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Abstract

Scientific workflows have become mainstream for conducting large-scale scientific research. As a result, many workflow appli-
cations and Workflow Management Systems (WMSs) have been developed as part of the cyberinfrastructure to allow scientists
to execute their applications seamlessly on a range of distributed platforms. Although the scientific community has addressed
this challenge from both theoretical and practical approaches, failure prediction, detection, and recovery still raise many research
questions. In this paper, we propose an approach inspired by the control theory developed as part of autonomic computing to
predict failures before they happen, and mitigated them when possible. The proposed approach is inspired on the proportional-
integral-derivative controller (PID controller) control loop mechanism, which is widely used in industrial control systems, where
the controller will react to adjust its output to mitigate faults. PID controllers aim to detect the possibility of a non-steady state far
enough in advance so that an action can be performed to prevent it from happening. To demonstrate the feasibility of the approach,
we tackle two common execution faults of large scale data-intensive workflows—data storage overload and memory overflow. We
developed a simulator, which implements and evaluates simple standalone PID-inspired controllers to autonomously manage data
and memory usage of a data-intensive bioinformatics workflow that consumes/produces over 4.4TB of data, and requires over
24TB of memory to run all tasks concurrently. Experimental results obtained via simulation indicate that workflow executions may
significantly benefit from the controller-inspired approach, in particular under online and unknown conditions. Simulation results
show that nearly-optimal executions (slowdown of 1.01) can be attained when using our proposed method, and faults are detected
and mitigated far in advance of their occurrence.

Keywords: Scientific workflows, Fault detection and handling, Resilient Big Data workflows, Autonomic computing

1. Introduction

Scientists want to extract the maximum information out of
their data—which are often obtained from scientific instru-
ments and processed in large-scale distributed systems. Today’s
computational and data science applications may comprise
thousands of computational tasks and process large datasets
(from remote sensors, instruments, etc.), which are often dis-
tributed and stored on heterogeneous resources. Scientific
workflows are a mainstream solution to process large-scale
scientific computations in distributed systems, and have sup-
ported traditional and breakthrough research across several do-
mains [1]. As a result, many workflow applications and Work-
flow Management Systems (WMSs) have been developed as
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part of the cyberinfrastructure to allow scientists to execute
their applications seamlessly on a range of distributed plat-
forms [2, 3].

In spite of impressive achievements today, failure prediction,
detection, and recovery remain a major challenge in workload
management in distributed systems, both at the application and
resource levels. Failures affect the makespan of the applica-
tions, and therefore the productivity of the scientists that de-
pend on the power of distributed computing to do their work.
Throughout the remainder of this paper, a failure may repre-
sent an inconsistent state of the system, which may be an actual
fault, poor performance, or a constraint violation.

Unsurprisingly, failure detection and handling for distributed
scientific applications has been the subject of significant effort,
both from practitioners and from researchers [4, 5, 6, 7, 8, 9, 10,
11, 12]. However, most of these approaches do not aim to pre-
vent faults, but to mitigate their impact. They also make strong
assumptions about resource and application characteristics, so
that resource management problems are rendered tractable. But
the resulting solutions may perform poorly in practice when un-
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expected events (e.g., network glitches, external load, etc.) oc-
cur. Therefore, there is a lack of realistic solutions, which is the
major cause for the discrepancy between proposed theoretical
techniques and methods, and their practical application [13].

In this work, we target the resource management challenge
to attain “resilience” in executions of large-scale scientific
workflows on distributed infrastructures. More specifically,
we investigate how the principles of the proportional-integral-
derivative controller (PID controller) control loop mechanism,
which is widely used in industrial systems, can be applied to
predict and prevent failures in end-to-end workflow executions
across distributed, heterogeneous computational environments.
The basic idea behind a PID controller is as follows: read data
from a sensor, then compute the desired actuator output by cal-
culating proportional (P), integral (I), and derivative (D) re-
sponses and summing those three components to compute the
output. Each of the components can often be interpreted as the
present error (P), the accumulation of past errors (I), and a pre-
diction of future errors (D), based on the current rate of change.
The main advantage of using the principles of a PID controller
is that the control loop mechanism progressively monitors the
evolution of the workflow execution, detecting possible faults
before they occur, and when needed performs actions that lead
the execution to a steady-state.

The main contributions of this paper include:

1. A process for resilient management of computing re-
sources, which uses the concepts of PID controllers to pre-
vent and mitigate two major problems of the Big Data era:
data storage overload and memory overflow;

2. The characterization of a bioinformatics workflow, which
consumes/produces over 4.4TB of data, and requires over
24TB of memory;

3. An evaluation via simulation to demonstrate the feasibility
of the proposed approach using simple PID-inspired con-
trollers; and

4. A performance optimization study to tune the parameters
of the control loop to provide nearly-optimal workflow ex-
ecutions, where faults are detected and handled far in ad-
vance of their occurrence.

Although PID controllers are commonly used in closed envi-
ronments where a steady-state can be reached and maintained,
the preliminary evaluation study conducted in this work demon-
strates their ability to tackle inconsistent states of a dynamic
distributed system by limiting the oscillation analysis to short
intervals. In [14], we have presented a first evaluation of the
use of a control loop approach, inspired by PID controllers, to
prevent faults in online distributed systems. In this work, we
detail the model of our resilient resource management process,
and extend the previous analysis by further evaluating the be-
haviors of livelocks and the characteristics of the controller re-
sponse input value.

This paper is structured as follows. Section 2 gives an
overview of related work. Section 3 presents the general re-
silient resource management process, which is inspired by the

principles of PID controllers, while Section 4 describes the two
types of faults evaluated in this paper. The experimental evalu-
ation is presented in Section 5, and Section 6 presents a study to
tune the gain parameters of the PID-inspired controllers to im-
prove error detection and handling. Section 7 summarizes our
results and identifies future work.

2. Related Work

Several offline strategies and techniques were developed
to detect and handle failures during scientific workflow ex-
ecutions [4, 5, 6, 7, 8, 9, 15]. Autonomic online methods
were also proposed to cope with workflow failures at runtime,
for example by providing checkpointing [16, 17, 18], prove-
nance [17, 19], task resubmission [10, 11], and task replica-
tion [8, 12], among others. However, these systems do not aim
to prevent faults, but mitigate their impact, and although task
replication may increase the probability of having a success-
ful execution on another computing resource, it should be used
sparingly to avoid overloading the execution platform [20].
The above systems also make strong assumptions about re-
source and application characteristics. A recent survey on fault-
tolerance mechanisms for task clustering [21], highlights ap-
proaches to cope with tasks exhibiting low performance, how-
ever most of the techniques also assume that accurate estimates
of task requirements are available.

