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Abstract— An iterative pattern synthesis approach for directional modulation (DM) 

transmitters is presented in this paper. Unlike all previous work this paper offers the first 

discussion on constraining DM transmitter far field radiation patterns so that energy is 

primarily concentrated in the spatial direction where low bit error rate (BER) is to be 

achieved, while interference projected along other directions is reduced. 
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1. INTRODUCTION 

Recently, directional modulation (DM) technology has been investigated as means for 

implementing physical-layer security in wireless communications [1‒15]. DM is a transmitter 

technology that is able to distort transmitted signal constellation points along all selected spatial 

directions while leaving the constellation points along an a-priori defined direction in free space 

unaltered so that low bit error rate (BER) can be obtained along the specified direction. This 

functionality can be obtained by imposing suitable baseband signals directly onto the DM array 

beam-forming networks, using variable RF phase shifters and attenuators [4‒9], or directly at the 

antenna radiators [10] in an actively driven antenna array. The DM concept was developed and 

mathematically rigorous necessary and sufficient condition for achieving DM properties were 



formally derived in [14]. 

To date actively driven DM transmitter arrays, [4], [5], [8‒10], are synthesized by minimizing 

appropriately designed cost functions which link array settings directly to BER spatial 

distributions without regard to far-field radiation pattern control. In some applications, e.g., where 

co-system location is important we require, in addition to preferred BER results, low received 

energy along unselected directions. This cannot be achieved by previously reported BER based 

DM synthesis methods. 

To address this problem this paper suggests a constrained far-field pattern synthesis approach 

applicable for DM synthesis. The objective of this paper is to show for the first time, with 

minimal sacrifice on the earlier DM security properties, how the far-field patterns of DM systems 

can be manipulated in a pre-defined manner to adapt them to scenarios where spatial radiation 

masks have been imposed, e.g., in order to minimize interference. This is equivalent to seeking a 

subset of orthogonal vectors, [14], that meet desired far-field pattern requirements. 

In Section 2 of this paper, the proposed DM iterative pattern synthesis approach is introduced. 

This approach developed is compatible with both static and dynamic DM systems as defined in 

[16]. Several exemplar synthesis results under various pattern constraints are illustrated in Section 

3. Finally conclusions are drawn in Section 4. 

2. PROPOSED DM CONSTRAINED PATTERN SYNTHESIS 

We confine our discussion to uniformly half-wavelength spaced 1D DM transmitter arrays 

operating in free space. The arrangement is shown in Fig. 1 with DM properties illustrated for 

QPSK modulation scheme. Each antenna element is actively excited independently. Matched 

electromagnetic polarization between transmitters and receivers is assumed. 



The proposed approach is now described; 

1) For each symbol transmitted select initial array amplitude and phase excitation values for 

each array element. 

2) Calculate far-field patterns from the array excitations. In this paper it is assumed that each 

array element has an ideal isotropic active element pattern (AEP) [17]. Thus far-field patterns 

can be easily computed via the inverse fast Fourier transform (IFFT). 

3) Individually scale the magnitude patterns according to required signal to noise ratio (SNR) 

and shift the phase patterns to form standard constellation diagrams in IQ space along a 

specified communication direction. The details for constellation reshaping are described in 

[8]. 

4) Adapt the resulting far-field patterns to the templates, which are defined according to the 

system requirements. 

5) Calculate array excitations for each unique symbol from the adapted far-field patterns via the 

fast Fourier transform (FFT).  

6) If required, apply further DM array excitation constraints imposed by the chosen DM physical 

structures. 

7) Repeat step 2), and adapt the resulting far-field patterns to standardize the modulation scheme 

constellation type along the desired communication directions as in step 3).  

8) Iterate steps 4) to 7) until the far-field patterns satisfy the imposed mask templates or the 

maximum iteration number is reached. 

9) Calibrate the excitations according to the last adaptation in step 7). This is done through 

scaling excitation magnitudes and shifting excitation phases by the same coefficients used in 



the step 7) during the last iteration. 

The above synthesis procedure is summarized using the flow chart presented in Fig. 2. The 

steps 1) and 4) are further discussed with examples in the next section. 

