Beamspace Modulated Circular Array

Published in:
IEEE Transactions on Antennas and Propagation

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2019 IEEE. This work is made available online in accordance with the publisher's policies. Please refer to any applicable terms of use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and/or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
Beamspace Modulated Circular Array

Anil Chepala, Harsh Tataria, and Vincent Fusco, Fellow, IEEE

Abstract—In this paper, we show how each independent spatial mode of a circular array can be individually encoded and collimated to yield high ergodic spectral sum efficiency of an uplink mobile communication system. We show that every mode generated with the help of Rotman Lens is orthogonal to every other mode. This reduces the spatial cross-coupling and thereby enhances data throughput. We also show that unlike other phased arrays, the circular array has the ability to detect direction of arrival (DOA) from the backward half-space of the array to advantage. Furthermore, we show that because of its symmetry, the array can unlike linear arrays, create beam that can be scanned over 360° in azimuth scan plane. A proof of principle multi-mode circular array (MMCA) for the purpose defined above is designed, simulated and tested.

Index Terms—Circular Array, Envelope Correlation Coefficient, Ergodic Sum Spectral Efficiency.

I. INTRODUCTION

An advantage of circular arrays is their far-field radiation pattern symmetry, which can be exploited in order to electronically scan a beam 360° with minimal variations in the gain and pattern shape [1]–[5]. This far-field pattern can be expressed as summation of individual component patterns called mode patterns. A mode is a unique set of excitation surface current that radiates to generate corresponding unique mode pattern. A combination of these mode patterns represents the far-field radiation pattern of the circular array. The synthesis of these spatial modes using beamforming networks was presented by Sheleg [1]. These modes have the special property that they are spatially orthogonal to each other, which we exploit here in order to enhance the data throughput in the channel. Here we use a Rotman lens (RL) beamformer for exciting the modes and evaluate their orthogonality by computing the Envelope Correlation Coefficient (ECC) [6]. When each of these modes are encoded individually and transmitted, we show that the ergodic sum spectral efficiency (ESSE) of an uplink mobile communication system can be improved.

The aim of this paper is to demonstrate how each mode of a circular array (CA) can be separately encoded and collimated to increase cellular system spectral efficiency, as well as spatial coverage. The theoretical aspects of single and multiple beam operation of a CA are discussed in Section II. Section III describes the novel contribution of this paper, wherein, each individual mode of the CA when independently excited can be used to provide N (the number of radiating elements) in the CA) orthogonal modes, each of which is capable of carrying its own data stream. This is illustrated by showing that even when a physical Rotman lens (RL) is used for beam-forming the resulting radiation patterns have low envelope correlation coefficients (ECC). Consequently, this opens the way for enhancing cellular system spectral efficiency. Section IV describes the available spectral efficiency estimates for a multiple user multiple-input-multiple-output (MU-MIMO) situation. Finally, Section V concludes the paper.

II. CIRCULAR ARRAY OPERATION AND MULTIPLE BEAM FORMING

The classical architecture of a CA (see Fig.1) in transmit mode is described in [1], [4], [5], as well as references therein. The mode basis for operation of a CA can be understood as summation of individual component patterns called mode patterns. A mode is described in [1], [4], [5], as well as references therein.

A. Chepala and V. Fusco are with the Institute of Electronics, Communications, and Information Technology(ECIT), Queen’s University Belfast, BT3 9DT, UK (e-mail: a.chepala@qub.ac.uk and v.fusco@ecit.qub.ac.uk).

H. Tataria was with the Institute of Electronics, Communications, and Information Technology(ECIT), Queen’s University Belfast, BT3 9DT, UK. He is now with the Department of Electrical and Information Technology, Lund University, SE22100, Lund, Sweden (e-mail: harsh.tataria@eit.lth.se).

This work was supported by Queens University Belfast Scholarship and EPSRC under the grants EP/P000673/1, EP/N020391/1.