Although several works address task requirement estimations
based on provenance data [22, 23, 24, 25], accurate estima-
tions are still challenging, and may be specific to a certain type
of application. In [26], a prediction algorithm based on ma-
chine learning (Naı̈ve Bayes classifier) is proposed to identify
faults before they occur, and to apply preventive actions to mit-
igate the faults. Experimental results show that faults can be
predicted with up to 94% accuracy; however, that approach is
tied to a small set of applications, and it is assumed that the
application requirements do not change over time. In previ-
ous work, we proposed an autonomic method described as a
MAPE-K loop to cope with online non-clairvoyant workflow
execution faults on grids [27, 28], where unpredictability is ad-
dressed by using a-priori knowledge extracted from execution
traces to identify severity levels of faults, and apply a specific
set of actions. Although this is the first work on self-healing
of workflow executions under online and unknown conditions
(e.g., workload unawareness, external load, etc.), experimen-
tal results on a real platform show an important improvement
of the QoS delivered by the system. However, the method
does not prevent faults from happening (actions are performed
once faults are detected). In this paper, we revisit the MAPE-K
loop concept to enable fault detection and handling; however,
without depending on reliable estimates obtained from a-priori
knowledge. In [29], a machine learning approach based on in-
ductive logic programming is proposed for fault prediction and
diagnosis in grids. This approach is limited to small-scale ap-
plications with a few parameters—the number of rules may ex-
ponentially increase as the number of tasks in a workflow or the
handled parameters increases. Feedback loops have also been
proposed to tackle failures in workflow systems [30], however,
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no mechanisms are available to prevent an unrecoverable fault
from happening.

To the best of our knowledge, this is the first work that uses
the concepts of PID controllers to mitigate faults in scientific
workflow executions under online and unknown conditions.

3. General Resilient Resource Management Process

Automating fault prevention, detection, and handling is chal-
lenging for two reasons. First, the problem is online by na-
ture because no reliable user activity prediction can be assumed
(e.g., task runtime estimates are not accurate). New workloads
may arrive at any time, and resources may leave at any time.
Therefore, the decisions, actions, and considered metrics have
to remain simple and to yield good results while the applica-
tion is still executing. Second, it is unpredictable due to the
lack of reliable application and platform models [22], and due
to the lack of information about the performance of comput-
ing and network resources in production environments. Hence,
platform and application models also have to remain simple,
and adapt to the dynamic behavior of the system. In this work,
we present a novel resilient resource management process for
autonomous detection and handling of possible-future faults in
scientific workflow executions, under online and unpredictable
conditions. The process uses the MAPE-K loop principle as
a basis for constantly performing online monitoring, analysis,
planning, and execution of a set of preventative and/or correc-
tive actions (Figure 1). In this process, when an event occurs
during the workflow execution (e.g., job completion, failures,
or timeouts), an analysis event is triggered in the controller (in-
spired by PID controllers). If the controller detects that the sys-
tem is moving towards an unstable state, the controller will no-
tify a decision agent process that may trigger actions to prevent
or mitigate faults.

3.1. Overview of PID Controllers
The proportional-integral-derivative controller (PID con-

troller) [31, 32] control loop mechanism is key to address faults
under online and unknown conditions. In industrial systems,
a PID controller is typically used to assess the state of a sin-
gle fine-grained measurement (e.g., temperature, pressure, ac-
celeration, etc.) to improve the efficiency of the control loop.
Although “one-fit-all” metrics could be handled by PID con-
trollers, they usually represent complex mathematical models
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Figure 1: Overview of the Resilient Resource Management Process based on
the MAPE-K loop.
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Figure 2: General diagram of closed loop systems with an ideal PID controller
(based on error feedback).

Figure 3: Response of a typical PID closed loop system.

in which the output signal would be hard to interpret, and the
decision problem of what preventive or corrective action to
perform becomes more difficult. In this work, we follow the
same fine-grained approach, where we design and implement
an autonomous process for resilient resource management for
WMSs, which is inspired by PID controllers (named in this pa-
per PID-inspired controllers). We then define controllers for
different metrics at different levels (e.g., memory or disk usage
per node, shared file system usage per platform, etc.). In such
scenarios, the PID-inspired controller aims at detecting the pos-
sibility of a fault far enough in advance that an action can be
performed to prevent it from happening. Figure 2 shows a gen-
eral ideal PID control system loop. The setpoint (or reference
signal) is the desired or command value for the process vari-
able. The control system algorithm uses the difference between
the output (process variable) and the setpoint to determine the
desired actuator input to drive the system.

The control system performance is measured through a step
function as a setpoint command variable, and the response of
the process variable. The response (output) is quantified by
measuring defined waveform characteristics as shown in Fig-
ure 3. Rise time is the amount of time the system takes to go
from about 10% to 90% of the steady-state, or final, value. Per-
cent overshoot is the amount that the process variable surpasses
the final value, expressed as a percentage of the final value. Set-
tling time is the time required for the process variable to settle to
within a certain percentage (commonly 5%) of the final value.
Steady-state error is the final difference between the process
variable and the setpoint. Dead time is a delay between when
a process variable changes, and when that change can be ob-
served.

The input/output relation for an ideal PID controller with er-
ror feedback is defined as follows:
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u(t) = Kpe(t) + Ki

∫ t

0
e(t)dt + Kd

de(t)
dt

, (1)

where Kp is the proportional gain constant, Ki is the integral
gain constant, Kd is the derivative gain constant, and e is the
error defined as the difference between the setpoint and the pro-
cess variable value.

Tuning the proportional (Kp), integral (Ki), and derivative
(Kd) gain constants is challenging and a research topic in itself.
Therefore, in this paper we initially assume Kp = Ki = Kd = 1
for the sake of simplicity and to demonstrate the feasibility of
the process, and then we use the Ziegler-Nichols closed loop
method [33] for tuning the PID controllers (see Section 6).

