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Inducing and controling Non-Markovian qubit dynamics in a circuit-QED setup
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We consider a circuit-QED setup that allows the induction and control of non-Markovian dynamics in the
dynamics of a qubit. Non-Markovianity is enforced over the qubit by means of its direct coupling to a bosonic
mode which is controllably coupled to other qubit-mode system. We show that this configuration can be
achieved in a circuit-QED setup consisting of two initially independent superconducting circuits, each formed
by one charge qubit and one transmission-line resonator, which are put in interaction by coupling the resonators
to a current-biased Josephson junction. We solve this problem exactly and we then proceed with a thorough
investigation of the emergent non-Markovianity in the dynamics of the qubits. We show that this analysis might
serve the context for a first experimental assessment of non-Markovianity in a multi-element solid-state device.

PACS numbers: 42.50.-p, 03.65.Yz, 42.50.Lc

The modeling of real physical systems in terms of bosonic
and two-level systems, and their interaction, is ubiquitous in
physics, especially in optical or atomic scenarios [1]. A well-
known example is the celebrated Jaynes-Cummings model de-
scribing the interaction of a two-level atom with a single mode
of the quantized electromagnetic field in the rotating wave ap-
proximation [2]. Many interesting physical phenomena arise
in this kind of system depending on details of the interaction
between its parts. One may mention the appearence of quan-
tum phase transitions [3], polariton physics [4], and phononic
non-linearities [5], just to name a few. Interacting two-level
atoms and bosonic modes provide also a natural (and some-
how historical) route to address questions of quantum open-
system dynamics [6, 7] and may be applied to a great vari-
ety of systems ranging from superconductivity [8] to chro-
mophores in biological complexes [9].

I Added Niemczk below as suggested by referee 2.
Please see if you want to give it more highlight....I also
added a nature physics on the generation of 3 qubit en-
tanglement in circuit qed

Modern circuit-QED setups are good examples of well con-
trolled systems where the interaction between two-level sys-
tems and bosonic modes can be experimentally investigated
[10–13]. They involve manipulation and control of the inter-
action between superconducting circuits behaving as artificial
atoms (two-level systems) and one-dimensional transmission-
line resonators (bosonic systems). The low dissipation and
the small mode volume of the circuits together with big effec-
tive dipole moments of the superconducting qubits favors the
achievement of the strong-coupling regime, where quantum
behavior can be observed [10, 11, 13]. I think this caused
the confusion...: It is in this scenario that we put forward a
proposal to study or simulate vibrational effects on the dynam-
ics of two-level systems. Let us remove it...

I removed the part that emphasize coupled modes. This
has been suggested by referee 2. He says that we should re-
view more carefully the literature of single mode systems.
Could you please add some lines?

On the other hand, memory effects in open systems is an-
other topic of great interest [14, 15]. Memoryless or Marko-

vian evolutions represent a limited portion of the rich scenario
of open system dynamics. Much effort has then been directed
to characterize, quantify and manipulate the degree of non-
Markovianity of physical systems [15]. In this work, we pro-
pose a circuit-QED simulation of spin-boson systems where
inter-mode vibrational couplings can be induced and exter-
nally controlled. After solving the equations of motion for the
open system, we study the emergence of non-Markovianity in
the dynamics of the qubits, tuning the details of the evolution
by exploiting the great flexibility of the setup that we address.
We start in Sec. I by presenting the system and solving the
associated model exactly. We then move to Sec. II, where we
evaluate the degree of non-Markovianity for the qubits in the
case of modes initially prepared in coherent states. Sec. III ad-
dresses the role that phase coherence has in the phenomenol-
ogy highlighted here by studying the case of phase diffused
coherent states. We draw our conclusions in Section IV.