3. KEY EXAMPLES 

Based on the synthesis procedure described in Section 2, several key examples to illustrate 

how the far-field patterns and BER performance can be manipulated are now described. An 11-

by-1 (N = 11) element array and QPSK modulation with Gray-coding projected along a desired 

low BER communication direction of 60° (boresight at 90°) are adopted hereafter. This secured 

communication direction can be steered by spatially shifting far-field pattern masks. The number 

of points for the IFFT and FFT used in the synthesis steps 2) and 5) is chosen to be 4096, and the 

maximum iteration number is set to 500. All results are obtained using MATLAB 2013a [18]. 

1. Example 1 

Constraints: Far-field power spatial distribution masks only, identical for each QPSK 

symbol. 

In a wireless point-to-point communication system, normally it is desirable that the majority of 

energy is radiated towards a preferred polarization matched receiver location. In [14] it was 

revealed that DM transmitter arrays generally radiate in an un-constrained manner energy into all 

spatial directions. We will now show that it is reasonable to set a spatial power mask for a DM 

transmitter array, e.g., as shown in Fig. 3 (a), in order to maximize transmitted power along a  

pre-selected low BER spatial direction while simultaneously suppressing power radiated 

elsewhere. The width of the rectangular mask in this example is chosen as the first null 

beamwidth (FNBW) of a corresponding conventional uniform tapered phased array steered to 



60°, in this example 24.5°, from 47° to 71.5°. To facilitate discussions we define the spatial 

region where the rectangular part of the mask occupies as in-band, and attach the label of out-

band to directions elsewhere. The in-band and out-band mask levels are set to be several dB 

higher than the main beam and sidelobes in the conventional array, allowing extra power to be 

introduced into the system in order to enable DM characteristics. This aspect was described in 

[14]. In the example here 2 dB and −10 dB respectively are used for peak main beam and 

average sidelobe levels. The power pattern adaption in the synthesis step 4) is applied: if the 

calculated far field pattern magnitudes are greater than the mask they are forced to the mask 

value. Otherwise, they are left unaltered.  

In order to find suitable initial excitation values as described in the step 1) in the last section, 

we perform the following; 

 Generate the excitation required to steer a conventional array to the preferred direction where 

low BER is required, 60° in this example. 

 Randomize the magnitudes within the average power limit and phases of the excitations of 

50% of the array elements. The choice of the elements undergoing in this procedure is also 

random. 

Using this procedure the resulting set of excitations obtained generates far-field patterns with 

main beam approximately pointing to the selected communication direction, while preserving 

sufficient randomness for different QPSK symbols transmitted. 

A typical set of results for a static QPSK DM system is shown in Fig. 3, with initial and final 

synthesized array excitations listed in Table 1. Along 60°, selected as the preference low BER 

direction in this example, it can be seen that the magnitudes of the four QPSK symbols overlap 



each other, and that their phases are 90° spaced, indicating that a standard QPSK constellation 

diagram, i.e., a central symmetric square in IQ space, is formed along this direction. The 

constellation patterns detected in all other directions are scrambled. Importantly, and different to 

previous DM works [4‒15], the far-field power patterns lie below the pre-defined power spatial 

mask, making this DM system more efficient with regard to spatial radiation energy spread, and 

therefore generating less interference to other systems within its radiation coverage area.  

It needs to be pointed out that when compared with the corresponding conventional phased 

beam-steering array with the same power gain along the desired spatial direction, extra energy of 

Pe (unit in dB) is projected into unselected communication directions, 1.51 dB for the example 

DM transmitter in Table 1. This energy is exploited to enable the DM functionality, i.e., 

constellation distortion along undesired directions. Equivalently we can say that when compared 

with a conventional phased beam-steering array radiating the same total power, the power gain 

along the pre-specified communication direction in a DM transmitter is Gd dB lower. Gd equals 

Pe, see (1). Consequently hereafter we refer to the conventional array as a uniformly tapered 

phased beam-steering array with the same power gain as that of a DM array along its prescribed 

communication direction. 