3.2. Model and Design

Although the PID controller shown in Figure 2 represents an
idealized controller and several modifications are often required
to obtain a controller that is practically useful [32]. We argue
that the concepts provided by this abstraction suffice to derive
a controller-inspired model for our resilient resource manage-
ment process. Figure 4 shows an overview of the proposed pro-
cess. In our model, process variables (output) are determined
by fault-specific metrics quantified online (see Section 4). In
contrast to a typical PID closed loop, the Process output is
a set of fault degree measurements as previously referred (y′,
y′′, etc.)—each corresponding output measurement feeds its re-
spective controller. Fault degrees are computed from metrics
assuming that faults have outlier performance, e.g. low network
bandwidth, data packet losses, low CPU utilization, etc. [27].
The setpoint is constant and defined as 1. Our process may
be composed by a set of standalone PID-inspired controllers,
in which each control signal u is an input value for a Decision
Agent. The Decision Agent collects all control signal values
(formed entirely from the error e), and determines whether a
preventive or curative set of actions u∗ should be performed.
Note that an action is not represented by a value that will be fed
to the process, instead it indicates actual operations that will
be performed. Negative error e values mean the control sys-
tem is rising too fast and may tend to an overshoot state (i.e.,
reach a faulty state), therefore preventive or corrective actions
should be performed. Actions may include task preemption,
task resubmission, task clustering, task cleanup, storage man-
agement, etc. In contrast, positive values indicate the system is
in an undershot state. Low e values indicate the control system
is smoothly moving towards the steady state.

4. Modeling Simple Controller-inspired Processes

In our proposed approach, a standalone PID-inspired con-
troller is defined and used for each possible-future fault iden-
tified from workload traces (historical data). In some cases, a
particular type of fault cannot be modeled using the principles
of a three-term controller. For example, there are faults that can-
not be predicted far in advance (e.g., unavailability of resources
due to a power cut). In this case, a PI-inspired (proportional-
integral) controller could be defined and deployed. In produc-
tion computing systems, a large number of controllers may be
defined and used to control, for example, CPU utilization, net-
work bandwidth, etc. In this paper, we demonstrate the feasibil-
ity of our proposed process by tackling two common, yet practi-
cal, issues of workflow executions: data and memory overflow.

4.1. Workflow Data Footprint and Management

In the era of Big Data Science, applications are producing
and consuming ever-growing data sets. A run of scientific
workflows that manipulates these data sets may lead the system
to an out of disk space fault if no mechanisms are in place to
control how the available storage is used. To prevent this, data
cleanup tasks are often automatically inserted into the work-
flow by the workflow management system [34], or the number
of concurrent task executions is limited to prevent data usage
overflow. Cleanup tasks remove data sets that are no longer
needed by downstream tasks or temporarily move current un-
locked data into permanent storage devices (to free local stor-
age space for running tasks), but nevertheless they may add an
important overhead to the workflow execution [35]—a cleanup
task may involve staging data out to an external storage device
and registering the data into a data catalog. As a result, ad-
ditional operations may be required to stage in these data for
future task executions.

PID-inspired Controller. The process variable for the data
management process (output yd) is defined as the ratio between
the actual used disk space ω′ including current tasks in execu-
tion, and the total disk space ω, i.e. yd = ω′

ω
. In an ideal sce-

nario, yd → 1 (i.e., the setpoint) maximizes utilization, however
no overflow is allowed. Thus, a lower threshold is typically
used to accommodate overflow and prevent non-recoverable
failures. Therefore, the system is in a non-steady state if the
total amount of available disk space is below or above a pre-
defined threshold τd (i.e., yd = ω′

ω·τd
). The proportional (P) re-

sponse is computed as the error between the setpoint r, and the
process variable yd; the integral (I) response is computed from
the sum of the disk usage errors (cumulative value of the pro-
portional responses, i.e. e = r − yd); and the derivative (D) re-
sponse is computed as the difference between the current and
the previous disk overflow (or underutilization) error values.
Therefore, the control signal ud is defined as follows:

ud(t) = Kp · (r − yd(t)) + Ki

t∑
n=1

e(n) + Kd · (e(t) − e(t − 1)). (2)
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Corrective Actions. The output of the PID-inspired controller
(control signal ud, Equation 2) indicates whether the controller
identified an anomaly behavior w.r.t. data management. Neg-
ative values indicate that the current disk usage is above the
threshold of the minimum required available disk space (a
safety measure to avoid an unrecoverable faulty state). In con-
trast, positive values indicate that the current running tasks
do not maximize disk usage. For values of ud < 0, (i) data
cleanup tasks can be triggered to remove unused intermediate
data (adding cleanup tasks may imply rearranging the priority
of all tasks in the queue), or (ii) tasks can be preempted due to
the inability to remove data—the inability of cleaning up data
may lead the execution to an unrecoverable state, and thereby to
a failed execution. Otherwise (for ud > 0), the number of con-
current task executions may be increased. The control signal
value is then used as input for the Decision Agent (Section 4.3),
which accounts for all control signal values from all controllers
to perform preventive/corrective actions when necessary.

4.2. Workflow Memory Usage and Management

Large scientific computing applications rely on complex
workflows to analyze large volumes of data. These tasks are
often running in HPC resources over thousands of CPU cores
and simultaneously performing data accesses, data movements,
and computation, dominated by memory-intensive operations
(e.g., reading a large volume of data from disk, decompress-
ing in memory massive amounts of data or performing a com-
plex calculation which generates large datasets, etc.). The per-
formance of those memory-intensive operations are quite often
limited by the memory capacity of the resource where the ap-
plication is being executed. Therefore, if those operations over-
flow the physical memory limit the result may be application
performance degradation or application failure. Typically, the
end-user is responsible for optimizing the application, modify-
ing the code if necessary to comply with the amount of mem-
ory that can be used on that resource. This work addresses the
memory challenge by proposing an in-situ analysis of mem-
ory usage, to adapt the number of concurrent tasks executions
according to the memory usage required by an application at
runtime.

