
Fault Attack Countermeasures for Error Samplers in Lattice-Based
Cryptography

Howe, J., Khalid, A., Martinoli, M., Regazonni, F., & Oswald, E. (2019). Fault Attack Countermeasures for Error
Samplers in Lattice-Based Cryptography. In 2019 IEEE International Symposium on Circuits and Systems
(ISCAS) Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/ISCAS.2019.8702794

Published in:
2019 IEEE International Symposium on Circuits and Systems (ISCAS)

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2019 IEEE. This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of
use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Open Access
This research has been made openly available by Queen's academics and its Open Research team. We would love to hear how access to
this research benefits you. – Share your feedback with us: http://go.qub.ac.uk/oa-feedback

Download date:15. Jul. 2024

https://doi.org/10.1109/ISCAS.2019.8702794
https://pure.qub.ac.uk/en/publications/4a44b58e-7939-4d16-8b7d-7fe7d9cc1eaa

0

Fault Attack Countermeasures for Error Samplers in
Lattice-Based Cryptography

Abstract—Lattice-based cryptography is one of the leading
candidates for NIST’s post-quantum standardisation effort, pro-
viding efficient key encapsulation and signature schemes. Most of
these schemes base their hardness on variants of LWE, and thus
rely heavily on error samplers to provide necessary uncertainty
by obfuscating computations on secret information. Because of
this it is a clear and obvious target for side-channel analysis,
with numerous types of attacks targetting this component to gain
secret-key information. In order to bring potential lattice-based
cryptographic standards to practical realisation, it is important to
protect these modules from past and future fault and side-channel
attacks. This paper proposes countermeasures that exploit the
distributions expected from these error samples, that is either
Gaussian or binomial, by using statistical tests to verify the
samplers are operating properly. The novel countermeasures
are designed to protect against all previous fault attacks on
error samplers. We optimize hardware implementation of the
proposed tests to avoid division and square root calculations,
however, the countermeasure we propose is sufficiently generic
to be suitable also for software. We measure the impact of these
countermeasures on performance and area consumption on a
Xilinx Artix-7 FPGA. Our countermeasure achieve promising
performance while resulting in a minimal overhead.

Index Terms—Lattice-based cryptography, fault attacks, side-
channel analysis, countermeasures, FPGA, hardware security.

I. INTRODUCTION

Post-quantum (or quantum-safe) cryptography has seen a
substantial expansion recently, in part due to the NIST call
for quantum-safe algorithms [NIS16a]. This call is essential
to secure the future of secure communications that use public-
key cryptography since the schemes currently used, based
on the hardness of factoring prime numbers (RSA) or the
discrete logarithm problem (ECC/ECDSA), will be solved in
polynomial time with a scalable quantum computer.

Amongst the submissions to the NIST call, schemes based
on the hardness of lattice problems seem to be the leading
candidates and make up the largest proportion of submissions.
Lattice-based cryptography is a very appealing candidate due
to its security; offering average-case to worst-case hardness, its
efficiency; outperforming many other candidates in software
or hardware, and versatility; having schemes for advanced
cryptographic services such as identity-based encryption, as
well as standard primitives such as encryption, signatures, and
key encapsulation [HPO+15].

Error sampling is one of the main modules within lattice-
based cryptographic schemes, and are critical components as
these are used to hide computations on secret information
and make the scheme computationally hard. This can be
seen from Table I, which shows those lattice-based crypto-
graphic schemes, which rely on error sampling, that were
submitted to NIST for post-quantum standardisation. It can
be seen that Gaussian or binomial is typically used, i.e. a

distribution with a statistically normal shape, however this
can lead to a number of side-channel vulnerabilities. Many
of the side-channel attacks of lattice-based cryptographic
schemes have exploited the vulnerabilities of the error sampler,
mainly targetting modules such as Gaussian sampling [Pes16],
[EFGT17], [EFGT16], [BHLY16], [BBK16], [PBY17]. This
research proposes countermeasures to all previous physical
attacks on error samplers.

The main contribution of this paper is to propose a number
of countermeasures, via statistical tests, for the normally
distributed error samplers used in lattice-based cryptography.
The tests are grouped by their computational complexity,
catagorised as low cost, standard, and expensive, which should
be used depending on the application device and/or security
level. The tests are applicable to Gaussian and binomial
error samplers which cover most, if not all, lattice-based
cryptographic schemes, especially those submitted to NIST
for post-quantum standardisation. The proposed tests are then
demonstrated in conjunction with the most efficient error
sampler in hardware [HKR+18], a look-up based technique,
to evaluate the latency and area costs in hardware. The results
show that error samplers are still able to remain practical, with
a minimal overhead in speed and area, whilst operating in a
sound and genuine fashion.

