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Abstract

Invasive alien species continue to proliferate eaase severe ecological impacts. Functional
responses (FRs) have shown excellent utility imljoteng invasive predator success,
however, their use in predicting invasive prey gseds limited. Here, we assessed invader
success by quantifying FRs and prey switching padtef two native predators, the common
sea starAsterias rubens, and the green craBarcinus maenas, towards native blue mussels,
Mytilus edulis, and invasive Pacific oysterSrassostrea gigas. Asterias displayed

destabilising type Il FRs, where@srcinus displayed stabilising type Il FRs towards both
prey species. Both predators exhibited greatechegdficiencies and maximum feeding rates
towards native compared to invasive prey. Both gi@d disproportionately consumed
native mussels over invasive oysters when presamaataneously, even when native
mussels were rare in the environment, thereforieatidg negligible prey switching. We
demonstrate that invasion success may be mediateaigh differential levels of biotic

resistance exerted by native predators.

Keywords
Biotic resistance; Crabs; Frequency dependent poggddnvasive specie®er capita

consumption; Predation; Sea stars
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I ntroduction

The rate of invasive alien species (IAS) introdmgsi is increasing (Seebens et al.
2017, 2018). Many IAS can drive changes in biodiikgr(Molnar et al. 2008), habitat
(Burlakova et al., 2012) and community structuran@ers et al. 2003, Guy et al. 2018), often
leading to novel species interactions between eatand invaders (Skein et al., 2018).
Previously, there has been a sustained focus oeffilxets of invasive predators on native
prey (Dick et al. 2017), with invasive predatorsgaeéved to have greater impacts on
communities than invasive prey (Salo et al. 2007 latter can, however, establish in large
numbers with the potential to displace native sge{Burlakova et al., 2000) and alter
predator-prey and competitive interactions (Waseat.e2015). Predicting the outcomes of
such species introductions has been elusive agdigdawith contradictory meta-analyses of
species traits and lack of application of apprdpriaethods (Dick et al. 2014).

Functional responses (i.e. resource use as a mnatiresource density), and prey
switching (“frequency dependent predation”), ardl Weown, fundamental ecological
concepts, however, invasion ecologists have besmtsl capitalise on their use in assessing
and predicting ecological impacts of invasive specComparative functional response (FR)
analysis has shown excellent utility in assessimy@edicting invader impacts (Dick et al.
2014, 2017, Laverty et al. 2017), but with littigpdication to biotic resistance (Twardochleb
et al. 2012). Comparative FRs achieve this bectnesequantify the relative magnitude of
invaderversus native equivalenper capita effects, that then translate into population
consequences for native resources such as prexsgBack et al. 2017). Prey switching
may complement FR methods (Cuthbert et al. 20X8bloth approaches can inform
population level outcomes of species interactiémsy switching by predators can impact
prey population stability by controlling abundanéy species while simultaneously

providing refuge for scarce prey (Murdoch 1969)udhf invading prey are consumed by
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native predators that can readily switch betwesnurces, then some level of biotic
resistance toward the invader may occur (Sousk, &089; Carlsson et al., 2011).
Conversely, predators that do not exhibit suchawig behaviour may reduce the
abundance of one prey type while allowing the iaseeof another. Thus, in situations where
invasive prey are consumed at a lesser rate tharemaey, or are ignored completely, the
reduced predation pressure on invasive prey alatigoontinuous removal of native
competitors is likely to exacerbate the invasiont(®ert et al. 2018a,b). Although this
concept appears elementary, there is a distinktdamvestigation into prey switching,
especially with regards to invasive species.

The Pacific oysteiCrassostrea gigas, is one of the most successful invertebrate
invaders worldwide (Ruesink 2007, Herbert et all&0and has been documented to colonise
and flourish on beds of the native blue mudgetjlus edulis (e.g. Kochmann et al. 2008).
Beds ofM. edulis that are invaded b§. gigas can experience a shift in the dominant
ecosystem engineer (Kochmann et al. 2008, Reigke 2017a) which may lead to
implications for the native community. Not only hasster reef formation been suggested to
alterM. edulis population size structure by reducing predatiosmall mussels (van der Zee
et al. 2012), they can also negatively affect forggn higher trophic levels (Markert et al.
2013). However, invasions by Pacific oysters hawdet to catastrophic declines in native
species and complete dominance of benthos (Re&e2017b) as has been the case with, for
example, zebra mussels in many freshwater ecosggRitciardi et al. 1996, 1998). Thus,
we expect to find evidence that Pacific oysteréesitdome degree of biotic resistance from
native species, particularly by predators suchralsscowing to their generalist feeding nature
(Walne & Davies 1977).