Fig. 1. Multimode circular array architecture.

\[
F(\phi) = \sum_{m=-M}^{M} C_m e^{jm\phi}, \quad \text{for } -M \leq m \leq M, \quad (1)
\]

This represents the transmit operation of the CA. Where \(m \) mode number is an integer and \(M \) is the highest mode index. In case of receive operation the mode excitations can be computed by

\[
C_m = \int_0^{2\pi} F(\phi) e^{-jm\phi} \quad (2)
\]

\(\phi \) = azimuth angle and \(m \) = mode number

If \(B_K e^{j\beta_k} \) is the current applied to the \(K \)-th input port of a beamforming network, the outputs of which are connected to...
The modes in Eq. (3) can be excited independently of the CA elements, the resultant $A_J e^{j\beta J}$ on the J–th radiating element is given by

$$A_J e^{j\beta J} = \frac{1}{\sqrt{N}} B_K e^{j\beta_k} e^{jKJ(2\pi/N)}$$ \hspace{1cm} (3)

Fig. 2 shows the simulated modes for a 9.3 GHz 12-element CA prototype consisting of coaxially fed microstrip patch elements chosen for physical compactness and ease of manufacturing, each with better than 10 dB return loss. These are arranged around a 60 mm diameter circle as shown in Fig. 1. Each of the modes in Eq. (3) can be excited independently by applying a suitable $m \times 360/N$ phase ramp to the radiating elements where m is the mode number and N is the total number of elements in the CA. This is readily achieved by feeding the beamports of a RL [7], due to its simple 2D realization in microstrip technology.

A. Combined modes using Rotman Lens

The modes on a circular array are excited by using a RL. Each RL beam port excitation generates an individual mode on the array. The modes exhibit linear phase response up to mode 4 with the higher order modes having greater amplitude ripple and less linear phase responses. Hence, only modes up to ±4 are used for encoding when beamforming.

The modes once phase aligned [5] can be combined to beam form by simultaneously exciting multiple beam port pairs on the RL. This combination and the sequential addition of the mode pairs results in increased collimation of the beam formed.

B. Beamsteering Using Rotman Phase Ramp

The formed beam can be steered in azimuth by providing a phase ramp at the input of the RL [7]. This phase ramp when applied at the inputs of the RL, using variable phase shifters, will produce corresponding rotation in the far-field as shown in Fig. 3. The CA with RL is a linear system and it is therefore possible to form multiple orthogonal beams simultaneously in desired directions through superposition of steering vectors.

III. MODE ORTHOGONALITY OF THE CIRCULAR ARRAY USING A ROTMAN LENS BEAMFORMER

Next, we check the orthogonality between the measured far-field patterns associated with each circular array mode, which is a necessary requirement for minimizing spatial cross coupling between imprinted data streams as a means for enhancing data throughput. This is done by calculating the ECC [6], of each of the CA modes. \tilde{F}_1 and \tilde{F}_2 are the far-field radiation patterns whose orthogonality is evaluated by computing ECC as given in equation below

$$\rho_c = \frac{\left| \int \int_\Omega [\tilde{F}_1(\theta, \phi) \cdot \tilde{F}_2^*(\theta, \phi)] d\Omega \right|^2}{\int \int_\Omega |\tilde{F}_1(\theta, \phi)|^2 d\Omega \cdot \int \int_\Omega |\tilde{F}_2(\theta, \phi)|^2 d\Omega}.$$ \hspace{1cm} (4)

The 3D far-field patterns for each of the modes from the simulation are recorded at 9.3 GHz and ρ_c is computed. In Table-I, the peak along the diagonal represents the auto correlation and the other positions represent the cross-correlation between the mode patterns. The ECC when computed at frequencies around the design centre frequency suggest that 22% correlation bandwidth should be achievable for $\rho_c \leq 0.02$.
is equipped with a circular array of \(N \) antenna elements, receiving independent data streams from \(L \) single–antenna terminals \((L \ll N)\). The terminals are uniformly distributed in a coverage area of the BS with a radius \(R_c \), where the BS is located at the origin of this circle. The transceiver unit at the BS is implemented in this case via a RL, while for simplicity, the baseband combiner is implemented via a maximum–ratio combining. Since each terminal has a single receive antenna, one RF chain is assumed at each terminal, in contrast to the \(L \) RF chains assumed at the BS to demultiplex \(L \) data streams at a given time instance.