In Section II we provide further motivation and prelimi-
naries, which is followed by a summary of related work in
Section III. In Section IV we discuss the countermeasures
proposed in this research, which is then followed by details on
their hardware designs, specifically those optimisations used
to ensure the smallest impact in performance. The results of
these hardware designs are given in Section VI, followed by
details on how these countermeasures can be integrated in
those lattice-based cryptographic schemes considered state-of-
the-art.

II. PRELIMINARIES

We denote the sample size, n, and standard deviation, σ,
which is typical notation in lattice-based cryptography. Table
I provides all potential NIST post-quantum candidates that
utilise either a Gaussian or binomial sampler, for which this
research is applicable. This table also provides parameters for
the standard deviation, but to simplify the calculations we
propose in Section IV we instead use the statistical variance, s,
which translates simply as s = σ2. Calculations on variance
have no impact on the test results and mean we can avoid
explicitly calculating square roots.

We use typical statistics notations to define the target mean,
µ, the target variance, s, the sample mean, x̄, and the sample
variance, s̄. We also require pre-stored values for specific t-
tests, tα/2, and chi-squared tests, χ2

α, for n − 1 degrees of

1

TABLE I
LATTICE-BASED KEY ENCAPSULATION (KEM) AND SIGNATURE SCHEMES

SUBMITTED TO NIST FOR POST-QUANTUM STANDARDISATION,
SEPARATED BY THEIR NIST SECURITY LEVELS, ERROR TYPE (GAUSSIAN

OR BINOMIAL), AND PARAMETER VALUE (FOR ALL SCHEMES µ = 0).

Crypto. Cryptographic Security Error Error
Type Scheme Level Type Parameter (σ)

KEM

Ding Key Ex. [DTGW17] 1,3,5 G 2.6, 4.19
(R-)EMBLEM [SPL+17] 1 G 25, 3
FrodoKEM [NAB+17] 1,5 G 2.75, 2.3

Kyber [SAB+17] 1,3,5 B
√

2

LAC [LLJ+17] 1,3,5 B 1/
√

2, 1/2
LIMA [SAL+17] 3 B 3.16
Lizard [CPL+17] 1,5 G ≈ 2

LOTUS [PHAM17] 1,2,3,4,5 G 3

KCL [ZjGS17] 3,5 B
√

8,
√

6
NewHope [PAA+17] 1,3 B 2

NTRU-RSS-KEM [SHRS17] 1 B 1
NTRUEncrypt [ZCHW17a] 1,3,5 G 724
Mersenne-756839 [AJPS17] 1 G 28.64

Titanium [SSZ17] 1,3,5 B
√

2

Dilithium-G [LDK+17] 1,2,3 G 19200,
17900,12400

Sign- Falcon [PFH+17] 1,2,3,4,5 G 171.8, 213.1
ature pqNTRUSign [ZCHW17b] 1 G 107

qTESLA [BAA+17] 1,3,5 B 8.5, 10

freedom and significance level α (here we use α = 0.99),
which are used for comparisons against our calculated statis-
tics. These pre-stored test statistics can be changed to the
whims of the implementer, with no impact on performance.
Definitions for the equations we use to calculate the test
statistics can be found in Table II.

Most lattice-based schemes have their security foundations
on the learning with errors (LWE) problem [Reg05]: Given
some uniformly distributed vectors ai ∈ Znq , integers n and
q, and bi ≡ 〈ai, s〉 + ei mod q, where the secret-key s is
chosen uniformly at random from Znq and each ei follow some
small error distribution, find s given access to pairs (ai, bi).
The problem asks an adversary to either find s ∈ Znq given
A ∈ Zn×mq and b ≡ AT s+e mod q or to distinguish between
(ai, bi) and (ai, ui) where ui is chosen uniformly at random.

In other words, solving a system of linear equations is
usually easy, but as soon as an error (ei) is added to the
equations, it becomes a hard mathematical problem. Currently,
there exists no quantum or classical algorithm that could solve
this problem in polynomial time. Therefore, schemes based on
LWE, with large enough parameters, are considered quantum-
secure.