I. MODEL AND SETUP

The circuit-QED system we propose for studying the effect
of cross couplings of localized modes in spin-boson systems
is depicted in Fig.1. It combines two different circuit-QED
setups in a single versatile setup. On one hand, Cooper pair
box qubits with tunable Josephson coupling [8] are capaci-
tively coupled to different single mode high-Q superconduct-
ing coplanar resonators a and b (frequencies ωa and ωb). This
forms two local and non interacting spin-boson systems. In
Fig.1, these qubits are shown to be placed at the two ends of
the resonators for two reasons. First, this makes the qubits suf-
ficiently far from each other what minimizes the direct qubit-
qubit capacitance (coupling). Second, by placing the qubits at
the ends of the resonator, it is possible to use the input or out-
put ports of the resonators to independently dc-bias the qubits
enabling one to drive the system in and out of the degeneracy
point.

I now include and discuss the reference that referee 1
likes....

Each of these local circuits are essentially the well devel-
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FIG. 1: Sketch of the elements comprising the circuit-QED model
used in this work. Charge qubit A is coupled to a transmission line
resonator a while charge qubit B is coupled another transmission line
resonator b. These are Cooper pair boxes with tunable Josephson
coupling. The coupling between the resonators is achieved by dis-
persively coupling a CBJJ qubit C to both resonators.

oped setups used in many experiments involving supercon-
ducting qubits and transmission line resonators [12]. On the
other hand, we employ a third qubit C, now a current biased
Josephson junction (CBJJ) in order to dispersively induce an
indirect coupling between the resonators. These kind of qubit
is specially suited for this task since small changes in the
bias current can strongly change the detuning with the res-
onators. This has been shown in [16] and employed in [17]
to implement single qubit operations in linear optics quan-
tum computing using circuit-QED. A similar setup have been
proposed to generate entanglement between superconducting
qubits using dynamical Casimir effect [18]. Coupled circuits
have also been proposed to simulate particular quantum envi-
ronments for superconduction qubits with the purpose of sim-
ulating exciton transfer in photosyntetic systems [19]. Do you
think you can convince here the referee 1, folowwing what
I wrote in the letter to the editor, that both papers are com-
pletely different without enfuriating the referee: :)

The full Hamiltonian for this system is given by H = H0 +

HS B + HBB (we choose units such that ~ = 1 throughout the
paper), with

H0 =
ωA

2
σz,A +

ωB

2
σz,B +

ωC

2
σz,C + ω̃aa†a + ω̃bb†b, (1)

where ωC is the transition frequency of the CBJJ qubit and
ωA(B) =

√
E2

JA(B)
+ E2

elA(B)
the transition frequency of qubit

A(B). All these are determined by the electrostatic energy
EelA(B) = 4ECA(B) (1 − 2ngA(B) ) with ECA(B) = e2/2CΣA(B) being
the charging energy, EJA(B) = Emax

Jj
cos(πΦ j/Φ0) the Joseph-

son coupling energy, CΣA(B) the total box capacitance, ngA(B) =

CgA(B) VgA(B)/2e the dimensionless gate charge, and Emax
JA(B)

the
maximum Josephson energy. Finally, CgA(B) is the gate capac-
itance, VgA(B) is the gate voltage, and ΦA(B) is an externally
applied flux (with Φ0 being the flux quantum). Any disper-
sive shift of the natural frequencies of the resonators due to
coupling with qubit C is absorbed into ω̃i (i = a, b) [17]. We
now pass on to the discussion of the qubit-mode (spin-boson)

Hamiltonian, which reads

HS B = ga
(
µA − cos θAσz,A + sin θAσx,A

)
(a† + a)

+ gb
(
µB − cos θBσz,B + sin θBσx,B

)
(b† + b),

(2)

where µA(B) = 1 − 2ngA(B), ga(b) = e(Cg,A(B)/CΣ,A(B))V0
rms,a(b)

is the coupling strength of the interaction between qubit A
(B) and mode a (b), θA(B) = arctan[EJj/ECj (1 − 2ng, j)], and
V0

rms,a(b) =
√
ωa(b)/2Ca(b) is the rms value of the voltage in

the ground state of resonator a (b), with Ca(b) being the total
capacitance of the transmission line a(b). Finally, the boson-
boson coupling Hamiltonian HBB, which is indirectly induced
by mutual coupling with qubit C, reads [16]