PID-inspired Controller. The process variable for the memory
management process (output ym) is defined as the ratio between
the actual peak memory usage σ′ by current tasks in execution,
and the total memory capacity of the computing node σ. Sim-
ilarly to the data management controller, a threshold τm is also
used to accommodate overflows, thus ym = σ′

σ·τm
. The system

is in a non-steady state if the amount of memory available is
below or above τm. The proportional (P) response is computed
as the error between the memory consumption setpoint value,
and the output ym; the integral (I) response is computed from
cumulative proportional responses (previous memory usage er-
rors); and the derivative (D) response is computed as the dif-
ference between the current and the previous memory overflow
(or underutilization) error values. The control signal um is then
defined as follows:

um(t) = Kp · (r − ym(t)) + Ki

t∑
n=1

e(n) + Kd · (e(t)− e(t− 1)). (3)

Corrective Actions. Negative values for the control signal um

indicate that the collection of running tasks are leading the sys-
tem to an overflow state (i.e., anomalous behavior), thus some
tasks should be preempted to prevent the system from running
out of memory. For positive um values, the memory consump-
tion of current running tasks is below a predefined memory con-
sumption setpoint (i.e., underutilization). Therefore, the work-
flow management system may spawn additional tasks for con-
current execution.

4.3. Decision Agent
In a typical PID control loop, the response variable of the

control loop that leads the system to a setpoint (or within a
steady-state error) is defined as waveforms, which can be com-
posed of overflows or underutilization of the system. As afore-
mentioned, in order to accommodate overflows, we arbitrarily
define the setpoint of our resource management process as 80%
of the maximum total capacity (for both storage and memory
usage), and a steady-state error of 5%. The evaluated pro-
cess is composed of a single PID-inspired controller ud, used
to manage disk usage (shared network file system); while an in-
dependent memory controller un

m is deployed for each comput-
ing node n. As discussed in the previous subsections, the con-
trol signal values indicate whether the system is leading to an
overflow or underutilization state, and thus actions may be trig-
gered. These values are the input for the Decision Agent, which
weights them to decide the appropriate set of actions u∗ to be
performed (Figure 4). The Decision Agent may also be based
on an Intelligent System, where decisions do also account, for
example, for historical data, system performance metrics (e.g.,
I/O or network throughput, etc.), workflow structure and look-
ahead planning [11, 36], and the use of statistical and machine
learning methods [22, 37].

In order to demonstrate the feasibility of our proposed ap-
proach, we consider that values of u > 0 indicate that the
amount of disk space or memory consumed by the current run-
ning tasks fits the system resources and additional tasks may be
spawned (resp. tasks are preempted). When managing a set of
controllers, it is important to ensure that an action performed by
a controller does not counteract an action performed by another
one. Therefore, the decision about the number of tasks to be
scheduled/preempted is driven by buc, which represents the min
between the response value of the unique disk usage controller,
and the memory controller per resource n:

bun(t)c = min(ud(t), un
m(t)). (4)

The Decision Agent process uses the mean values of disk and
memory requirements (as the ones used in this work shown
in Table 1, Section 5.2) to estimate the number of tasks to be
scheduled/preempted. The Decision Agent seeks then for a set
of tasks, in which the sum of their disk ω̄ and memory σ̄ re-
quirements are less than or equal to the thresholds. For the task
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scheduling operation, a task k will be scheduled to a resource n
at instant t iff: {

ω̄k ≤ bun(t)c × ω,
σ̄k ≤ bun(t)c × σn.

(5)

For task preemption, current running tasks are added to the set
of tasks to be preempted P while the sum of disk ω̄ and memory
σ̄ requirements for all tasks p ∈ P do not satisfy the following
conditions: {

bun(t)c × ω >
∑

p∈P ω̄p,
bun(t)c × σn >

∑
p∈P σ̄p.

(6)

In the first condition, the disk usage requirement (bun(t)c × ω)
may be reduced if data cleanup tasks can be executed. Thus,
the condition is scaled down by the magnitude of the amount
of data that can be removed (i.e., data files that are not used
by the current running tasks). Strategies to define the optimal
number of data cleanup tasks and their positioning in the work-
flow graph are out of the scope of this work, and can be found
in [34].

Typically, mean values yield high values of standard devia-
tion (due to variations inherent to the application itself, or the
system including external load), thus estimations may not be
accurate. Task characteristics estimation is beyond the scope
of this work, and sophisticated methods to provide accurate es-
timates can be found in [22, 23, 24, 25]. However, this work
intends to demonstrate that even using inaccurate estimation
methods, our proposed process can cope with the poor estimates
and still yield good results.

5. Experimental Evaluation

5.1. Scientific Workflow Application

The 1000 genomes project provides a reference for human
variation, having reconstructed the genomes of 2,504 individ-
uals across 26 different populations [38]. The test case used
in this work identifies mutational overlaps using data from the
1000 genomes project in order to provide a null distribution for
rigorous statistical evaluation of potential disease-related mu-
tations. This test case (Figure 5) has been implemented as a
Pegasus [39, 40] workflow, and is composed of five different
tasks:

Individuals. This task fetches and parses the Phase 3 data [38]
from the 1000 genomes project per chromosome. These files
list all of the Single nucleotide polymorphisms (SNPs) variants
in that chromosome and which individuals have each one. An
individual task creates output files for each individual of rs
numbers, where individuals have mutations in at least one of
the two alleles.

Populations. The 1000 genome project has 26 different pop-
ulations from many different locations worldwide [41]. The
populations task fetches and parses five super populations
(African, Mixed American, East Asian, European, and South
Asian), and a set of all individuals.

Sifting. This task computes the SIFT scores of all of the SNPs
variants, as computed by the Variant Effect Predictor (VEP).
SIFT is a sequence homology-based tool that Sorts Intolerant
From Tolerant amino acid substitutions, and predicts whether
an amino acid substitution in a protein will have a phenotypic
effect. VEP determines the effect of individual variants on
genes, transcripts, and protein sequences, as well as regulatory
regions. For each chromosome, the sifting task processes
the corresponding VEP, and selects only the SNPs variants that
have a SIFT score.

Pair Overlap Mutations. This task measures the overlap in
mutations (SNPs) among pairs of individuals. Considering two
individuals, if both individuals have a given SNP then they have
a mutation overlap. It performs several correlations including
different numbers of pairs of individuals, and different numbers
of SNPs variants (only the SNPs variants with a score less than
0.05, and all the SNPs variants); and computes an array (per
chromosome, population, and SIFT level selected), which has
as many entries as individuals—each entry contains the list of
SNPs variants per individual according to the SIFT score.