Blue mussels provide an important and abundant fesdurce for a range of

intertidal and subtidal predators including birsisa stars, and crabs (Ebling et al. 1964;



101 Paine, 1974; Nehls et al., 1997). Throughout Eurtpe of the main invertebrate predators
102  of M. edulis are the common sea stAgterias rubens, and the European green crélaycinus
103  maenas (Dolmer, 1998; Murray et al., 2007). Seasonal svirag of A. rubens onto beds of
104 M. edulis has the potential to destroy local populationsr€d®82) andC. maenas has been
105 found to have serious impacts on commercially vakianussel beds (Murray et al., 2007).
106  Although the diets oA. rubens andC. maenas often contain mussels, they are considered
107  generalist predators (Miron et al., 2005). Thiseyahst feeding nature suggests an ability to
108  switch between prey species, or show strong prefiatdeeding on some species, depending
109  on relative abundances available. Mascar6 & Se@@ll(Pobserved consumption ©f gigas
110 by C. maenasthus, these native predators may potentially esarte level of biotic

111  resistance towar@. gigas, which may reduce invasion success, but also e2dompetitor
112  abundance, hence aiding invader success.

113 Here, we thus employ functional response and psétglsing experiments to identify
114  density-dependent predation rates and prey swighrieference of predators towards both
115 invasive and native prey, in isolation and whersprneed simultaneously. Using two

116  dominant native predators, the common sea Astarias rubens, and the green crab,

117  Carcinus maenas, we aimed to investigate predation of the native ImusselM. edulis, and
118  the Pacific oysterC. gigas, and the balance of predator driven biotic reaisteor facilitation
119 of C. gigas.

120 Methods

121 Animal collection and maintenance

122 Common sea star8, rubens, were collected by hand from shallow waters in

123 Strangford Lough by snorkelling whilst green crabsmaenas, were collected using baited
124  crab pots from a rocky shore within 50 m of the st@aa collection site (54° 230" N, 05°

125 34 29" W). Animals were maintained at Queen’s Marine Lrabary, Portaferry in through-



126  flowing, sand filtered seawater (13 °C £ 1 °C) pwairom the adjacent Strangford Lough.
127  Sea stars were fed whole mussels (> 40 mm shefifigad libitum and held in uncovered,
128  ~500 L tanks allowing natural light conditions taro weeks prior to feeding trials. All sea
129  stars were size matched for experimental use wakimum arm lengths measuring 70 — 90
130 mm. Green crabs were fed raw herring every twhitee days and were held under similar
131  conditions to the sea stars for a minimum of onekn@ior to experiments. Male crabs were
132  selected to avoid confounding effects of sex amd Biatched with respect to carapace width
133 (60-70 mm) to minimise variations due to sex azé.9Dnly individuals free of parasites and
134  with both claws intact were used in the experimeatsr to feeding trials, both sea stars and
135  green crabs were starved for 48 hours to standahdisger levels. Survivability of all

136  predators were monitored in the laboratory foeast one week after the experiments to

137  ensure all individuals were healthy at the timéeeiding. Sea star and green crab

138  experiments were conducted in June 2018 and A&fis, respectively.

139 The prey, juvenile native blue mussé¥tilus edulis, were collected by hand from a
140 local rocky shore (54° 283" N, 05° 32 26" W), and juvenile invasive Pacific oysters,

141  Crassostrea gigas, were obtained commercially (Guernsey Sea FarmisGtiernsey). Prey
142  were maintained under the same conditions as pedd&rey animals used in feeding trials
143 had shell lengths of 15 — 20.99 mm, a size whichast often consumed by crabs with

144  carapace widths used here (Mascar6 & Seed, 20@tpaavoid any confounding effects of
145  prey size. Althougi, rubens may prefer larger prey than offered here (Sai@l2this is

146  likely driven by refuge provision. Dolmer (1998)wever, observed no size selection of prey
147 by A. rubens when offered in isolation.