HBB = λ(a†b + b†a), (3)

where the value of the coupling strength λ can be tuned by
addressing the CBJJ (qubit C) and choosing a properly bias
current [16]. From now on, we will drop (ωC/2)σz,C from H0
since we now assume this qubit to be prepared in an eigenstate
of σz,C .

Our goal is to engineer an effective interaction Hamilto-
nian for each local spin-boson system having the form VJ j ∝

σz,J( j† + j) for j = a ( j = b) if J = A (J = B). Consequently,
we need θ j = 0, a condition that can be achieved by imposing
ng, j , 1/2 and by tuning the external flux on the charge qubits
so as to satisfy the relation Φ j = (k + 1/2) Φ0 with k ∈ Z. Al-
though in the remainder of the paper we will ensure to work
very closely to the charge degeneracy point ng, j = 1/2, we
cannot be exactly at it, as this would lead to cos θ j = 0. Work-
ing at the degeneracy point reduces the impact of dephasing
on the qubit state [20, 21]. Consequently, we will have to
explicitly include dephasing for the qubits in the dynamical
equation of motion which will be discussed later on.

By assuming identical resonators (ω̃a,b = ω) as well as
identical qubits (ngA(B) = ng, ωA,B = ω0, and gA = gB), the
full Hamiltonian becomes

H =
ω0

2
(σz,A + σz,B) + ω(a†a + b†b) + λ(a†b + b†a)

+ g(σz,A + µ11A)(a† + a) + g(σz,B + µ11B)(b† + b).
(4)

As a consequence of working slightly out of the degeneracy
point (µ , 0), we get driving-like terms on the modes propor-
tional to (a† + a) and (b† + b).

We are now in a position to present the equations of mo-
tion for the system. As discussed before, we are not work-
ing exactly at the degeneracy point and then qubit dephasing
should be taken into account [21]. Regarding other decoher-
ence mechanisms, dissipation affecting the qubits or the trans-
mission lines, as well as dephasing on the latter, can be made
negligibly small compared to dephasing in the qubits [12].
Therefore, by keeping only the dominant terms, the dynam-
ics will be governed by the master equation

∂ρ

∂t
= −i[H, ρ] +

γ

2

∑
J=A,B

(
σz,Jρσz,J − ρ

)
(5)

with γ the single-qubit dephasing rate and H given by Eq. (4).
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Using the two-mode displacement operator T = eξa
†−ξ∗a ⊗

eξb
†−ξ∗b [with ξ = µg/(ω + λ)] and the beam-splitter transfor-

mation T ′ = exp[π(a†b − ab†)/4] [22], it is straightforward to
derive the effective Hamiltonian model

H′′ =
ω′0
2

(
σz,A + σz,B

)
+ ω+a†a + ω−b†b

+
g
√

2
[σz,A(a† + a − b† − b) + σz,B(b† + b + a† + a)],

(6)
where ω′0 = ω0 − 4gξ, ω± = ω ± λ, and no direct interaction
between the field modes is present in this picture. It is now
possible to decouple the spin and boson degrees of freedom
using the polaron transformations [23]

