and top of the boxes represent the first and third quartiles, with the
central band representing the median, whiskers represent 1.5 time the interquartile range
according to Tukeys schematic boxplot method (Tukey, 1977).
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752

753  Figure 4: Analysis of effect of paleosol depth and paleosol horizon on paleosol abiotic

754  variables. Panel A: Spearmans rank correlation matrix for pairwise correlations between soil
755  geochemical variables. Points are coloured and scaled according to the value of the

756  correlation coefficient, only correlations with a P value < 0.05 are displayed. Variables which
757  correlate significantly with soil depth are highlighted in red. PanelB: Boxplots of

758  geochemical variables which vary significantly between stratified soil horizons. The bottom
759  and top of the boxes represent the first and third quartiles, with the central band

760  representing the median, whiskers represent 1.5 time the interquartile range according to
761  Tukeys schematic boxplot method (Tukey, 1977).
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Figure 5: PCoA plots of abundance tables at each taxonomic and functional rank. Constrained analysis
of principal components was performed on dissimilarity matrices using the function capscale from the
package Vegan (Oksanen et al., 2016) in R version 3.4.1 (R Core Team, 2011). In each case the x and y
axis represent the first and second principal component axis respectively. Points are coloured by soil
horizon and the convex hulls are drawn and highlighted for each horizon grouping.
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Figure 6: Boxplots showing relative abundance of microbial classes which differed significantly
between soil horizons. Relative abundance is expressed as a percentage of the total annotated reads.
The bottom and top of the boxes represent the first and third quartiles, with the central band
representing the median, whiskers represent 1.5 time the interquartile range according to Tukey’s
boxplot method (Tukey, 1977). All data points are also plotted as points.
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Figure 7: Boxplots of relative abundance of SEED level 1 functional categories. Relative abundance is
expressed as a percentage of the total annotated reads. The bottom and top of the boxes represent
the first and third quartiles, with the central band representing the median, whiskers represent 1.5
times the interquartile range according to Tukey’s boxplot method(Tukey, 1977). All data points are
also plotted as jittered points.
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Figure 8: Abundance of SEED level 2 categories related to carbon metabolism. Relative abundance is

expressed as a percentage of the total annotated reads. The bottom and top of the boxes represent
the first and third quartiles, with the central band representing the median, whiskers represent 1.5
time the interquartile range according to Tukey’s boxplot method (Tukey, 1977). All data points are
also plotted as points.
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