The error generated to hide these secret-key operations has
a statistically ‘normal’ shape, which are typically either Gaus-
sian or binomial. From Table I, it can be seen that half of the
lattice-based key encapsulation (KEM) schemes submitted to
the NIST post-quantum standardisation use binomial sampling,
the other half use Gaussian sampling. Lattice-based signature
schemes typically require Gaussian sampling. A number of
side-channel attacks have targeted these modules [BHLY16],
[EFGT16], [PBY17], [EFGT17], [EFGT18] in order to gain
secret-key information or to break the cryptographic scheme.
Moreover, there has been little work on countermeasures for
these attacks beyond shuffling [RVV13], [Saa17], which may
not be sufficient [Pes16].

NIST have also stressed for the need for efficient side-

channel protected schemes [NIS16b]: “Schemes that can be
made resistant to side-channel attack at minimal cost are more
desirable than those whose performance is severely hampered
by any attempt to resist side-channel attacks.”

Binomial samplers are generally realized by uniformly
sampling two k-bit vectors and computing their respective
Hamming weights. The binomial distributed variable is ob-
tained by subtracting the Hamming weights of both k-bit
vectors. Gaussian samplers on the other hand are much more
complex, with the number of different techniques ranging
from arithmetic-based to table lookup-based. In hardware, it
was shown by Howe et al. [HKR+18] that the cumulative
distribution table (CDT) lookup-based sampler (shown in
Algorithm 1) is the most efficient method, and later by Khalid
et al. [KHR+18] the same method was shown to be scalable for
various parameters. This method for error sampling has been
adopted by at least four of the NIST post-quantum candidates,
including FrodoKEM [NAB+17].

In any case, irrespective of the method used to derive the
Gaussian or binomial variables, it is important they are correct
and secure from any type of side-channel analysis, such as
fault attacks, which is the goal of this paper. Moreover, it
is also important to merely ensure these error samplers are
operating correctly, following requirements from strict theoret-
ical foundations. Providing assurances for this is an important
attribute in itself and is essential if lattice-based cryptographic
schemes are implemented into real-world applications.

Algorithm 1 CDT Sampling via Binary Search
Require:

1: Three integers min, mid, and max
2: CDT: 0 = S[0] < S[1] < · · · < S[N] = 1
3: Uniform r ∈ {0, . . . , (2λ − 1)} and a bit b← {0, 1}

Ensure: min← 0; max← N ; mid← (min+max)/2;
4: while (max > min) do
5: if (r ≥ S[mid]) then
6: min← (mid+ 1);
7: else
8: max← mid;
9: end if

10: end while
11: return x = (−1)b(mid− 1)

III. RELATED WORK

Implementations of lattice-based cryptographic schemes
have been investigated in the past using side-channel analysis.
Many of these have targetted error sampling modules, such as
Gaussian samplers, in order to gain secret-key information.

Fault analysis attacks are particularly prominent when at-
tacking error samplers, as this could mean outputting all
zeroes, outputting error samples with smaller variance which
are easier to solve, or outputting values that are significantly
more predicable to an adversary. This can even be seen in
Algorithm 1; where if one were to zero the max variable or
instantiate a fault in the while-loop, then the error sampler
would not sufficient hide the secret-key computations and
deteriorate its zero-knowledge.

2

Fault analysis applied to lattice-based signature schemes
is described in depth by Bindel et al. [BBK16]. From their
analysis they conclude that zeroing of the error samplers is
applicable to all the signature schemes they consider with a
small number of faults (either 1 or 2).

This attack is shown in practice by Espitau et al. [EFGT16],
reporting fault attacks on the error sampling components of a
number of lattice-based signature schemes.

Some countermeausres have been suggested for error sam-
plers, the most used technique employs shuffling [RVV13],
[Saa17]. However, these countermeasures would do little
against a fault attack and as Pessl [Pes16] shows, this coun-
termeasure is still not sufficient, recovering secret-key infor-
mation in a practical real-world setting.

Many other side-channel attacks on lattice-based crypto-
graphic schemes have been shown that are specific to software
implementations [BHLY16], [Pes16], [EFGT17], exploiting
information leakage via cache memory, power leakage, tem-
plate attacks, or using branch tracing. The error sampler is
not always the attack target here and other components can be
used by an adversary, this is also illustrated in the analysis by
Bindel et al. [BBK16].

IV. PROPOSED COUNTERMEASURES

In this section we discuss the proposed countermeasures for
error samplers. The countermeasures are categorised, where
each level deploys increasingly powerful statistical analysis,
hence aims at thwarting more powerful adversaries, but comes
at a higher cost in performance and hardware area consump-
tion. The discussions about these tests are generic enough to be
applied to hardware or software, but optimizations are specific.
A summary of the equations we use for these tests is shown
in Table II.