T ′′ = exp[λ+(σz,B +σz,A)(a†−a)+λ−(σz,B−σz,A)(b†−b)] (7)

with λ± = g/(
√

2ω±). The correspondingly diagonalised
Hamiltonian reads

H′′′ =
ω′0
2

(
σz,A + σz,B

)
+
χ

2
σz,Aσz,B + ω+a†a + ω−b†b (8)

with χ ≡ −4g2λ/(ω−ω+). The qubit part of Eq. (8) has the
form of an Ising Hamiltonian, demonstrating that the qubits
come into interaction with each other through the coupled lo-
calized modes. As expected, this coupling constant goes to
zero if the modes are decoupled (λ = 0) or one of the qubits is
detached from its local mode (g = 0). Finally, as T ′′T ′T com-
mutes with the free energy of the qubits, the dephasing part
of Eq. (5) is not affected by the transformations. Therefore,
the dynamics in this transformed space is that of an Ising sys-
tem subjected to dephasing with no influence from the modes.
However, in the process of transforming the observables, the
modes and qubits get in fact correlated. The system dynamics
in the transformed space is governed by

∂ρ′′′

∂t
= − i[ω+a†a + ω−b†b, ρ′′′]

−
i
2

[ω′0
(
σz,A + σz,B

)
+ χσz,Aσz,B, ρ

′′′]

+
γ

2
{(
σz,Aρσz,A − ρ

′′′) +
(
σz,Bρ

′′′σz,B − ρ
′′′)} .

(9)

As this equation is diagonal in the common basis of the ob-
servables {σz,A, σz,B, a†a, b†b}, it is straightforward to solve it
for any initial condition.

Here, we will explore the solution of this problem for a
particular set of initial conditions which are useful to harness
the non-Markovian character of the evolution of the qubits,
and how this depends on the bosonic environment considered
here. We will see that, as far as the dynamics of one of the
qubits is concerned, the structure of the problem at hand is
very rich. It includes bosonic modes, their cross coupling,
the presence of a second qubit and Markovian dephasing. All
such coherent and incoherent couplings compete to give rise
to the features discussed in next sections.

II. NON-MARKOVIANITY UNDER FULLY COHERENT
CONDITIONS

From now on, we will focus on the non Markovianity of
the evolution of qubit A. In particular, we would like to study
the competition between the Markovian environment charac-
terized by the γ-term in (9) and the presence of other quan-
tum subsystems which influence qubit A. The general idea is
depicted and explained in Fig. 2 and its caption. According

FIG. 2: We depict the basic idea behind the investigation of non-
Markovianity in this work. Qubit A is subjected to Markovian de-
phasing γ and is coupled to other subsystems directly through g and
indirectly thorough λ. Provided g = 0, the time evolution of qubit A
will certainly be Markovian due solely to the γ environment. Once g
is turned on, non-Markovian features may appear. The situation be-
comes even more interesting by introducing the inter-mode coupling.

to [24], non Markovianity in open system dynamics of a
qubit can be detected or inferred by considering the trace dis-
tance D[ρ1(t), ρ2(t)] = Tr |ρ1(t)−ρ2(t)|/2 between two evolved
states, where |A| =

√
A†A. The evolution process will be non-

Markovian if there exists a pair of initial states ρ1,2(0) such
that, after a time t, ρ1,2(t) will lead to σ(t) > 0 where

σ(t) =
d
dt

D[ρ1(t), ρ2(t)]. (10)

In our case, qubit A interacts with its environment (qubit
B plus dephasing bath) only by means of σz,A, as it can be
seen from (5). For such cases, any pair of antipodal initial
states living in the equatorial line in the Bloch sphere are ex-
pected to maximize σ(t) [25]. We checked this numerically.
We will then consider ρA(0) = |±〉A〈±|, where |±〉A are eigen-
states of σx,A with eigenvalues ±1, respectively. For qubit B
we will take a simple preparation which consists of letting it
start from its ground state ρB(0) = |g〉B〈g|. For the modes, we
will consider them in coherent states |αeiθ〉a and |βeiϕ〉b, with
α, β, θ, and ϕ real numbers. These states have already been
generated in circuit-QED by driving the resonator with a mi-
crowave pulse with gaussian-shape [26]. In next section, we
will use the solution for the pure coherent states obtained here
to investigate the case of incoherent superpositions in a circle.