Frequency Overlap Mutations. This task calculates the fre-
quency of overlapping mutations across n subsamples of j in-
dividuals. For each run, the task randomly selects a group of 26
individuals from this array and computes the number of over-
lapping mutations among the group. Then, the individuals

task computes the frequency of mutations that have the same
number of overlapping mutations.

5.2. Workflow Characterization

We profiled the 1000 genome sequencing analysis workflow
using the Kickstart [42] profiling tool. Kickstart monitors and
records task execution in scientific workflows (e.g., process I/O,
runtime, memory usage, and CPU utilization). Runs were con-
ducted on the Eddie Mark 3, which is the third iteration of the
University of Edinburgh’s compute cluster. The cluster is com-
posed of 4,000+ cores with up to 2 TB of memory. For running
the characterization experiments, we have used three types of
nodes, depending of the size of memory required for each task:

1. 1 Large node with 2 TB RAM, 32 cores, Intel R©

Xeon R© Processor E5-2630 v3 (2.4 GHz), for running the
individual tasks;

2. 1 Intermediate node with 192GB RAM, 16 cores, Intel R©

Xeon R© Processor E5-2630 v3 (2.4 GHz), for running the
sifting tasks;

3. 2 Standards nodes with 64 GB RAM, 32 cores, Intel R©

Xeon R© Processor E5-2630 v3 (2.4 GHz), for running the
remaining tasks.

Table 1 shows the execution profile of the workflow. Most
of the workflow execution time is allocated to the individual
tasks. These tasks are in the critical path of the workflow due
to their high demand for disk (174GB on average per task) and
memory (411GB on average per task). The total workflow data
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Figure 5: Overview of the 1000 genome sequencing analysis workflow.

footprint is about 4.4TB. Although the large node provides 2
TB of RAM and 32 cores, we would only be able to run up
to 4 concurrent tasks per node. In Eddie Mark 3, the standard
disk quota is 2GB per user, and 200GB per group. Since this
quota would not suffice to run all tasks of the 1000 genome se-
quencing analysis workflow (even if all tasks run sequentially),
we had a special arrangement to increase our quota to 500GB.
Note that this increased quota allows us to barely run 3 con-
current individual tasks in the large node, and some of the
remaining tasks in smaller nodes. Therefore, data and mem-
ory management are crucial to perform a successful run of the
workflow, while meeting the life scientists’ expectations.

5.3. Experiment Conditions

Scientific workflows and workflow systems must be evalu-
ated on large-scale platforms, since scalability is a major con-
cern for next-generation applications. However, large-scale
platforms are typically non-dedicated with shared network in-
frastructures and shared compute resources (e.g., space-shared
via batch queues). Furthermore, real-world platforms are
known to exhibit transient behaviors due to load spikes, mainte-
nance, software upgrade, and (mis)configurations. As a result,
evaluation experiments are not inherently repeatable. Addition-
ally, executing large-scale workflows merely to compare the
performance of workflow executions consumes resources and
energy—it is typical to run series of back-to-back experiments
to address concerns for the validity of the drawn conclusions.
Therefore, the experiments use cycle-based simulation. Since
most workflow simulators are event-based [43, 44], we devel-
oped an activity-based simulator to simulate every time slice
(or cycle) of the controllers’ behavior (which is available on-
line [45]), while in an event-based simulation, each event oc-
curs at a particular instant in time and marks a change of state
in the system. The simulator provides support for task schedul-
ing and resource provisioning at the workflow level. The sim-
ulated computing environment represents the three nodes from
the Eddie Mark 3 cluster described in Section 5.2 (total 80 CPU

cores). Additionally, we assume a shared network file system
among the nodes with total capacity of 500GB.

We use an FCFS policy with task preemption and backfill
for task scheduling—tasks submitted at the same time are ran-
domly chosen (may introduce variability in the execution), and
preempted tasks return to the top of the queue. To avoid unre-
coverable faults due to running out of disk space, we imple-
mented a fault-tolerance data cleanup mechanism to remove
data that are no longer required by downstream tasks [34]. In
this case, data cleanup tasks are only triggered if the maximum
storage capacity is reached: all running tasks are preempted,
the data cleanup task is executed, and the workflow resumes its
execution. Recall that this mechanism may add a significant
overhead to the workflow execution (see Section 4.1). For this
set of experiments, we initially assume Kp = Ki = Kd = 1 to
demonstrate the feasibility of the approach regardless the use of
tuning methods.

The goal of this experiment is to ensure that correctly de-
fined executions complete, that performance is acceptable, and
that possible-future faults are quickly detected and automati-
cally handled before they lead the workflow execution to an
unrecoverable state (measured by the number of data cleanup
tasks dispatched by the fault-tolerance mechanism described
above). Therefore, we do not attempt to optimize task preemp-
tion (which criteria should be used to select tasks for removal,
or perform checkpointing) since our goal is to demonstrate the
feasibility of the approach with simple use case scenarios.

Reference Workflow Execution. In order to measure the effi-
ciency of our proposed method under online and unknown con-
ditions, we compare the workflow execution performance (in
terms of workflow makespan) to a reference workflow execu-
tion. The reference workflow is computed offline under known
conditions, i.e., all requirements (e.g., runtime, disk, memory)
are accurate and known in advance. We performed several runs
for the reference workflow using the FCFS policy with backfill,
which yielded an averaged makespan of 382,887.7s (∼106h,
standard deviation ≤ 5%).

7



Task Count Runtime Data Footprint Memory Peak
Mean (s) Std. Dev. Mean (GB) Std. Dev. Mean (GB) Std. Dev.

Individual 22 31593.7 17642.3 173.79 82.34 411.08 17.91
Population 7 1.14 0.01 0.02 0.01 0.01 0.01
Sifting 22 519.9 612.4 0.94 0.43 7.95 2.47
Pair Overlap Mutations 154 160.3 318.7 1.85 0.85 17.81 20.47
Frequency Overlap Mutations 154 98.8 47.1 1.83 0.86 8.18 1.42

Total (cumulative) 359 590993.8 – 4410.21 – 24921.58 –

Table 1: Execution profile of the 1000 genome sequencing analysis workflow.