A. Low Cost

This test counts the number of repetitions in the observation
and raises an alarm flag if the repetitions exceed a improbable
value (user defined, e.g., say 10). Fault attacks including
zeroing attacks and early loop abort result in a constant
stream of same values, leaving secret-key information visible
or predictable to an adversary.

B. Standard

This countermeasure will calculate the sample mean (x̄)
and sample variance (s̄), whilst also checking for repetitions.
Checking the sample variance is particularly important, as
this parameter is linked to the hardness of the cryptographic
schemes LWE problem. Minimising the variance of the error
sampler has the potential to make the LWE instances easier
to solve. These countermeasures would also spot errors and
bugs in the sampler, and any malicious implementations. In
hardware, this test will be computed after a power-of-two
sample size so we do not have to explicitly compute the
division. This is convenient for schemes like Kyber [SAB+17]
and Dilithium(-G) [LDK+17] which require n = 256 samples
for each respective key encapsulation or signature.

For the sample mean calculation, we require one accumu-
lation of all of the n outputs, followed by a power-of-two
division: (

∑n
i=1 xi)/n. For the sample variance calculation,

we use the same register for the mean calculation as well as
the power-of-two division, the only extra element we need is
an extra accumulator to accumulate the sum of the squared
outputs to calculate: (

∑n
i=1 x

2
i − (

∑n
i=1 xi)

2)/n.
Once we have approximations for the mean and variance,

we can perform statistical tests to see whether these values are
acceptable. For the mean, we perform a t-test to see whether
the sample mean is within (pre-calculated) acceptable bounds
(i.e. confidence intervals). For the variance, we perform a
chi-squared test to see if our sample variance is within an
acceptable predefined value. The null hypothesis (H0) for these
tests are for our target mean (similarly, target variance) to equal
our sample mean (similarly, sample variance).

These tests are much more effective than the low cost
variant at spotting bugs and errors in the sampler, as well as
more sophisticated physical attacks. For example, an attack
which could minimise the range of values output from an
error sampler would make the LWE instances much more
easier to solve. The calculations here would spot an attack
of this type and report an error. These test will also ensure
that the Gaussian distribution we have in practice is the same
distribution we require theoretically.

There are online alternatives for these equations, proposed
by Welford [Wel62]. However, these equations require explicit
division (thus, floating point numbers) which would be ineffi-
cient in hardware. For software testing, this would be a better
option, which would also provide consistently updated testing,
rather than testing after a fixed number of trails.

C. Expensive

This test will include those in the previous categories, as
well as a chi-squared test for comparing observed and expected
values. Essentially, ensuring the output distribution is exactly
what we require from a theoretical standpoint. It will also spot
poor pseudo-randomness used, as well as any programming
errors, malicious error sampler designs, or erroneous activity
caused by damage to the device. For this we require a look-
up table to store a histogram of counts for each output of the
error sampler, i.e. the observed values. This is then compared
to the CDT table, i.e. the expected values, to verify that the
frequencies of these outputs are valid. These observed and
expected values are then used in a chi-squared goodness-of-
fit test via the calculation:

∑n
k=1

(obs(k)−exp(k))2

exp(k) . If this test
statistic is within certain bounds we fail to reject our null
hypothesis for normality. Like the previous tests, these bounds
are also known in advanced and are hence pre-stored on the
device. Observed values that have been generated via a source
of poor pseudo-randomness would be spotted here due to the
fact that our expected values have been calculated based on
theoretically sufficient randomness.

V. HARDWARE DESIGN

The hardware design of fault attack countermeasures has
been undertaken as separate synthesizable HDL modules for

3

TABLE II
DETAILS OF THE PROPOSED HARDWARE AND SOFTWARE TESTS.

Test Level Test Description Test Formula
Low Cost Check for repetitions A counter for if xi = c

Standard

Sample Mean (x̄) (
∑n
i=1 xi)/n

Sample Variance (s̄) (
∑n
i=1 x

2
i − (

∑n
i=1 xi)

2)/n
Standard Error of x̄ SEx̄ = s̄/

√
n

Test Statistic for s̄ T = (n/s)s̄
Null Hypothesis Check if |µ| < x̄+ tα/2SEx̄
Null Hypothesis Check if T < χ̂2

n,α/2

Expensive
Chi-Squared Test χ̂2 =

∑n
k=1

(obs(k)−exp(k))2

exp(k)

Test Statistic for χ̂2 χ2(df = n− 1, p-value)
Null Hypothesis Check if χ̂2 < χ2(n− 1, 0.99)

the three categories previously discussed. The user may opt to
choose any of these in the design as the security level/resource
budget of the system allows. The hardware results are shown
in Table III and a brief overview now follows.