Let us then consider the qubits and modes to be initially
prepared in the state

ρ±(0) = |±〉A〈±| ⊗ |g〉B〈g| ⊗ |αeiθ〉a〈αeiθ| ⊗ |βeiϕ〉b〈βeiϕ|. (11)

In order to solve Eq. (9), we must first transform this state
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using the set T ′′T ′T . The result is ρ′′′± (0) = |φ〉〈φ|, where

|φ〉 =
e−2λ−iImw∗1 |e〉A|g〉B|z1〉a|w2〉b ± e−2λ+iImz∗1 |g〉A|g〉B|z2〉a|w1〉b

√
2

,

(12)

with coherent states characterized by the complex numbers
z1 = (αeiθ + βeiϕ + 2ξ)/

√
2, z2 = (αeiθ + βeiϕ + 2ξ)/

√
2 − 2λ+,

w1 = (βeiϕ − αeiθ)/
√

2 and w2 = (βeiϕ − αeiθ)/
√

2 − 2λ−. The
corresponding evolved state, obtained using Eq. (9), is thus

ρ′′′± (t) =
1
2
|e〉A〈e| ⊗ |g〉B〈g| ⊗ |z1e−iω+t〉a〈z1e−iω+t | ⊗ |w2e−iω−t〉b〈w2e−iω−t |

+
1
2
|g〉A〈g| ⊗ |g〉B〈g| ⊗ |z2e−iω+t〉a〈z2e−iω+t | ⊗ |w1e−iω−t〉b〈w1e−iω−t |

±
1
2

e−γt−i(ω′0−χ)t−i
√

2λ−(α sin(θ)−β sin(ϕ))−i
√

2λ+(α sin(θ)+β sin(ϕ))|e〉A〈g| ⊗ |g〉B〈g| ⊗ |z1e−iω+t〉a〈z2e−iω+t | ⊗ |w2e−iω−t〉b〈w1e−iω−t |

±
1
2

e−γt+i(ω′0−χ)t+i
√

2λ−(α sin(θ)−β sin(ϕ))+i
√

2λ+(α sin(θ)+β sin(ϕ))|g〉A〈e| ⊗ |g〉B〈g| ⊗ |z2e−iω+t〉a〈z1e−iω+t | ⊗ |w1e−iω−t〉b〈w2e−iω−t |.

In order to evaluate the non Markovianity of the evolution of
qubit A, we must find its evolved state ρA

±(t). We then need
to transform back ρ′′′± (t) to ρ±(t) and trace out qubit B and the
modes. By doing this, one obtains

ρA
±(t) =

1
2

11A ± (h(t)|e〉A〈g| ± h.c.), (13)

where h(t) = eψ(t)〈α2|α1〉〈β2|β1〉/2 with α1 = (z1e−iω+t −

w2e−iω−t−2λ−)/
√

2−ξ, α2 = (z2e−iω+t−w1e−iω−t+2λ+)/
√

2−ξ,
β1 = (z1e−iω+t + w2e−iω−t + 2λ−)/

√
2 − ξ, β2 = (z2e−iω+t +

w1e−iω−t + 2λ+)/
√

2 − ξ, and ψ(t) = −γt + i[(χ − ω′0)t + Γ(t)].
Moreover, we have introduced the parameters

Γ(t) = 4[λ2
+ sin(ω+t) − λ2

− sin(ω−t) −
√

2ξλ+ sin(ω+t)]

+
√

2α sin(θ){λ+[cos(ω+t) − 1] + λ−[cos(ω−t) − 1]}

−
√

2α cos(θ)[λ+ sin(ω+t) + λ− sin(ω−t)]

+
√

2β sin(ϕ){λ+[cos(ω+t) − 1] − λ−[cos(ω−t) − 1]}

−
√

2β cos(ϕ)[λ+ sin(ω+t) − λ− sin(ω−t)].