Configuration Avg. Makespan (h) Slowdown

Reference 106.36 –
P 138.76 1.30
PI 126.69 1.19
PID 114.96 1.08

Table 2: Average workflow makespan for different configurations of the con-
trollers: (P) proportional, (PI) proportional-integral, and (PID) proportional-
integral-derivative. Reference denotes the makespan of a reference workflow
execution computed offline and under known conditions.

5.4. Experimental Results and Discussion

We have conducted workflow runs with three different types
of controller: (P) only the proportional component is evaluated:
Kp = 1, and Ki = Kd = 0; (PI) the proportional and inte-
gral components are enabled: Kp = Ki = 1, and Kd = 0; and
(PID) all components are activated: Kp = Ki = Kd = 1. The
reference workflow execution is reported as Reference. We
have performed several runs of each configuration to produce
results with statistical significance (errors below 5%).

5.4.1. Overall makespan evaluation
Table 2 shows the average makespan (in hours) for the three

configurations of the controller and the reference workflow ex-
ecution. The degradation of the makespan is expected due to
the online and unknown conditions (no information about the
tasks is available in advance). In spite of the fact that the mean
does not provide accurate estimates, the use of a control loop
mechanism diminishes this effect. The use of controllers may
also degrade the makespan due to task preemption. However, if
tasks were scheduled only using the estimates from the mean,
the workflow would not complete its execution due to lack of
disk space or memory overflows.

Executions using our resilient resource management process
(enabled by PID-inspired controllers) outperform executions
using only the proportional (P) or the PI components. The PID-
inspired controller slows down the application by 1.08, while
the application slowdown is 1.19 and 1.30 for the PI and P

controllers, respectively. This result suggests that the deriva-
tive component (prediction of future errors) has a significant
impact on the workflow executions, and that the accumulation
of past errors (integral component) is also important to prevent
and mitigate faults. Therefore, below we analyze how each of
these components influence the number of tasks scheduled, and
the peaks and troughs of the controller response function. We
did not perform runs where mixed PID, PI, and P controllers

were part of the same simulation (i.e., all controllers that com-
pose the process shown in Figure 4 have the same components),
since it would be very difficult to determine the influence of
each controller.

5.4.2. Data footprint
Figure 6 shows the time series of the number of tasks sched-

uled or preempted during workflow executions. For each con-
troller configuration, we present a single execution, where the
makespan is the closest to the average makespan value shown
in Table 2. Task preemptions are represented as negative values
(red bars), while positive values (blue bars) indicate the number
of tasks scheduled at an instant of time. Additionally, the right
y-axis shows the step response ud of the controller input value
(black/gray line) for disk usage during the workflow execution.
Recall that positive input values (ud(t) > 0, Equation 2) trigger
task scheduling, while negative input values (ud(t) < 0) trigger
task preemption and/or data cleanup tasks.

The proportional controller (P, Figure 6a) is limited to the
current error, i.e., the Decision Agent is driven by the amount
of disk space that is over/underutilized. Since the controller in-
put value is strictly proportional to the error, there is a burst in
the number of tasks to be scheduled during the workflow execu-
tion. This bursty pattern and the nearly constant variation of the
input value lead the system to an inconsistent state (livelock),
where the remaining tasks to be scheduled cannot let the con-
troller reach the steady-state (appears as a black opaque rect-
angle in the figure). Consequently, tasks are constantly sched-
uled and then preempted. In the example scenario shown in
Figure 6a, this process occurs for approximately 4h (between
48-52h), and performs more than 6,000 preemptions. Figure 7a
shows a 1-hour snippet of this behavior (between 49h and 50h),
that characterizes the livelock—the act of scheduling a task is
followed by that task’s preemption. Note that the response of
the controller input value (black line) oscillates with a similar
magnitude. Since the proportional controller has no mechanism
to attenuate the proportional component (current error), the sys-
tem remains in an inconsistent state until some external distur-
bance change the current state of the system. In this particular
example, the livelock is only resolved upon task completion, so
that other tasks can start to run.

Table 3 shows the average number of preemptions and
cleanup tasks occurrences per workflow execution. On aver-
age, proportional controllers produced more than 7,000 pre-
emptions, but no cleanup tasks. The lack of cleanup tasks
indicate that the number of concurrent executions is very low
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Figure 6: Data Footprint: Number of tasks scheduled (blue bars for positive values) and preempted (red bars for negative values) during the lifespan of a workflow
execution (left y-axis). The right y-axis represents the step response of the controller input value ud (black/gray line) during the workflow execution.
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Figure 7: Data Footprint: Number of tasks scheduled (blue bars for positive values) and preempted (red bars for negative values) during the (a) livelock phase for
the proportional controller and the (b) initial phase of the workflow execution. Black/gray lines indicate the controller control signal ud value.

(mostly influenced by the number of task preemptions), which
is observed from the high average application slowdown of
1.30.

The proportional-integral controller (PI, Figure 6b) aggre-
gates the cumulative error when computing the response of the
controller. As a result, the bursty pattern is smoothed along

the execution, task concurrency is increased, and the livelock
is prevented. However, the cumulative error tends to increase
the response of the PI controller at each iteration (both posi-
tively or negatively). As a result, task preemption occurs earlier
during execution. On the other hand, this behavior mitigates
the vicious cycle (livelock) present in the P controllers, and
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Figure 8: Data Footprint: Values for input un(t) (top) and error ue(t) (bottom) for P, PI, and PID controllers shown in Figure 6.

Controller # Tasks Preempted # Cleanup Tasks

P 7225 0
PI 168 48
PID 73 4

Table 3: Average actual number of tasks preempted and cleanup tasks executed
per workflow run when using P, PI, and PID controllers.

consequently the average number of preempted tasks is sub-
stantially reduced to 168 (Table 3). A drawback of using a PI

controller, is the presence of cleanup tasks (48 tasks on aver-
age), which is due to the higher level of concurrency among
task executions. In contrast to the proportional controller, tasks
are gradually scheduled, mostly via backfilling, then disk space
becomes the bottleneck. The excessive use of cleanup tasks
to free space substantially slowdowns the workflow execution
(1.19, Table 2).