The low cost test is the simplest of the three and requires a
pipeline register to hold the previous valid value of sampler. A
comparator compares the ith and i+ 1th valid sampler outputs
and in case of a match a counter is incremented. An error flag
is raised as the counter exceeds a legal user defined bound.

For the standard tests, the calculation of x̄ and s̄ requires
accumulation of sampler outputs and its squared values, re-
spectively, in two r0 and r1 accumulation registers. After
n = 256 sampler outputs, r1 is updated by subtracting squared
valued of r0, to hold

∑n
i=1 x

2
i − (

∑n
i=1 xi)

2. By keeping
n = 256 as a power of two, the actual division is avoided,
since its slow and expensive in hardware. Hence, the division
by n (to get approximations for x̄, s̄) and by

√
n (in the SEx̄

approximation) is simply a right shift by 8 and 4, respectively.
The values of tα/2 and n/s are precalucated values. To
keep the hardware generic, DSP multipliers are avoided. The
standard test can raise either of the two alarms in case the
hypothesis bound is exceeded.

The expensive test is rightly named so for the cost it incurs
in terms of the hardware overhead. This test requires an array
of registers, array depth being as many as number of possible
error sampler outputs (32 for σ = 3.33). For each sampler
output, the register in the array, respective to the output value
is incremented, to keep count of the observed values. The
expected values are an array of precalucated values stored
as a ROM. As soon as the 256th sampler output is used to
update the bin, the observed values are stored in a shadow
array for further calculations of the chi-squared test, while
the original observed values array is cleared (to reset values
of all zeros) to start counter update for the future sampler
outputs. In order to avoid the division by the expected values,
we store 256

exp(k) , instead of 1
exp(k) as precalucated quotients.

The final computation steps through all the array values, one
after the other first subtracting the observed bin values from
the prestored expected values, squaring the difference, carrying
out division by multiplication by precalucated quotients, and
accumulating the results. This requires 32 clock cycles for the
32 bins. Failure of the test statistic to be bound within the
legal bounds raises an alarm.

VI. RESULTS

The hardware results for the proposed countmeasures are
shown in Table III, demonstrated on a Xilinx Artix-7 FPGA. In
order to fully realise the performance analysis of the proposed
countermeasures, we integrate each test with a constant-time
CDT sampler. The CDT sampler design has been shown in the
past to be the most efficient method in hardware [HKR+18]
utilising minimal hardware resources whilst maintaining a high
throughput performance, requiring 6 clock cycles per sample.

The low cost countermeasure can be implemented in 3 slices
on the FPGA, which is an increase of 8%. Moreover, this
countermeasure has no impact on the throughput performance
of the error sampler. Essentially making this countermeasure
extremely relevant to hardware implementations of any lattice-
based cryptographic scheme, having almost zero degradation
in area or performance, as well as protecting many potential
attacks, faults, or errors.

The standard countermeasure is realised using slightly more
hardware resources, however still remains relatively inex-
pensive. On its own, the countermeasure requires 24 slices,
adding an 44% to the CDT sampler with the integrated
countermeasures. However, this countermeasure, as well as the
low cost one, has a fixed cost and will not require additional
hardware resources if the error sampler were slower and/or
larger. The standard countermeasure also has minimal impact
on performance, as most of the calculations are computed in
parallel to the running of the error sampler. Overall it requires
only one additional clock cycle to complete the calculations
after the error sampler has completed generating its n samples.

The expensive countermeasures require significantly larger
hardware resources than the ones previously proposed. This is
essentially due to the requirements of keeping a histogram of
all the observed values output from the error sampler. On its
own, the countermeasure utilises 126 slices, which is nearly
4x larger than just the CDT sampler. Once integrated into
the CDT sampler, the hardware resources required are either
129 or 149 slices, depending on whether block-RAM is used,
where the countermeasure takes around 85% of the overall
area consumption. The expensive countermeasure has a small
impact on performance; the calculations needed at the end of
n error samples is just 32 clock cycles.