  2
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If an advanced QPSK receiver, i.e., one which enables ‘minimum Euclidean distance 

decoding’ [16], is used for detection then low BER can be obtained, in addition to 60°, at around 

20° and 100°, as shown in Fig. 4. This is due to the fact that the phases along these two 

directions are reasonably spread, Fig. 3 (b). The standard QPSK receivers in Fig. 4 decode 



signals based on which quadrants the received symbols locate in IQ space. All of the BERs in 

this paper are obtained for a random QPSK data stream with a length of 106 symbols under SNR 

of 23 dB. Throughout this paper we assume the worst case security scenario, namely, that 

receivers know the mappings between bits and constellation points irrespective of whether 

constellation diagrams are distorted or not. Details of BER calculation can be found in [16]. We 

set SNR to 23 dB, since at this level the first BER sidelobe in the conventional array reaches 

around 10‒3, making BER sidelobe comparison visually noticeable in a logarithmic scale. In 

order to return high BER values in all unselected directions, we will impose constraints on far-

field phase patterns during the iteration process, this is illustrated in example 2. 

2. Example 2 

Constraints: the far-field power spatial distribution masks used in the example 1, and out-

band far-field phase template. 

In addition to the power masks used in the example 1, here we impose the phase constraint in 

the out-band spatial region in the synthesis step 4). The spatial phase variation of symbol ‘11’ in 

the out-band is adopted as the phase template, any of the other symbols could equally have been 

used, a 10° phase tolerance with respect to the phase template is permitted. 

Fig. 5 shows example synthesized far-field patterns for each unique QPSK symbol when both 

power and phase constraints are imposed. Compared with their counterparts in Fig. 3, the phase 

curves for each QPSK symbols are clustered together in the out-band spatial region in order to 

retain high out-band BER. For this example DM array, the extra power Pe is 2.45 dB, nearly 1 

dB higher than that in the example 1. It can be observed in Fig. 6 that under high SNR scenario 

BER sidelobes in the synthesized static DM system are greatly suppressed compared with those 

in the conventional system. In Fig. 6 (b) constellation patterns in the both systems along the 76° 



direction, which is the direction of the first sidelobe in the conventional transmitter, are also 

depicted. We can see that four QPSK symbols in the DM system, unlike those forming a 

standard square in the conventional system, are confined in a small area in the second quadrant, 

this results in high BER values. 

In Fig. 6 (b), we find that the BER sidelobes can be effectively suppressed when the phase 

constraint is imposed during the iteration process. Whereas, if the static DM is constructed, the 

security performance in in-band region is not enhanced, i.e., the BER beamwidth for the 

advanced QPSK receiver case is greater than that in the conventional system. This aspect is 

studied in example 3. 

3. Example 3 

Constraints: in-band shifted far-field power spatial distribution masks, and out-band far-field 

phase template. 

In order to narrow the in-band BER beamwidth we shift the in-band region differently for each 

QPSK symbol. This perturbs both magnitudes and phases around the desired communication 

direction. Fig. 7 presents a typical result of synthesized DM far-field patterns when the power 

pattern in-band masks are spatially shifted and phase constraints are imposed in their respective 

out-band regions. In this example, we shift the in-band regions by ± 7° for each symbol and 

slightly increase of the out-band level by 1 dB, as seen in Fig. 7 (a). For SNR of 23 dB Fig. 8 

shows that for both receiver types the in-band BER beamwidths are narrowed with respect to the 

example 2. Narrower BER beamwidths are achieved at the expense of a higher Pe of 4.26 dB and 

increased overshooting of the power masks, see Fig. 7 (a).  



4. Example 4 

Constraints: far-field power spatial distribution masks with a notch, and out-band far-field 

phase template. 

The following example is presented in order to show that we can eliminate interference to 

other known friendly users caused by the DM transmitter without much compromising the BER 

performance obtained in the earlier examples presented above. We proceed by inserting a notch 

around the known friendly user direction into the power mask. In the example here we insert a 

notch of 10° width centered at 90° with a suppression level of −15 dB into the power mask. The 

synthesized far-field pattern results are shown in Fig. 9. The resulting power levels for every 

QPSK symbols along 90° are less than −20 dB, which largely prevents signal energy from being 

projected towards the friendly node.  