148  Feedingtrials

149  Functional responses (FRSs)
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For sea stars, feeding trials were conducted ir 36 x 18 cm arenas filled with 15
litres of continuously aerated, sand filtered séampumped from the adjacent Strangford
Lough, to which the sea stars were previously a@tked. For the FRs, predators were
presented with either native mussel or invasivaerysrey at six densities (1, 2, 4, 8, 15 or
30; n = 4 per experimental group) which were added th ed the arenas five minutes before
the addition of a predator. Trials started at 0100 lasted 48 hours, after which predators
were removed and remaining live prey counted. Dubeé number of sea stars (n = 40)
necessary for the experiment (n = 48 trials), irthlials were reused until sufficient
replication was complete. Individuals were not esqabto the same treatment twice to avoid
pseudoreplication.

For green crabs, feeding trials were conductedin 36 x 23 cm arenas covered
with plastic mesh (1 cm mesh size) to allow natlighit to penetrate but prevent crabs from
escaping. Running sea water, pumped from the adj&teangford Lough, was delivered to
the arenas via hoses supplying water at a raté &f=mir’. For the FRs, predators were
presented with either native mussel or invasivdeerywrey at six densities (2, 4, 8, 16, 32 or
64;n> 3 per experimental group). Native mussels natedthched to the base of the arena
with byssus threads and invasive oysters were adherthe base of the arena with a small
amount of epoxy putty to simulate natural attachm&ttachment of prey to the bottom of
experimental arenas was necessary for feeding trigh green crabs to ensure prey were not
washed away or moved by the running water. Prayalsiwere added to each of the arenas
13 hours prior to the feeding period. For consisgetrials started at 09:00 and lasted 8
hours, after which predators were removed anddehmming live prey counted. For both
predators, controls to capture background mortalifgrey included one replicate of each
experimental group in the absence of a predator.

Prey switching
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Predators from FR experiments were reused for pratghing experiments after a
48-hour starvation period. Switching experimentsengerformed under the same conditions
as the FRs for each of the two predators. For prgi switching experiments, native mussels
and invasive oysters were added simultaneouslyendifferent ratios (0:20, 5:15, 10:10,
15:5, 20:0; sea stams> 7 replicates per experimental group; green cnabss replicates per
experimental group). Sea stars were allowed to fiee#4 hours with consumed prey being
replaced after 12 hours to maintain nominal préipsaGreen crabs were allowed to feed for
two hours with consumed prey being replaced evBmnihutes to maintain nominal prey
ratios. For both predators, controls to captur&k@pamind mortality of prey included one
replicate of each experimental group without a ated
Satistical analyses

All statistical analyses were undertaken in ‘R’sien 3.4.2 (R Development Core
Team 2017).

Functional responses

Overall prey consumption in FR experiments wittpexs to the factors ‘prey species’
and ‘prey density’ for each predator type was camghaising generalised linear models
assuming Poisson distributions and log links asitowere not overdispersed in relation to
degrees of freedom.

Functional response analysis was undertaken usenrair’ package (Pritchard et al.
2017). Logistic regression considering the proportf prey consumed as a function of
initial prey density was used to determine FR typeg/pe Il FR is determined categorically
by a significantly negative first order term antype Il by a significantly positive first order
term followed by a significantly negative secondarterm. Akaike Information Criterion
(AIC) was applied to select FR models which minedisnformation loss. We fit flexible FR

models for non-replacement of prey (Real 1977, iBst®’Neill et al. 2016):
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Ne = No(1 — exp (bNJ (AN, = T)))
whereNe is the number of prey eate¥ is the initial prey densityy is the search coefficient,
g is the scaling componerit,s the handling time, antlis the experimental time.
Categorically, type Il FRs are indicated wigen 0, and wheig > 0 the FR becomes
increasingly sigmoidal. Here, when type Il FRs wiedicated q was fixed at 0 and when
type 11l FRs were indicatedj was fixed at 1. Theambert W function was implemented to fit
the models to the data (Bolker 2008). Non-paraméiptstrapping (n = 2000) was used to
produce 95 % confidence intervals (Cls) around®Recurves (Pritchard et al. 2017),
enabling results to be considered at the populdéieel and thus differences to be inferred on
the basis of Cl overlaps.

Prey switching

In prey switching trials, prey ratios of 5:15, 10:4nd 15:5 were formally included in
analyses to omit singularities in prey choice franalyses (0:20 and 20:0). Overall
consumption was examined using generalised lin@sgdreffects models using the package
‘Ime4’ (Bates et al. 2015), with ‘proportion avdila’ integrated as a between factor and
‘prey species’ as a within factor.