Keeping the above in mind, we model the \(N \times 1 \) uplink propagation channel between terminal \(k \in 1, 2, \ldots, L \) and the BS via the classical double–directional channel description given by [8]

\[
h_k = \frac{1}{\sqrt{C}} \sum_{c=1}^{C} \sum_{\ell=1}^{L_p} \alpha_{c,\ell}^{(k)} a_{\text{BS}}^{(k)}(\phi_{c,\ell}),
\]

where \(C \) denotes the total number of scattering clusters and \(L_p \) denotes the number of contributing multipath components (MPCs) within each cluster. Note that both \(C \) and \(L_p \) are frequency sensitive constants, and are primarily a random functions of the surrounding radio environment. Furthermore, \(\alpha_{c,\ell}^{(k)} \) denotes the complex gain of the \(l \)-th MPC belonging to the \(c \)-th scattering cluster from terminal \(k \), which is scaled by the large–scale propagation effects of geometric attenuation and shadow fading at the link distance \(r_k \). More precisely, we model \(\alpha_{c,\ell}^{(k)} \sim \mathcal{CN}(0, \beta_k) \), where \(\beta_k = r_k^{-\gamma} \xi_k \). Note that \(\gamma \) is the attenuation exponent and \(\xi_k \) follows a lognormal random distribution such that \(\log_{10}(\xi_k) \sim \mathcal{N}(0, \sigma^2) \).

Further to this, \(a_{\text{BS}}^{(k)}(\phi_{c,\ell}) \) denotes the \(N \times 1 \) far–field array steering response vector of the CA at the instantaneous azimuth direction–of–arrival (DOA), \(\phi_{c,\ell} \). Note that the precise structure of \(a_{\text{BS}}^{(k)}(\phi_{c,\ell}) \) was obtained from full–wave electromagnetic evaluations for \(N = 12 \) element 9.3 GHz CA discussed in the earlier sections of the manuscript. We also consider the case of a linear array interfaced with the same signal processing unit. We choose that the aperture of both circular and linear arrays are equivalent. For the case of a linear array, \(a_{\text{BS}}^{(k)} \) is well known to follow

\[a_{\text{BS}}^{(k)}(\phi_{c,\ell}) = \frac{1}{\sqrt{N}} [1, e^{j2\pi \Delta \phi_{c,\ell}}, \ldots, e^{j2\pi (N-1) \Delta \phi_{c,\ell}}]^T \]

where \(\Delta \phi_{c,\ell} = \sin(\phi_{c,\ell}) \Delta \) denotes the electrical inter–element spacing between two elements and \(\lambda \) is the operational wavelength.\(^2\) Since \(N \) fixed analog beams can be formed at the BS via the use of a RL, we denote the spatial azimuth beam steering angles as \(\varphi_1, \varphi_2, \ldots, \varphi_N \). Since \(L \ll N \), the user terminals are “selected” via a bank of RF switches, occupying \(L \) distinct subports of the Rotman beamport contour, due to \(L \) random DOAs. The dimension–reduced signal after beam selection is downconverted via \(L \) RF transceivers and digitized before baseband combining with maximum–ratio processing. The resulting \(L \times 1 \) composite received signal after beam selection is given by

\[y = \rho^2 S_{\text{RF}} H x + n = \rho^2 G x + n, \]