The proportional-integral-derivative controller (PID, Fig-
ure 6c) emphasizes the previous response produced by the con-
troller (the last computed error). The derivative component
drives the controller to trigger actions once the current error
follows (or increases) the previous error trend. This behavior is
shown in Figure 7b (it shows a snippet for the first 6 minutes
of the workflow execution). Note that the task scheduling burst
at the beginning of the execution represents the rise time (Fig-
ure 3) from the typical response of a PID controller. The control
loop only performs actions when disk usage is moving towards
an overflow or underutilization state. Note that the number of
actions (scheduling/preemption) triggered in Figure 6c is much
less than the number triggered by the PI controller: the average
number of preempted tasks is 73, and only 4 cleanup tasks on
average are spawned (Table 3).

5.4.3. Memory Usage
Figure 9 shows the time series of the number of tasks

scheduled or preempted during the workflow executions for

the memory controllers. The right y-axis shows the step
response of the controller input value um (black/gray line)
for memory usage during the workflow execution. We
present the response function of a controller attached to
a standard cluster (32 cores, 64GB RAM, Section 5.2),
which runs the population, pair overlap mutations, and
frequency overlap mutations tasks. The total memory al-
locations required to run all these tasks is over 4TB, which
might lead the system to memory overflow states (in case there
is enough disk space available to run multiple concurrent tasks).

When using the proportional controller (P, Figure 9a), most
of the actions are triggered by the data footprint controller (Fig-
ure 6a). As aforementioned, memory does not become an issue
when only the proportional error is taken into account, since
task execution is nearly sequential (low level of concurrency).
As a result, only a few tasks (on average less than 5) are pre-
empted due to memory overflow. Note that the process of
constant task scheduling (∼50h of execution) is strongly influ-
enced by the memory controller. Additionally, the step response
shown in Figure 9a highlights that most of the task preemptions
occur in the standard cluster. This result suggests that actions
performed by the global data footprint controller is affected by
actions triggered by the local memory controller. From Fig-
ure 10a, we observe that the memory controller does not enter
an inconsistent state (livelock), instead it always prompts pos-
itive response values. The approach to mitigate conflicted ac-
tions from multiple controllers enforced by the Decision Agent
(Equation 4, Section 4.3) nullifies this response, since task pre-
emption has higher priority (we do not intend to lead the sys-
tem to an unrecoverable state). The analysis of the influence
of multiple concurrent controllers is out of the scope of this
paper, however this result demonstrates that controllers should
be used sparingly, and actions induced by controllers should be
performed by priority or the controller hierarchical level.

Similar to the PI controller for data footprint, the memory
usage PI controller (Figure 9b) mitigates this effect—the cu-

10



−10

0

10

20

0 50 100
Time (h)

# 
Ta

sk
s 

(S
ch

ed
ul

ed
/P

re
em

pt
ed

)

Preempted Scheduled

1.0

1.5

2.0

(a) Proportional Controller (P)

−10

0

10

20

0 50 100
Time (h)

# 
Ta

sk
s 

(S
ch

ed
ul

ed
/P

re
em

pt
ed

)

Preempted Scheduled

1.0

1.5

2.0

(b) Proportional-integral Controller (PI)

−10

0

10

20

0 50 100
Time (h)

# 
Ta

sk
s 

(S
ch

ed
ul

ed
/P

re
em

pt
ed

)

Preempted Scheduled

1.0

1.5

2.0

(c) Proportional-integral-derivative Controller (PID)

Figure 9: Memory Usage: Number of tasks scheduled (blue bars for positive values) and preempted (red bars for negative values) during the lifespan of a workflow
execution (left y-axis). The right y-axis represents the step response of the controller input value (black/gray line) during the workflow execution. This figure shows
the step response function of a controller attached to a standard cluster (32 cores, 64GB RAM), which has more potential to arise memory overflows.
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Figure 10: Memory Usage: Number of tasks scheduled (blue bars for positive values) and preempted (red bars for negative values) during the (a) livelock phase for
the proportional controller and the (b) initial phase of the workflow execution. Black/gray lines indicate the control signal um value.

mulative error prevents the controller from triggering repeated
actions. Observing the step response um of the PI memory con-
troller and the PI data footprint controller (Figure 6b), we no-
tice that most of the task preemptions are triggered by the mem-
ory controller, particularly in the first quarter of the execution
(see slopes of the black/gray lines). The average data footprint

per task of the population, pair overlap mutations, and
frequency overlap mutations tasks is 0.02GB, 1.85GB,
and 1.83GB (Table 3), respectively. Thus, the data footprint
controller tends to increase the number of concurrent tasks.
In the absence of memory controllers, the workflow execution
would tend to memory overflow, and thus lead to a failed, unre-
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Figure 11: Memory Usage: Values for input un(t) (top) and error ue(t) (bottom) for P, PI, and PID controllers shown in Figure 9.

Control Type Kp Ki Kd

P 0.50 · Ku – –
PI 0.45 · Ku 1.2 · Kp/Tu –
PID 0.60 · Ku 2 · Kp/Tu Kp · Tu/8

Table 4: Ziegler-Nichols tuning, using the oscillation method. These gain val-
ues are applied to the parallel form of the PID controller, which is the object
of study in this paper. When applied to a standard PID form, the integral and
derivative parameters are only dependent on the oscillation period Tu.

coverable state.
The derivative component of the PID controller (Figure 9c)

acts as a catalyst to improve memory usage: it decreases the
overflow and the settling time without affecting the steady-state
error. As a result, the number of actions triggered by the PID-
inspired memory controller is significantly reduced when com-
pared to the PI or P controllers. Figure 10b emphasizes the
gradual increase on the number of tasks scheduled at the begin-
ning of the workflow execution, and the first task preemption
triggered by the data footprint controller.

Although the experiments conducted in this feasibility study
considered equal weights for each of the components in a PID-
inspired controller (i.e., Kp = Ki = Kd = 1), we have demon-
strated that correctly defined executions complete with accept-
able performance, and that faults were detected far in advance
of their occurrence, and were automatically handled before they
lead the workflow execution to an unrecoverable state. In the
next section, we explore the use of a simple and commonly
used tuning method to calibrate the gain parameters from our
process’ controllers inspired by the PID principles.