Chesson’s selectivity index was used to assessppedgrence of sea stars and green

crabs separately towards invasive oysters (Chek$08, 1983):

o = (ri/pi)
bOXTL(5/p))

wherer; is the proportion of prey tygdn the dietp; is the proportion of prey type
available mis the number of prey types,is the proportion of prey tygen the dietp; is the
proportion of prey typ¢ available. The value a@f ranges from 0 to 1 withy > 0.5 (1)

inferring positive preference; < 0.5 inferring negative preference, andg 0.5 inferring no
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preference for either prey type. Chesson’s seliggtivdices were transformed to reduce
extremes (Os and 1s):

a;(n—1)+ 0.5
n

ar =

whereo is the transformed output and n is the sample Biegta regression was then used to
compare observed values towards invasive oysters with predictedi@slunder no
preference (i.e. 0.5) across proportions availabfearately for each predator type using the
‘betareg’ package in R (Cribari-Neto & Zeileis 2010

Results

Functional Responses

Prey survival in controls of both FR experimentswa9 % thus indicating that prey

were healthy and mortality in all experimental gyewould be attributed to predation.

32~ a) 64 — b)
24 - 48 —
O
(0]
1S
3
2
o 16 = 32 —
(8]
>
R R~ IR P2
o -
& s
8 - 16
0 | I | \ g k£ I | \ J
0 6 12 18 24 30 0 16 32 48 64
Initial prey density Initial prey density

Figure 1. Functional responses of a) the commarst® Asterias rubens and b) the green
crab,Carcinus maenas, toward invasive oyster§rassostrea gigas (red), and native mussels,

Mytilus edulis (blue), with bootstrappeadh & 2000) 95 % ClIs. Note difference in axes scales.
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For sea stars, overall, significantly more nativgssels were consumed than invasive
oysters ¢* = 40.82, df = 1, p < 0.001) and significantly mprey were consumed when
greater densities were supplied € 173.12, df = 5, p < 0.001). A significant ‘pregecies x
prey density’ interactionyf = 27.13, df = 5, p < 0.001) reflected greater comstive
differences in favour of native mussels at higheymgensities (Fig. 1a).

Logistic regression revealed that sea stars exailtyipe Il FRs towards native
mussels and invasive oysters (Table 1). Sea starbited a significantly higher FR towards
native mussels than towards invasive oysters, Githdivergent across most prey densities
(Fig. 1a). The search coefficielt,was higher toward native mussels than invasisteny
(Table 1) and handling timé, tended to be lower toward native mussels (Taple 1
Maximum feeding rates, ifi.e. FR curve asymptote), were thus higher wharsaming
native mussels as compared to invasive oysterddTlalt-ig 1a).

Overall, green crabs consumed significantly moteszaanussels than invasive
oysters ¢* = 17.37, df = 1, p < 0.001) and consumption ineegaunder greater prey densities
(y* = 463.34, df = 5, p < 0.01). A significant ‘prayesies x prey density’ interactioyf =
27.13, df = 5, p < 0.01), reflected increased comsion of native mussels compared to
invasive oysters under low-intermediate prey dessivhich is mirrored in the FR (Fig. 1b).

For green crabs, results of logistic regressiorevegiuivocal between types Il and IlI
(Table 1), however, AIC indicated the type Ill mbdas the best fit. Green crabs exhibited a
type Il FR toward invasive oysters. Functionalp@sse Cls were divergent at low prey
densities but converged above densities of 20 (HYy.As with sea stars, the search
coefficient,b, was higher towards native mussels than invasygeeos (Table 1) and the
handling timeh, of native mussels was lower compared to invasyaters (Table 1).
Maximum feeding rates, i/therefore tended to be higher towards native glsg3able 1,

Fig. 1h).

11
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Table 1. Results of logistic regression for bothetyl and type Il models of the common sea
star,Asterias rubens, and the green craBarcinus maenas, towards invasive oysters,
Crassostrea gigas, and native mussell§)ytilus edulis, considering prey eaten as a function of
prey density. Terms marked * indicate significartis. Parameter estimates resulting from

flexible FR models are shown.