We see that the coupling to the resonators and qubit B directly
affects the coherence of qubit A through the decoherence fac-
tor h(t). As a result, we expect the degree of non-Markovianity
to be a function of h(t). In fact, after evaluating the trace dis-
tance, one obtains D[ρA

+(t), ρA
−(t)] = 2|h(t)|, which results in

σ(t) = ek(t)−γt f (t) (14)

with

k(t) = −4g2 (λ2 + ω2)(1 − cos[λt] cos[ωt]) − 2λω sin[λt] sin[ωt]
(λ2 − ω2)2 ,

(15)

f (t) =
γ(ω2 − λ2) − 4g2(λ sin[λt] cos[ωt] + ω cos[λt] sin[ωt])

λ2 − ω2 .

(16)

The first interesting feature of σ(t) given by Eq. (14) is its
independence on α and β. This is a direct consequence of the
fact that those amplitudes can be completely removed from
the evolved state through a unitary time independent displace-
ment. As a consequence, non-Markovianity of the qubit sys-
tem can not depend on the information about the initial posi-
tion in phase space of the coherent states for the modes. In
the next Section, we will change the initial state of the modes
by incoherently superimposing coherent states in a circle in
phase space, and this will induce a dependence on the ampli-
tude of the superposed states. The reason is that now informa-
tion about amplitude of the coherent states can no longer be
removed from the dynamics by means of a unitary transfor-
mation in the modes.

All our simulations are run using typical circuit-QED val-
ues [12, 13, 16, 27] with ω0/2π ' 5−10 GHZ for CPB charge
qubits and resonator frequenciesω/2π = 10 GHz [12]. For the
qubit-resonator coupling constant, values of g/2π ' 10 − 100
MHz are realistic, while dephasing rates for charge qubits as
low as γ/2π = 0.3 MHz have been measured [27]. As men-
tioned before, damping has been neglected in this first ap-
proach since the associated rates are much smaller than de-
phasing. The typical damping rate for the resonator is of a
few KHz, and for charge qubits it can be made one order of
magnitude smaller than γ [27]. As for the inter-mode cou-
pling strength, λ/2π ' 17 MHz can be achieved with current
experimental technologies [16]. Consequently, the conditions
of strongly coupled modes, i.e. g ≈ λ, can in principle be met.

In Fig. 3, we consider the role of dephasing γ for the case
λ = 0 which corresponds to decoupled modes. It is very clear
that by increasing the participation of the Markovian chan-
nel, it comes to a point where the non-Markovianity is un-
able to manifest. One could also fix the dephasing rate, and
vary the spin-boson coupling g. The result will be exactly
the opposite, i.e, above a threshold value for g, the dynam-
ics becomes non-Markovian. From this, we can clearly see
that there is a competition between the Markovian character
of the dephasing environment, given by rate γ, and the highly
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FIG. 3: Dynamics of σ(t) for various values of the dephasing rates
and λ = 0. We have taken γ/2π = 0.3 MHz (solid line), 1.0 MHz
(dashed line), and 1.5 MHz (dot-dashed one). As for the other pa-
rameters, we used g/2π = 50.0 MHz and ω/2π = 10.0 GHz.

non-Markovian local bosonic environment represented by the
coupling constant g. A similar phenomenon of has been ob-
served experimentally for the Ising model [28].

From Eq. (14), it is easy to understand the nature of this
threshold, which is physically due to the competition between
the “channels” affecting the system at rates γ and g. In order
to see this, let us explicitly write σ(t) for λ = 0. According to
Eq. (14), this reads

σ(t) = −2[γ + 4g2 sin(ωt)/ω]e−2γt−8g2[1−cos(ωt)]/ω2
. (17)

In order for the qubit to follow a Markovian evolution, σ(t)
must be negative or null at all times. From Eq. (17), we see
that this will be the case provided that

γ > 4g2/ω. (18)

This defines a parabolic boundary separating the Markovian
and non-Markovian regimes in the parameter space formed
by γ and g. For the parameters considered in Fig. 3, we can
use Eq. (18) to obtain γ/2π > 1.0 MHz, which is precisely
what is observed.