Comparing the calculated BER results of this synthesized QPSK DM system in Fig. 10 with 

those in Fig. 6(b), it is found that they are similar to each other except slightly narrower BER 

beamwidths in this example. This is a result of the 1 dB lifted out-band level. The extra power Pe 

of this synthesized DM array radiated compared with that of the conventional array is 2.3 dB, the 

same level as that in the example 2. 

To enable example verification by interested readers, synthesized excitations for examples 2 to 

4 are provided in Table 2. 

4. CONCLUSION 

A technique for controlled DM transmitter far-field pattern synthesis was proposed and 

discussed. Selected synthesis examples show the means for, and extent by which, key far-field 

radiation characteristics can be manipulated by imposing various magnitude or magnitude and 



phase constraints applied during pattern iteration processes. This proposed pattern synthesis 

approach allows DM systems to operate in an electromagnetically green fashion which requires 

the spatial control of unwanted radiation in non-preferred radiation directions, a feature not 

previously possible with DM systems. 
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Figure 1. The arrangement of a uniformaly half-wavelength spaced 1D DM transmitter 

array operating in free space. The DM property, i.e., standard constellation patterns are preserved 

along desired communication direction, is illustrated for QPSK modulation scheme. 

   



 

Figure 2. Flow chart for proposed DM far-field pattern synthesis procedure. 
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Figure 3. Typical synthesized far-field (a) power patterns and (b) phase patterns for each 

QPSK symbol. The power mask is also depicted in (a).  
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Figure 4. BER spatial distributions for the synthesized static DM system in Fig. 3. 
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(b) 

Figure 5. Typical synthesized far-field (a) power patterns and (b) phase patterns for each 

QPSK symbol. The power mask is shown in (a). The phase constraint is set in the out-band 

region using the spatial phase varaition of symbol ‘11’ as the reference template. 
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(b) 

Figure 6. BER spatial distributions for the synthesized static DM system in Fig. 5 and the 

conventional system for SNRs of (a) 12 dB and (b) 23 dB. The constellation patterns along 76° 

in the both systems are also depicted in (b). 
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(b) 

Figure 7. One typical synthesized far-field (a) power patterns and (b) phase patterns for 

each QPSK symbol. The power masks for different QPSK symbols are also shown in (a). The 

phase constraint is set in the out-band regions with the phases for symbol ‘11’ as the reference 

template.  
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Figure 8. BER spatial distributions for the synthesized static DM system in Fig. 7 and the 

conventional system. 
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Figure 9. Typical synthesized far-field (a) power patterns and (b) phase patterns for each 

QPSK symbol. The power mask with a notch along boresight is also shown in (a). The phase 

constraint is set in the out-band region with the phases for symbol ‘11’ as the reference template. 
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Figure 10. BER spatial distributions for the synthesized static DM system in Fig. 9 and the 

conventional system. 

  



Table 1.  The initial and final synthesized array excitations for the static QPSK DM array in 

Fig. 3. 

  Symbol ‘11’ Symbol ‘01’ Symbol ‘00’ Symbol ‘10’ 
Array 

Excitations 
 Magnitude 

(×10−1) 
Phase 

(Degree) 
Magnitude 

(×10−1) 
Phase 

(Degree) 
Magnitude 

(×10−1) 
Phase 

(Degree) 
Magnitude 

(×10−1) 
Phase 

(Degree) 

Element 1 
Initial 0.753 −39 0.909 90 0.909 90 0.909 90 
Final 1.195 126 1.016 −146 1.112 −20 0.264 61 

Element 2 
Initial 0.823 88 0.909 0 0.909 0 0.114 82 
Final 1.097 47 0.247 149 1.624 −134 1.222 −55 

Element 3 
Initial 0.909 −90 0.851 103 0.460 58 0.909 −90 
Final 1.183 −100 1.214 42 0.456 128 1.077 −142 

Element 4 
Initial 0.909 180 0.909 180 0.909 180 0.821 95 
Final 0.997 −121 1.056 21 1.693 51 1.415 116 

Element 5 
Initial 0.909 90 0.628 137 0.909 90 0.909 90 
Final 1.338 149 1.314 −138 0.987 −35 1.053 74 

Element 6 
Initial 0.824 92 0.433 −149 0.103 19 0.208 −63 
Final 1.202 61 1.061 118 1.345 −131 1.241 −56 