6. Tuning PID Controllers

The goal of tuning a PID control loop is to make it stable,
responsive, and to minimize overflow. However, there is no
optimal way to achieve responsiveness without compromising

overflow, or vice-versa. Therefore, a plethora of methods have
been developed for tuning PID control loops. In this paper, we
use the Ziegler-Nichols method to tune the gain parameters of
the data footprint and memory controllers. This is one of the
most common heuristics that attempts to produce tuned values
for the three PID gain parameters (Kp, Ki, and Kd) given two
measured feedback loop parameters derived from the following
measurements: (i) the period Tu of the oscillation frequency at
the stability limit, and (ii) the gain margin Ku for loop stability.

6.1. Determining Tu and Ku

The Ziegler-Nichols oscillation method is based on experi-
ments executed on an established closed loop. The overview of
the tuning procedure is as follows [46]:

1. Turn the PID controller into a P controller by setting Ki =

Kd = 0. Initially, Kp is also set to zero;

2. Increase Kp until there are sustained oscillations in the sig-
nal in the control system. This Kp value is denoted the
ultimate (or critical) gain, Ku;

3. Measure the ultimate (or critical) period Tu of the sus-
tained oscillations; and

4. Calculate the controller parameter values according to Ta-
ble 4, and use these parameter values in the controller.

A detailed explanation of the method can be found in [33]. In
this section, we present how we determine the period Tu, and
the gain margin Ku for loop stability.

Since workflow executions are intrinsically dynamic (due to
the arrival of new tasks at runtime), it is difficult to establish a
sustained oscillation in the signal. Therefore, in this paper we
measured sustained oscillation in the signal within the execu-
tion of long running tasks—in this case the individual tasks
(Table 1). We conducted runs (O(100)) with the proportional
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Controller Ku Tu Kp Ki Kd

Data Footprint 0.58 3.18 0.35 0.22 0.14
Memory Usage 0.53 12.8 0.32 0.05 0.51

Table 5: Tuned gain parameters (Kp, Ki, and Kd) for both the data footprint
and memory usage PID controllers. Ku and Tu are computed using the Ziegler-
Nichols method, and represent the ultimate period and critical gain, respec-
tively.

(P) controller to compute the period Tu and the gain margin Ku.
Table 5 shows the values for Ku and Tu for each controller used
in the paper, as well as the tuned gain values for Kp, Ki, and Kd

for the PID-inspired controller.

6.2. Experimental Evaluation and Discussion

We have conducted runs with the tuned PID-inspired con-
trollers for both the data footprint and memory usage. Figure 12
shows the time series of the number of tasks scheduled or pre-
empted during the workflow executions, and the step response
of the controller input value (right y-axis). The average work-
flow execution makespan is 386,561s, which yields a slowdown
of 1.01. The average number of preempted tasks is around 18,
and only a single cleanup task was used in each workflow exe-
cution. The controller step responses, for both the data footprint
Figure 12a) and the memory usage (Figure 12b), show lower
peaks and troughs during the workflow execution when com-
pared to the PID controllers using equal weights for the gain
parameters (Figures 6c and 9c, respectively). More specifically,
the controller input value is reduced by 30% for the memory
controller attached to a standard cluster. This behavior is at-
tained through the weighting yielded by the tuned parameters.
However, tuning the gain parameters cannot ensure that an op-
timal scheduling will be produced for workflow runs (mostly
due to the dynamism inherent to workflow executions) as few
preemptions are still triggered.

Although the Ziegler-Nichols method provides quasi-optimal
workflow executions (for the workflow studied in this paper),
the key factor of its success is due to the specialization of the
controllers, and thereby the process, to a single application.
In production systems, such methodology may not be realis-
tic because of the variety of applications running by different
users—deploying a PID-inspired controller per application and
per component (e.g., disk, memory, network, etc.) may signif-
icantly increase the complexity of the system and the system’s
requirements. On the other hand, controllers may be deployed
in the user’s space (or per workflow engine) to manage a smaller
number of workflow executions.

A key advantage of using a process inspired by the princi-
ples of PID controllers is the ability to identify faults far in ad-
vance before they occur, and to perform pondered corrective
or preventive actions to smoothly mitigate the undesired state.
Additionally, the time required to process the current state of
the system and decide whether to trigger an action is nearly
instantaneous—it simply needs to solve a linear equation. This
strongly favors the use of controller-inspired solutions on the
execution of online distributed workflow applications. More

sophisticated methods (e.g., using machine learning) may pro-
vide better approaches to tune the gain parameters. However,
they may also add a significant overhead.

7. Conclusion

In this paper, we have described, evaluated, and discussed the
feasibility of using the principles of PID controller to develop
an online resilient resource management process to prevent and
mitigate faults and under unknown conditions in workflow ex-
ecutions. We have addressed two common faults of today’s
science applications, data storage overload and memory over-
flow (main issues in data-intensive workflows), as use cases to
demonstrate the feasibility of the proposed approach.

Simulation results using simple defined standalone control
loops (no tuning) show that faults are detected and prevented
before their occur, leading workflow execution to its comple-
tion with acceptable performance (slowdown of 1.08). The ex-
periments also demonstrated the importance of each component
in a PID-inspired controller. We then used the Ziegler-Nichols
method to tune the gain parameters of the controllers (both data
footprint and memory usage). Experimental results show that
the control loop system produced nearly optimal scheduling—
slowdown of 1.01. Therefore, we claim that the preliminary
results of this work open a new avenue of research in workflow
management systems.

Although the process proposed in this paper is inspired by
the principles of PID controllers, actual controllers may yield
better accuracy (a thoroughly study on defining, implementing,
and evaluating PID controllers would be required). We do also
acknowledge that controllers should be used sparingly, and met-
rics (and actions) should be defined in a way that they do not
lead the system to an inconsistent state—as observed in this
paper when only the proportional component was used. There-
fore, we plan to investigate the simultaneous use of multiple
control loops at the workflow and infrastructure levels, to de-
termine to which extent this approach may negatively impact
the system. The analysis of the influence of using multiple con-
current controllers at different levels is challenging because of
(1) the large number of controllers, which can be deployed per
workflow task and related performance metrics, or per execu-
tion node or core; (2) the “chain effect” of distinguished, and
possibly conflicted, actions resulted from the actuator output of
the controllers; and (3) the dynamic behavior inherent to dis-
tributed systems. Future work include the design and imple-
mentation of a solution for analyzing the challenges aforemen-
tioned using an accurate, scalable simulation framework [47],
which will allow us to design a realistic system for usage in
production systems.
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