Asterias rubens Carcinus maenas
Prey species C.gigas M. edulis C. gigas M. edulis
Logistic regression
Type Il FR
First term -0.029 -0.041 -0.004 -0.036
P value 0.026* 0.006* 0.323 < 0.001*
Type Il FR
First term -0.181 -0.104 0.070 0.122
P value 0.016* 0.265 0.002* < 0.001*
Second term 0.004 0.002 -0.001 -0.002
P value 0.040* 0.489 < 0.001* < 0.001*
Parameter estimates
b 0.703 2.046 0.077 0.273
h 0.087 0.026 0.036 0.027
q 0 0 1 1
1/h 11.494 38.760 30.769 37.175

Prey switching

In sea star switching trials, overall, consumptidémative mussels was greater than
invasive oystersyf = 10.55, df = 1, p < 0.01), and prey proportionailable did not
significantly influence consumption(= 5.53, df = 2, p > 0.05). However, a significgrey
species x proportion available’ interactigf £ 9.53, df = 2, p < 0.01) reflected greater
consumptive differences in favour of native musgéien under equal prey proportions with
invasive oysters.

Chesson'’s selectivity indices toward invasive osteere found to be significantly
lower than the null preference value of Q5% 22.29, df = 1, p < 0.001), thus indicating

positive preference for native mussels overall (&) Fig 2). This effect was consistent

12
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across all proportions as there was no signifigamety species x proportion available’
interaction ¢? = 2.19, df = 2, p = 0.33), reflecting a lack oépiswitching and consistent
disproportionate consumptive preference for natiwssels over invasive oysters by sea stars
(Fig 2).

Overall, green crabs consumed significantly motezaanussels than invasive
oysters ¢* = 10.48, df = 1, p < 0.001). Consumption tendebegreater when prey were
available in greater proportions, but this effeeswot significantf = 2.85, df = 2, p >
0.05). Consumption rates of each prey species emrsistent across prey ratios as the ‘prey

species x proportion available’ interaction wassighificant §* = 5.69, df = 2, p > 0.05).

Table 2. Chesson’s selectivity indices £ S.E.) for the common sea stasterias rubens,
and the green cralarcinus maenas, toward invasive oyster§yrassostrea gigas, and native
musselsMytilus edulis, at varying prey proportion availabilities. Seleity indices above

0.5 indicate positive preference whilst indicesole0.5 indicate negative preference of a

prey type.

Predator:prey combination Proportion available Ghbes; £ S.E.
Asterias rubens

C.gigas 0.25 0.19 £0.08
0.50 0.11 £0.05
0.75 0.32+0.13
M. edulis 0.25 0.68 £0.13
0.50 0.89 £0.05
0.75 0.81 +£0.08
Carcinus maenas
C.gigas 0.25 0.22 £ 0.07
0.50 0.44 +0.04
0.75 0.24 £0.05
M. edulis 0.25 0.76 £0.05
0.50 0.56 £ 0.04
0.75 0.78 £ 0.07

13



292

293

294

295

296

297

298

Chesson'’s selectivity indices towards invasive egstvere, again, significantly lower
than the null preference values of 0.5 overglH31.49, df = 1, p < 0.001), thus indicating
positive preference of native mussels over invasixsers by green crabs (Table 2; Fig. 2b).
A significant ‘prey species x proportion availabileteraction ¢* = 12.26, df = 2, p < 0.01)
reflected reduced preference of native mussels \akaitable at proportions of 0.5, but a
lack of prey switching was evidenced overall giwedisproportionate preference for native

mussels across all choices (Fig. 2).
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299  Figure 2. Proportion of eith&rassostrea gigas (red) orMytilus edulis (blue) consumed

300 (mean = S.E.) as a function of their respectivgoproonal availability for a) the common sea
301 star,Asteriasrubens, and b) the green craBarcinus maenas. The solid line indicates

302 expected values if no prey preference was to odde.dashed line indicates a hypothetical
303 prey switching pattern.
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Discussion

With the rate of spread of invasive alien spedi@S) showing little sign of abating
(Seebens et al. 2018), invasion ecology needsteftemethodologies for assessing and
predicting the success and impacts of establiggmadrging, and future IAS (Dick et al. 2017,
Cuthbert et al 2018b, Dickey et al. 2018). Funaiaesponses (FRs) have shown excellent
utility in predicting the success and impacts ofisive predators (Dick et al. 2014, Bovy et
al. 2015, Xu et al. 2016, Laverty et al. 2017), fget studies examine FRs toward invasive
prey (but see Twardochleb et al. 2012). While F&shbeen shown to offer good predictive
ability of IAS impacts (Dick et al. 2017), the insion of prey switching experiments, with
more than one prey species provided simultaneoosiyd further enhance our knowledge
(Cuthbert et al. 2018b). This is because FRs mdesf type (i.e. shape of curve) and
magnitude (i.e. maximum feeding rates), plus swvniglii.e. “frequency dependent
predation”), help quantify the population outcorsésonsumer behaviour towards resources
(e.g. predator: prey, see Dick et al. 2014).