TABLE III
POST-PLACE AND ROUTE (PAR) RESULTS FOR THE PROPOSED

COUNTERMEASURES, SEPARATELY, AND THE COUNTERMEASURES
INTEGRATED WITH A CDT SAMPLER WITH σ = 3.33.

Countermeasure LUT/FF Slices DSP/ Freq. Clock Ops/sec
Category BRAM (MHz) Cycles (×106)

Plain CDT Sampler 115/81 33 0/0 297 6 49.5
Low Cost 6/10 3 0/0 - +0† -

CDT with Low Cost 123/91 36 0/0 297 6 49.5
Standard 74/58 24 0/0 - +1† -

CDT with Standard 182/139 55 0/0 297 6 49.5
Expensive 226/436 126 1/0 - +32† -

CDT with Expensive 315/517 149 1/0 297 6 49.5
CDT with Expensive 251/453 129 1/1 193 6 38.6

†This is a one-off clock cycle count at the end of n samples, whereas others
are clock cycles per sample.

4

VII. APPLICATIONS

Typically, a side-channel countermeasure would flag ma-
licious or erroneous activity by invalidating the output by
outputting logical false (⊥) instead. This symbol is also
typically used in cryptography to signify incorrect decryption
or verification. In hardware, countermeasures could also be
linked to the reset of the design in order to ensure the device’s
countermeasures correctly withstand the attack.

Alternatively, many lattice-based cryptographic schemes
instantiate conditionals in the final stages of their protocol,
such as an if-statement, typically for security purposes. This
is especially true for signature schemes which require re-
jection conditions so that no information about the secret-
key is leaked with the signature. With respect to NIST post-
quantum candidates, this can be seen in Kyber [SAB+17,
Alg. 9, Line 7], FrodoKEM [NAB+17, Alg. 14, Line 15],
and Dilithium [LDK+17, Fig. 4, Line 22]. Adding to this
conditional would have little or no impact on the performance
of the cryptographic scheme and would be a suitable place to
include the results of our proposed countermeasures. Specifi-
cally, the ciphertext or signature should only be output if the
countermeasures output an ‘accept’, i.e. that the error sampler
is operating correctly, in combination with the conditionals
that are already in place.

Another application of these countermeasures is on crypto-
graphic outputs that follow a normal distribution. For example,
the lattice-based signature scheme, BLISS [DDLL13], has
outputs that follow a Gaussian distribution. The proposed tests
here could also be applied to validate the signature outputs of
BLISS, and any other lattice-based cryptographic outputs that
have a normal structure, which which might be more efficient
than other countermeasures, such as verify-after-sign.

VIII. CONCLUSIONS

The aim of this paper is to propose cheap and efficient fault
attack countermeasures for use in error samplers in lattice-
based cryptography. These types of tests are not only important
to protect against fault attacks and side-channel analysis, but
also to ensure confidence that the error distributions produced
in real-world applications are correct. The results for the
proposed designs show that it is possible to protect against
attacks on error samplers as well as having little or no effect
on the efficiency or area consumption of the module. The pro-
posed novel countermeasures not only thwart fault attacks but
also mean other errors (such as bugs, environmental damage,
and programming errors) are observed which is particularly
important for IoT applications.

REFERENCES

[AJPS17] Divesh Aggarwal, Antoine Joux, Anupam Prakash, and Mikos
Santha. Mersenne-756839. Technical report, National Institute
of Standards and Technology, 2017. available at https://csrc.nist.
gov/projects/post-quantum-cryptography/round-1-submissions.

[BAA+17] Nina Bindel, Sedat Akleylek, Erdem Alkim, Paulo S. L. M. Bar-
reto, Johannes Buchmann, Edward Eaton, Gus Gutoski, Juliane
Kramer, Patrick Longa, Harun Polat, Jefferson E. Ricardini, and
Gustavo Zanon. qtesla. Technical report, National Institute of
Standards and Technology, 2017. available at https://csrc.nist.
gov/projects/post-quantum-cryptography/round-1-submissions.

[BBK16] Nina Bindel, Johannes Buchmann, and Juliane Krämer. Lattice-
based signature schemes and their sensitivity to fault attacks. In
Fault Diagnosis and Tolerance in Cryptography (FDTC), 2016
Workshop on, pages 63–77. IEEE, 2016.

[BHLY16] Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and
Yuval Yarom. Flush, Gauss, and Reload–a cache attack on the
BLISS lattice-based signature scheme. In International Con-
ference on Cryptographic Hardware and Embedded Systems,
pages 323–345. Springer, 2016.