We consider now the effect of cross-coupling between the
modes (λ , 0). First, the effect of increasing γ is still the
progressive inhibition of backflow of information. In Figure
4 we fix γ and increase the coupling strength λ betweem the
modes. We can see that by increasing λ, non-Markovianity
is also progressively diminished. This decreasing of the de-
gree of non-Markovianity can be physically understood from
fact that the mode coupled to qubit A now becomes correlated
with other quantum systems. This reduces its capability to get
correlated, quantum mechanically, with qubit A, which in turn
depletes the possibility to provide the backflow of informa-
tion.

III. NON-MARKOVIANITY UNDER PHASE DIFFUSED
BOSONIC MODES

Previously, we considered the modes to be prepared in pure
coherent states and found that the trace distance and its time

derivative became independent on the amplitudes (α, β) and
phases (θ, ϕ) of the coherent states considered in the initial
state (11). Given such phase-independence, one could then
think of using a mixture of iso-energetic coherent states with
no phase coherence. Such mixture is constructed as

ρa =

∫ 2π

0

dθ
2π
|αeiθ〉a〈αeiθ| = e−|α|

2
∑

n

|α|2n

n!
|n〉a〈n|. (19)

This state is central in the discussions about the quantum de-
scription of laser light and its ability to perform quantum in-
formation tasks [29]. Both states, |αeiθ〉a〈αeiθ| and ρa, have the
same diagonal elements in the energy eigenbasis. However,
the trace distance is not a linear function on the input states.
Consequently, the use of mixtures of coherent states having
the same energy might actually lead to different results. In
fact, as we are going to see, the use of such mixed state brings
about a dependence on the amplitudes α and β, which marks
a substantial difference with respect to the pure state case. We
now consider

ρ±(0) = |±〉A〈±| ⊗ |g〉B〈g| ⊗ ρa ⊗ ρb, (20)

with ρb given by (19) upon changing α to β and θ to ϕ. We
can use the results of the previous section to evolve the states,
and the time derivative of the trace distance is found to be

σmix(t) = ek(t)−γt{−
√

2g2α J0[βF1(t)] J1[αF2(t)] G1(t)

−
√

2g2β J0[αF2(t)] J1[βF1(t)] G2(t)
+J0[βF1(t)] J1[αF2(t)] G3(t)}, (21)

where Jn(x) are Bessel functions of order n, k(t) is given in
Eq. (15), and

2.1 2.2 2.3 2.4 2.5
t HnsL

- 0.8

- 0.6

- 0.4

- 0.2

0.2

0.4

Σ HtL � 107

FIG. 4: Dynamics of σ(t) for various mode-mode coupling constants
λ. We considered λ/2π = 10 MHz (solid) and λ/2π = 50 MHz
(dashed). For the other parameters we used γ/2π = 0.3 MHz, g/2π =

50.0 MHz, and ω/2π = 10.0 GHz.
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F1(t) = 2
√

2g

√
3λ2 + ω2 + (λ2 − ω2) cos[2λt] − 4λ (λ cos[λt] cos[ωt] + ω sin[λt] sin[ωt])

(λ2 − ω2)
, (22)

F2(t) = 2
√

2g

√
λ2 + 3ω2 + (ω2 − λ2) cos[2λt] − 4ω (ω cos[λt] cos[ωt] + λ sin[λt] sin[ωt])

(λ2 − ω2)
, (23)

G1(t) =
8
√

2 cos[λt](λ sin[λt] − ω sin[ωt])
(λ2 − ω2)F2(t)

, (24)

G2(t) =
8
√

2 sin[λt](− cos[λt] + cos[ωt])
(λ2 − ω2)F1(t)