where \(G = [g_1, g_2, \ldots, g_L] \) is an \(L \times L \) matrix such that the \(L \times 1 \) vector \(g_k = S_{\text{RF}} H_{\text{RF}} h_k, \forall k = 1, 2, \ldots, L \). Now, \(\rho^2 x \) is the \(L \times 1 \) vector of uplink payload data, where the average transmit power of each terminal is \(\rho \), with \(\mathbb{E}[|x_k|^2] = 1, \forall k = 1, 2, \ldots, L \).\(^3\) The net functionality of the Rotman lens can be described by the \(N \times N \) matrix, \(S_{\text{RF}} \), such that \(S_{\text{RF}} = \left[a_{\text{BS}}^{(\varphi_1)}, a_{\text{BS}}^{(\varphi_2)}, \ldots, a_{\text{BS}}^{(\varphi_N)} \right]^T \), where the precise form of each vector is obtained from full–wave electromagnetic analysis. The directions \(\varphi_1, \varphi_2, \ldots, \varphi_L \) (corresponding to \(L \) terminals), are then selected via a \(L \times N \) RF switching network, \(S_{\text{RF}} \). With an ideally operating RF switch, \(S_{\text{RF}} \) is a binary matrix, where each row of the matrix contains only one non–zero entry corresponding to the selected beam index at a given subport. The \(L \times 1 \) vector of additive Gaussian noise is denoted by \(n \), where each entry of \(n \sim \mathcal{CN}(0, 1) \). From the composite received signal in (7), the signal–to–interference–plus–noise–ratio (SINR) of terminal \(k \) with maximum–ratio baseband processing is given by

\[
\text{SINR}_k = \frac{\rho |g_k^H|^2}{\sigma^2 |g_k^H|^2 + \sum_{i=k+1}^{L} |g_i^H|^2},
\]

\(^1\)The mathematical notation \(x \sim \mathcal{CN}(0, \sigma^2) \) reads as \(x \) follows a Gaussian random variable with zero–mean and variance \(\sigma^2 \).

\(^2\)The mathematical notation \((\cdot)^T \) is a vector transpose operation.

\(^3\)Here, \(\mathbb{E}[\cdot] \) denotes the statistical expectation.
For a given instance of g_k and g_z, SINR_k can be translated into an instantaneous spectral efficiency (in bit/sec/Hz) for terminal k via the classical Shannon formulation of $R_k = \log_2(1 + \text{SINR}_k)$. This can be used to compute the ergodic sum spectral efficiency across all L terminals over the small–scale fading in the individual MPCs as $R_{\text{sum}} = \mathbb{E}[\sum_{k=1}^{L} R_k]$. For further discussion on any of the above modelling methods, see [9]. The numerical parameters for our subsequent evaluations are chosen from the standardized propagation channel model released by the Third Generation Partnership Project (3GPP) at microwave frequencies in [10]. Consistent with [10], we set $C = L_p = 20$. Our evaluations assume a coverage radius $R_c = 500$ m with a geometric attenuation exponent $\gamma = 3.67$ and shadow fading standard deviation $\sigma_s = 6$ dB. Each terminal is assumed to operate with the same uplink transmit power, while the noise power at the BS array is $\sigma_n^2 = 1$. This implies that ρ is the average operating signal–to–noise–ratio (SNR). For the beam selection at the RL, $\varphi_k = (k - 1)2\pi/N$, $\forall k = 1, 2, \ldots, N$. The far–field steering response of a uniform linear array (ULA) is utilized with a uniform beam scanning range within the forward half–space of the array. Each of the following results are generated with uniform beam scanning range within the forward half–space of response of a uniform linear array (ULA) is utilized with a transmit power, while the noise power at the BS array is $\sigma_n^2 = 1$. This implies that ρ is the average operating signal–to–noise–ratio (SNR).

V. Conclusions

We have shown that it is possible to exploit the individual modes of a CA in order to enhance the capacity of a wireless system over that which can be achieved by using a ULA both in terms of capacity and field of view. This is achieved through mode spatially diversity. The use of a RL to provide the mode excitation requirement has been shown to be effective and provides a simple means for physical implementation. The approach suggested offers the possibility for improved wireless transmission systems with 360° of look angle.

Acknowledgments

The authors would like to acknowledge the support given by Queens University Belfast Scholarship and to the EPSRC under the grants EP/P000673/1, EP/N020391/1. The authors would also like to thank Mr. Kieran Rainey for fabrication andtesting of the CA.

References