Pacific oysters have invaded ecosystems worldwidédnave not had drastic impacts
or caused competitive exclusion of other bivalvecsgs (Reise et al. 2017b). To quantify this
pattern of invasion we combined FR and prey switgl@xperiments using two native
predators, the common sea shsterias rubens, and the green craarcinus maenas,
toward the native blue mussBlytilus edulis, and invasive Pacific oysteCrassostrea gigas.
Asterias rubens exhibited a higher-magnitude type Il FR towdtdedulis compared tcC.
gigas, while C. maenas showed type Il FRs towards both prey specied) sirnilar
maximum feeding rates between prey types but iseckaredation upon natiké. edulis,
particularly at low densities. We also found th&iew prey were offered simultaneously, both

predators disproportionately consumed naliveedulis over invasiveC. gigas prey, even
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328 whenM. eduliswas rare in the environment, thus suggestinglkadépredator-driven biotic
329 resistance towards. gigas invasion.

330 AlthoughA. rubens exhibited destabilising type Il FRs towards boteypspecies,

331 increased search efficiency and decreased hanlieg were shown toward natiiv

332 eduliscompared to invasiv€. gigas. Consequently, our results indicate tAatubens exerts
333  strong destabilising impacts toward natMeedulis due to high predation rates at low prey
334 densities and lower handling times which drive mggiximum feeding rates (Dick et al.

335 2013), and reduced predation pressure upon invasigigas. In particular, lower handling
336 times ofA. rubens andC. maenas towardsM. edulis compared t&. gigas prey suggests that
337 predators are quicker to open, consume, and dilgestative prey, which may be a function
338  of shell morphology or thickness, even though sleeljth between prey species was

339  matched in experiments (Griffiths & Seiderer 1980).

340 Whilst green crabs displayed greater similarittemiaximum feeding rates between
341  prey species, feeding rates were considerably higheards the native prey. In contrast to
342 sea stars, green crabs displayed equivocal tygeditype 11l FRs toward nativd. edulis

343 and a more stabilising type Il FR toward invasivegigas. Although unexpected due to the
344  experimental setup, where type Il FRs tend to emefigen predators cannot “switch”, type
345 |ll FRs are likely to be encountered under nataoalditions and have previously been found
346  toward mussel prey (Griffen & Delaney 2007). Tyge-Rs suggest the presence of a low
347 density refuge for prey, reducing the risk of ptemtawhen prey fall below a certain

348 threshold (Murdoch & Oaten 1975). The higher seaf@hiency whichC. maenas displayed
349  toward nativeM. edulis suggests a greater predatory impact due to atigteeof prey

350 consumption at low prey densities, which may beem®stabilising for native mussel

351  populations at low densities.
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352 For generalist predators suchAagubens andC. maenas, invasive prey species may
353  provide a novel resource should they be recograsqatey. Ruesink (2007) found significant
354  predation upoI€. gigas on rocky shores suggesting these ecosystemsleagctresistance
355 toward the invasion. Here, althoughrubens were offered loose prey al maenas were
356  offered prey under more ‘realistic’ conditions wéley prey animals were attached to the
357  substratum, when nati\Md. edulis and invasiveC. gigas were provided simultaneously, we
358 found that neither predator showed evidence of pratching behaviour. Nativigl. edulis

359  was disproportionately consumed Ayrubens across all prey species proportion

360 combinations, thus sea stars actively sought nMivelulis prey, even when availability was
361 low. Mascard & Seed (2001) investigated prey choid@. maenas towards several bivalve
362  species, however, the proportional availabilitiethe prey species were not altered. Such
363 frequency dependent predation is often overlooietlis considered a major driver of