[CPL+17] Jung Hee Cheon, Sangjoon Park, Joohee Lee, Duhyeong Kim,
Yongsoo Song, Seungwan Hong, Dongwoo Kim, Jinsu Kim,
Seong-Min Hong, Aaram Yun, Jeongsu Kim, Haeryong Park,
Eunyoung Choi, Kimoon kim, Jun-Sub Kim, and Jieun Lee.
Lizard. Technical report, National Institute of Standards and
Technology, 2017. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-1-submissions.

[DDLL13] Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyuba-
shevsky. Lattice signatures and bimodal Gaussians. In Advances
in Cryptology–CRYPTO 2013, pages 40–56. Springer, 2013.

[DTGW17] Jintai Ding, Tsuyoshi Takagi, Xinwei Gao, and Yuntao Wang.
Ding key exchange. Technical report, National Institute of
Standards and Technology, 2017. available at https://csrc.nist.
gov/projects/post-quantum-cryptography/round-1-submissions.

[EFGT16] Thomas Espitau, Pierre-Alain Fouque, Benoı̂t Gérard, and
Mehdi Tibouchi. Loop-abort faults on lattice-based fiat-shamir
and hash-and-sign signatures. In International Conference
on Selected Areas in Cryptography, pages 140–158. Springer,
2016.

[EFGT17] Thomas Espitau, Pierre-Alain Fouque, Benoı̂t Gérard, and
Mehdi Tibouchi. Side-channel attacks on BLISS lattice-based
signatures: Exploiting branch tracing against strongswan and
electromagnetic emanations in microcontrollers. In Proceed-
ings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 1857–1874. ACM, 2017.

[EFGT18] Thomas Espitau, Pierre-Alain Fouque, Benoit Gerard, and
Mehdi Tibouchi. Loop-abort faults on lattice-based signature
schemes and key exchange protocols. IEEE Transactions on
Computers, (11):1535–1549, 2018.

[HKR+18] James Howe, Ayesha Khalid, Ciara Rafferty, Francesco Regaz-
zoni, and Máire O’Neill. On practical discrete Gaussian
samplers for lattice-based cryptography. IEEE Transactions on
Computers, 67(3):322–334, 2018.

[HPO+15] James Howe, Thomas Pöppelmann, Máire O’Neill, Elizabeth
O’Sullivan, and Tim Güneysu. Practical lattice-based digital
signature schemes. ACM Trans. Embedded Comput. Syst.,
14(3):41:1–41:24, 2015.

[KHR+18] Ayesha Khalid, James Howe, Ciara Rafferty, Francesco Regaz-
zoni, and Máire O’Neill. Compact, Scalable, and Efficient
Discrete Gaussian Samplers for Lattice-Based Cryptography.
In Circuits and Systems (ISCAS), 2018 IEEE International
Symposium on, pages 1–5. IEEE, 2018.

[LDK+17] Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint,
Peter Schwabe, Gregor Seiler, and Damien Stehle. CRYSTALS-
Dilithium. Technical report, National Institute of Standards
and Technology, 2017. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-1-submissions.

[LLJ+17] Xianhui Lu, Yamin Liu, Dingding Jia, Haiyang Xue, Jingnan
He, and Zhenfei Zhang. Lac. Technical report, National Institute
of Standards and Technology, 2017. available at https://csrc.nist.
gov/projects/post-quantum-cryptography/round-1-submissions.

[NAB+17] Michael Naehrig, Erdem Alkim, Joppe Bos, Léo Ducas,
Karen Easterbrook, Brian LaMacchia, Patrick Longa, Ilya
Mironov, Valeria Nikolaenko, Christopher Peikert, Ananth
Raghunathan, and Douglas Stebila. FrodoKEM. Tech-
nical report, National Institute of Standards and Tech-
nology, 2017. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-1-submissions.

[NIS16a] NIST. Post-quantum crypto project. http://csrc.nist.gov/groups/
ST/post-quantum-crypto/, 2016.

[NIS16b] NIST. Submission requirements and evaluation criteria for
the post-quantum cryptography standardization process. https:
//csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/
documents/call-for-proposals-final-dec-2016.pdf, 2016.

[PAA+17] Thomas Pöppelmann, Erdem Alkim, Roberto Avanzi, Joppe
Bos, Léo Ducas, Antonio de la Piedra, Peter Schwabe, and
Douglas Stebila. Newhope. Technical report, National Institute

https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
http://csrc.nist.gov/groups/ST/post-quantum-crypto/
http://csrc.nist.gov/groups/ST/post-quantum-crypto/
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/call-for-proposals-final-dec-2016.pdf

5

of Standards and Technology, 2017. available at https://csrc.nist.
gov/projects/post-quantum-cryptography/round-1-submissions.