Element 7 
Initial 0.909 −90 0.840 170 0.909 −90 0.358 28 
Final 1.186 −31 1.511 44 0.845 140 1.137 −147 

Element 8 
Initial 0.351 −57 0.477 71 0.909 −180 0.909 −180 
Final 0.985 −105 1.243 −54 0.403 38 1.159 −171 

Element 9 
Initial 0.909 90 0.909 90 0.424 −170 0.763 −69 
Final 1.012 142 0.352 −9 0.346 −143 0.366 106 

Element 
10 

Initial 0.746 50 0.909 0 0.863 −24 0.909 0 
Final 0.922 −56 1.145 130 1.343 −147 1.183 −58 

Element 
11 

Initial 0.658 −64 0.909 −90 0.776 169 0.909 −90 
Final 0.823 −29 1.173 28 0.494 101 0.921 −155 

 
 

  



Table 2.  The final synthesized array excitations for the static QPSK DM arrays in the 

examples 2 to 4. 

  Symbol ‘11’ Symbol ‘01’ Symbol ‘00’ Symbol ‘10’ 

 
Array 

Excitations 
Magnitude 

(×10−1) 
Phase 

(Degree) 
Magnitude 

(×10−1) 
Phase 

(Degree) 
Magnitude 

(×10−1) 
Phase 

(Degree) 
Magnitude 

(×10−1) 
Phase 

(Degree) 

Example 
2 

Element 1 1.097 139 0.846 160 0.117 104 0.711 105 
Element 2 0.746 109 1.121 149 1.126 −156 0.279 −137 
Element 3 0.854 5 1.573 55 1.252 106 0.313 −176 
Element 4 1.326 −152 0.755 −68 0.924 67 1.443 145 
Element 5 1.271 167 1.801 −136 1.445 −69 0.589 28 
Element 6 0.989 46 1.103 145 1.566 −128 1.284 −62 
Element 7 1.356 12 2.319 62 2.157 104 0.623 145 
Element 8 1.705 −153 0.530 −69 1.047 78 1.629 149 
Element 9 1.436 97 0.287 −119 1.092 −3 1.897 50 

Element 10 1.012 −31 0.467 −141 1.157 −102 1.715 −56 
Element 11 1.060 −71 0.752 −14 0.347 −76 1.087 −105 

          

Example 
3 

Element 1 0.647 −141 1.282 −76 2.167 −109 0.391 112 
Element 2 1.129 25 0.556 −77 0.636 155 2.393 −6 
Element 3 1.088 −56 0.614 87 1.266 79 2.151 −102 
Element 4 1.118 −143 1.356 4 2.166 26 2.056 142 
Element 5 1.107 127 1.071 −109 1.882 −43 2.182 37 
Element 6 1.626 55 2.163 121 1.177 −126 1.269 −37 
Element 7 0.645 −112 1.325 77 2.835 169 2.559 172 
Element 8 0.166 −114 1.477 −37 1.829 71 2.034 53 
Element 9 1.245 130 1.645 172 1.013 61 0.249 32 

Element 10 1.239 65 1.614 92 0.321 −44 0.875 117 
Element 11 1.207 −35 1.451 −17 0.766 −75 0.857 −10 

          

Example 
4 

Element 1 1.113 141 1.185 162 0.304 172 1.041 101 
Element 2 1.007 52 1.067 91 0.627 127 0.984 −20 
Element 3 1.304 −44 1.039 2 0.501 153 1.463 −111 
Element 4 0.216 35 1.849 9 2.308 47 1.904 100 
Element 5 1.330 142 1.356 −139 1.123 −49 1.202 59 
Element 6 0.964 49 1.183 167 1.771 −134 1.235 -60 
Element 7 1.037 −87 0.900 94 1.943 153 1.668 −155 
Element 8 1.500 −134 1.235 −60 0.622 42 0.797 157 
Element 9 0.162 127 1.282 −88 1.602 −44 1.191 −15 

Element 10 1.103 52 1.227 120 0.464 170 0.274 1 
Element 11 0.992 −44 0.795 7 0.273 25 0.424 −72 

 

 