, (25)

G3(t) = −γ −
2g2(ω − λ) sin[(ω − λ)t]

(ω − λ)2 −
2g2 sin[(ω + λ)t]

ω + λ
. (26)

Let us now focus our attention on the case α = β. If these
amplitudes are null, it is not difficult to see that (21) reduces
to (14) as expected for arbitrary λ. As we did before, let us
start the analyzes by considering the case of decoupled modes
(λ = 0). The effect of increasing the amplitudes of the co-
herent states are presented in Fig. 5. It is noticeable that the
effect of increasing the amplitudes (energy) of the modes, the
non-Markovianity increases. As the entropy (mixedness) of
the initial state increases with α and β, one could, as a first
guess, expect that the non-Markovianity arising from the cou-
pling to the modes would decrease as the amplitudes increase.
However, our results show that for this particular mixtures of
coherent states in a circle, the opposite happens. The total
elimination of the off diagonal elements due to the integral
over equally weighted phases, not only made the results de-
pendent on the amplitudes, but also brought about this partic-
ular effect.

For the case of coupled modes (λ , 0), the behavior for
fixed α and β is similar to the one found in previous section.
By increasing λ, non-Markovianity tends to decrease. Finally,
for this initial mixture of coherent states, there is again a com-
petition between g and γ. The results are shown in Fig. 6. By
increasing γ, it comes to a point where the dynamics is fully

0.05 0.10 0.15 0.20 0.25 0.30
t HnsL

- 6

- 4

- 2

2

4

Σmix HtL � 107

FIG. 5: Dynamics of σ(t) obtained considering the initial state in
Eq. (20) for various amplitudes α and β. We took α = β = 0
(solid), α = β = 1 (dashed), and α = β = 2 (dot dashed). For
the other parameters we used γ/2π = 0.3 MHz, g/2π = 50.0 MHz,
and ω/2π = 10.0 GHz

0.05 0.10 0.15 0.20 0.25 0.30
t HnsL

- 10

- 5

5

Σmix HtL � 107

FIG. 6: Dynamics of σ(t) obtained considering the initial state in
Eq. (20) for various dephasing rates and decoupled modes λ = 0.
We considered γ/2π = 0.3 MHz (solid), γ/2π = 5.0 MHz (dashed),
γ/2π = 10.0 MHz (dot dashed). For the other parameters we used
g/2π = 50.0 MHz and ω/2π = 10.0 GHz.

Markovian. However, given the complicated dependence of
σmix(t) on g and γ, it is not possible now to obtain an analyti-
cal formula for the Markovianity boundary.

IV. CONCLUSION

We have assessed the problem of non-Markovianity char-
acterization in a specific circuit-QED setup consisting of two
qubits, each of them locally coupled to a bosonic mode. The
modes can be controllably coupled to each other through com-
mon interaction with a third qubit. We have solved the corre-
sponding model exactly and studied non-Markovianity for the
qubits from the point of view of information backflow from
environment to qubit. For modes prepared in pure coherent
states or mixtures of equally weighted coherent states with
fixed energy, we found analytical expressions for the quanti-
fier of information backflow, which is the trace distance. The
general effect of having Markovian dephasing acting on the
qubits is the existence of a threshold of Markovinity i.e., a
lower bound for the dephasing rate, above which the evolu-
tion is purely Markovian. For decoupled modes, we found the
analytical dependence of this lower bound on parameters of
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the system.
Although the degree of non-Markovianity for initial pure

coherent states are independent on the amplitude and phase of
these states, for a mixture of coherent states in a circle, the
result becomes actually dependent on the amplitudes. Sur-
prisingly, the bigger the amplitudes, the more non-Markovian
the qubit dynamics becomes. Our work contributes to the
study and control of open quantum systems by presenting, in a
versatile setup, the complete diagonalization of the open sys-
tem dynamics and an comprehensive characterization of non-
Markovianity.
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