364 genetic, phenotypic, and species diversity (Cla%@2, Greenwood & Elton 1979, Allen
365 1988, Whiteley et al. 1997). Species or polymortbias are rare in the environment may be
366  disproportionately ignored by predators allowingitrabundance to increase amck versa,
367 thus substantially contributing to diversity chasg€he lack of switching by both predators
368 indicates that even when occupying low proportiohgrey availability, nativéM. edulis are
369 consumed at disproportionately high rates. InvaSivgigas are consumed in low numbers
370 irrespective of availability, and are largely rgkel from predation pressure, contrary to the
371  alternative prey hypothesis (Angelstam et al. 1984)s low level of predation suggests a
372 small amount of predator driven biotic resistarmeardsC. gigas which corroborates with
373 its limited ecological impacts (Reise et al. 2017b)

374 Naiveté due to lack of co-evolutionary history iscanmon concept in invasion

375 ecology however the concept is most often appbeubtive prey in response to invasive

376  predators (Cuthbert et al. 2018a). Also, it has hAksen shown that conditioning predators to
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prey species can occur (Hall et al. 1982). The gied in this study, however, were collected
from a site wherd/l. edulisis common whereds. gigas is scarce. The feeding bf. edulis

to A. rubens prior to experimental trials is thus unlikely tave provided any extra
conditioning to their natural state. The predatmse were thus faced with a novel prey
choice and the results provide insights into priedgbatterns at initial states 6f gigas
invasion. Although the preference fdr edulis overC. gigas appeared greater féx. rubens
compared t&. maenas, the lack of significant switching shown by bottegators further
suggests native predator naiveté tow&dgigas, and that laboratory conditioning was
unlikely a driver of these results. The preferepattern observed may be because neither
predator recognises the novel chemical cu€.@jigas as potential prey. Certainly, prolonged
exposure of predators €@ gigas as an available prey source may alter these poedat
patterns, however we show that biotic resistandsitial invasions is unlikely. Chemical
cues are understood to play several roles in poegaey dynamics (Weissburg & Zimmer-
Faust 1994, Leonard et al. 1999, Griffiths & Ridson 2006) and are commonplace in the
aguatic environment. Invasive alien species haea lseown to produce chemical cues
which may facilitate their invasion by inducing lasfoural displacement of native species
(Raw et al., 2013). Further investigation into cleahdetection of invasive prey by native
predators should be investigated as evolutionapgeance and learning may increase
predation on invasive prey species in the future.

Although the mechanism as to wlBygigas consumption by predators is reduced in
this study needs further investigation, comparisafr@edation towards trophically similar
native and invasive prey gives further insighte iptedator-driven biotic resistance towards
invasions. The disproportionate consumptioiMotdulis overC. gigas may facilitate
invasions by reducing predation pressure on inegSiygigas and removing potential

competitors for resources (i.e. space) from théesyslf such patterns were to occur in the
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field, then predation pressure may further increasardsM. edulis populations.

Conversely, it may be predicted that habitat coxiptgrovided by adulC. gigas may

create structural refugia which could additionallier consumption by predators (Grabowski
& Powers, 2004; Alexander et al., 2012; Bertolinak, 2018) and lead #d. edulis
persistence after invasion (Reise et al. 2017b).

Of course, other life history traits also contrbdt invasion success, such as the high
growth rates, or the high fecundity of invaderso@st 2010). However, the results presented
here corroborate with field patterns@fgigas invasion (e.g. Reise et al. 2017b), and further
inform patterns of invasion success potentiallyraytio the lack of biotic resistance shown
by native predators. In our FR experiments, greabhscconsumed similar numbers\of
edulis andC. gigas at high densities, suggesting they may exert ston&ol over both
invasive and native populations. The preferencé/faedulis overC. gigasin the prey
switching experiments further informs their intdra, wherebyM. edulisis
disproportionately consumed whilSt gigas is alleviated from predation pressure, inferring a
lack of predator-driven biotic resistance towa@dgjigas invasion. Thus, we advocate the
combined use of functional responses and prey Bingjcexperiments to understand and
predict invader success, impacts on native popuiatiand strength of biotic resistance from

native communities.
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Using functional responses and prey switching to quantify invasion success of the Pacific

oyster, Crassostrea gigas

Patrick W.S. Joyce, James W.E. Dickey, Ross N. Cuthbert, Jaimie, T.A. Dick, Louise

Kregting

» Functiona responses and prey switching may predict invader success

» Predation by two predators towards native and invasive bivalve prey was quantified

» Both predators consumed native prey at a higher rate than invasive prey

» Predators disproportionately consumed native prey when prey occurred simultaneously

» Invasion successis mediated through differentia levels of biotic resistance