[PBY17] Peter Pessl, Leon Groot Bruinderink, and Yuval Yarom. To
BLISS-B or not to be: Attacking strongSwan’s Implementation
of Post-Quantum Signatures. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications
Security, pages 1843–1855. ACM, 2017.

[Pes16] Peter Pessl. Analyzing the shuffling side-channel countermea-
sure for lattice-based signatures. In INDOCRYPT 2016, pages
153–170. Springer, 2016.

[PFH+17] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul
Kirchner, Vadim Lyubashevsky, Thomas Pornin, Thomas Ri-
cosset, Gregor Seiler, William Whyte, and Zhenfei Zhang.
Falcon. Technical report, National Institute of Standards and
Technology, 2017. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-1-submissions.

[PHAM17] Le Trieu Phong, Takuya Hayashi, Yoshinori Aono, and Shiho
Moriai. Lotus. Technical report, National Institute of Standards
and Technology, 2017. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-1-submissions.

[Reg05] Oded Regev. On lattices, learning with errors, random linear
codes, and cryptography. In Harold N. Gabow and Ronald
Fagin, editors, Proceedings of the 37th Annual ACM Symposium
on Theory of Computing, Baltimore, MD, USA, May 22-24,
2005, pages 84–93. ACM, 2005.

[RVV13] Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid Ver-
bauwhede. High precision discrete Gaussian sampling on
FPGAs. In International Conference on Selected Areas in
Cryptography, pages 383–401. Springer, 2013.

[Saa17] Markku-Juhani O Saarinen. Arithmetic coding and blinding
countermeasures for lattice signatures. Journal of Crypto-
graphic Engineering, pages 1–14, 2017.

[SAB+17] Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas,
Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, John M.
Schanck, Gregor Seiler, and Damien Stehle. CRYSTALS-
Kyber. Technical report, National Institute of Standards and
Technology, 2017. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-1-submissions.

[SAL+17] Nigel P. Smart, Martin R. Albrecht, Yehuda Lindell, Em-
manuela Orsini, Valery Osheter, Kenny Paterson, and Guy Peer.
Lima. Technical report, National Institute of Standards and
Technology, 2017. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-1-submissions.

[SHRS17] John M. Schanck, Andreas Hulsing, Joost Rijneveld, and Peter
Schwabe. NTRU-HRSS-KEM. Technical report, National
Institute of Standards and Technology, 2017. available
at https://csrc.nist.gov/projects/post-quantum-cryptography/
round-1-submissions.

[SPL+17] Minhye Seo, Jong Hwan Park, Dong Hoon Lee, Suhri
Kim, and Seung-Joon Lee. EMBLEM and R-EMBLEM.
Technical report, National Institute of Standards and Tech-
nology, 2017. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-1-submissions.

[SSZ17] Ron Steinfeld, Amin Sakzad, and Raymond K. Zhao. Tita-
nium. Technical report, National Institute of Standards and
Technology, 2017. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-1-submissions.

[Wel62] BP Welford. Note on a method for calculating corrected sums
of squares and products. Technometrics, 4(3):419–420, 1962.

[ZCHW17a] Zhenfei Zhang, Cong Chen, Jeffrey Hoffstein, and William
Whyte. NTRUEncrypt. Technical report, National Institute of
Standards and Technology, 2017. available at https://csrc.nist.
gov/projects/post-quantum-cryptography/round-1-submissions.

[ZCHW17b] Zhenfei Zhang, Cong Chen, Jeffrey Hoffstein, and William
Whyte. pqNTRUSign. Technical report, National Institute of
Standards and Technology, 2017. available at https://csrc.nist.
gov/projects/post-quantum-cryptography/round-1-submissions.

[ZjGS17] Yunlei Zhao, Zhengzhong jin, Boru Gong, and Guangye
Sui. KCL (pka OKCN/AKCN/CNKE). Technical report,
National Institute of Standards and Technology, 2017. available
at https://csrc.nist.gov/projects/post-quantum-cryptography/
round-1-submissions.

https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions

	Introduction
	Preliminaries
	Related work
	Proposed Countermeasures
	Low Cost
	Standard
	Expensive

	Hardware Design
	Results
	Applications
	Conclusions
	References

