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2  ABSTRACT

EGFR tyrosine kinase inhibitors (EGFR-TKIs) are the treatment of choice for advanced-stage (I1IB-
IV) NSCLC patients with mutations in EGFR. However, EGFR-TKIs clinical outcomes vary from
person to person and these inter-individual differences may be due to genetic factors such as
single nucleotide polymorphisms (SNPs). SNPs in genes involved in in EGFR-TKIs
pharmacodynamics, metabolism and mechanism of action have been demonstrated to be
associated with response, survival and toxicity in advanced NSCLC patients treated with EGFR-
TKls.

Here we review the influence of gene polymorphisms in the EGFR pathway on clinical outcome
and toxicity to EGFR-TKIs in advanced NSCLC patients. The EGFR-216 polymorphism has
reported a strong association between response and/or survival to EGFR-TKIs in Caucasian
population. Similarly, the effect of EGFR-CA repeats polymorphisms on survival of advanced
NSCLC patients treated with EGFR-TKIs have been confirmed both in Caucasian and Asian
population. The influence on toxicity of the -216, -191, CA repeats, Arg497Lys and Asp994Asp
polymorphisms in EGFR have also been confirmed. Polymorphisms in AKT (rs1130214 and
rs1130233) and SMAD3 (rs6494633, rs11071938 and rs11632964) have been associated with
survival in advanced NSCLC patients treated with EGFR-TKIs. However, data come from a limited
number of studies and need to be confirmed.

Finally, polymorphisms in genes coding proteins of the membrane transporters and cytochrome
P450 enzymes have been less extensively investigated. There are few studies with small
samples, which complicated the generalization of their role in EGFR-TKIs treatment.

3 INTRODUCTION

Lung cancer is one of the most common and lethal types of cancer in both genders, with an
approximate incidence of 14% [1]. Based on the latest cancer statistics, around 222.500 new
cases (116.990 in male and 105.510 in female) and 155.870 deaths (84.590 in male and 71.280
in female) are expected to occur in the United States in 2017 [1].

There are two main types of lung cancer: small cell (SCLC) and non-small cell lung cancer
(NSCLC). NSCLC accounts with 80-85% of all lung cancer cases and is classified into three
different subtypes: squamous cell carcinoma, adenocarcinoma and large cell carcinoma. In
accordance with the American Joint Committee on Cancer (AJCC), the majority of the patients
are catalogued as advanced stage (IlIB-1V) at the time of diagnosis [2-4].

For many years, platinum-based chemotherapy has been the treatment of choice for advanced-
stage (I1IB-1V) NSCLC [5]. Nevertheless, targeted therapy has emerged as a therapeutic option
for selected patients. Patients with somatic, activating mutations in EGFR (epidermal growth
factor receptor) are treated with an EGFR tyrosine kinase inhibitor (EGFR-TKI), such as gefitinib
or (lressa®; AstraZeneca, London, UK), erlotinib (Tarceva®; Hoffmann-La Roche, Basel,
Switzerland), afatinib (Giotrif®; Boehringer Ingelheim, Ingelheim, Germany) or osimertinib
(Tagrisso ®; AstraZeneca, London, UK) [6-10]. Activation of the EGFR pathway is induced by
ligand binding, which results in receptor dimerization and phosphorylation of tyrosine residues
located at the cytoplasmic tail of the receptor, leading to phosphorylation of effector proteins
[11,12] (Figure 1). Subsequently, downstream cascades, including the anti-apoptotic Ras signal
transduction  cascade  (KRAS-BRAF-MEK-ERK  pathway), the phosphatase and
phosphatidylinositol 3-kinase / tensin homolog /v-akt murine thymoma viral oncogene
(P13K/PTEN/AKT), phospholipase C gamma protein pathway, and the STAT signaling pathway are
activated, leading to cell proliferation, angiogenesis, migration, survival, and adhesion [13]
(Figure 1). EGFR-TKIs are orally active compounds that act by binding to the adenosine
triphosphate (ATP)-binding domain of EGFR. The inhibition of the receptor leads to a blockade



of downstream cascades, which induce cancer cell death in EGFR mutated cancer cells [14].
There are two type of EGFR-TKIs that differ in their abilities to fit in the ATP-binding pocket of
EGFR. First generation or reversible inhibitors, such as gefitinib and erlotinib, compete with ATP
molecules that recognize the kinase active conformation, whereas second generation or
irreversible inhibitors such as afatinib, bind to the kinase active site covalently by specifically
reacting with a nucleophilic cysteine residue [15]. Third generation inhibitors, such as
osimertinib, are irreversible EGFR-TKIs selective for both EGFR sensitizing mutations and EGFR
Thr790Met resistance mutation [16].

Activating mutations in the EGFR gene appear more frequently in adenocarcinoma subtype,
females, non-smokers and Asians [17-20]. The most frequent mutations in EGFR are small in-
frame deletions in exon 19 and a point mutation that replaces an arginine with a leucine at
codon 858 (L858R) of exon 21 [21]. Several studies have compared first line EGFR-TKIs versus
standard chemotherapy in patients with EGFR mutation-positive tumors, showing longer
progression-free survival (PFS) (9.7 months vs 5.2 months), higher overall response rate (ORR)
(71.2% vs 47.3%), a more favorable toxicity profile (28.7% vs. 61.0%) and better quality of life
(48.0% vs. 40.8%) [8,22]. However, numerous studies have reported significant inter-individual
differences in clinical outcomes to EGFR-TKIs, which may be due to genetic factors such as single
nucleotide polymorphisms (SNPs) in particular genes [23].

At this respect, the influence of some SNPs in the EGFR gene itself have been extensively
investigated (Table 1). As described above, AKT pathway also plays an important function on
cancer cell proliferation and survival has been reported that SNPs in this gene may dysregulate
signaling, promote tumorigenesis and contribute to individual variation in the response and
toxicity to EGFR-TKIs [24,25].Finally, other pathways and proteins are also involved in toxicity
and response to EGFR-TKIs including, the transforming growth factor beta (TGF-B) pathway,
drug transporters, and the cytochrome P450 family. Acting in an opposite way, the TGF-$
signaling pathway exerts a robust antiproliferative function [26] and polymorphisms in the genes
of pathway may have an effect in the development of toxicity and disease progression to EGFR-
TKIs. Genetic alterations in ATP-binding cassette, sub-family B (MDR/TAP), member 1 (ABCB1,
also called MDR1) and ATP binding cassette subfamily G member 2 (ABCG2) have also been
suggested as predictive markers of clinical outcomes and toxicity to EGFR-TKIs [27]. Finally,
EGFR-TKIs are metabolized by members of cytochrome P450 family, mainly by CYP3A4/5,
CYP2D6 and CYP1A1l. Therefore, SNPs in these genes may modulate enzymatic activities and
consequently act as pharmacogenetics predictors of response and toxicity to EGFR-TKIs.

4 EGFR PATHWAY

The most investigated polymorphisms in EGFR are rs712829 (G—T substitution at -216
upstream from the initiator codon), rs712830 (C—A substitution at -191 upstream from the
initiator codon) and rs11568315 (CA simple sequence repeat in intron 1). EGFR-216 and -191
polymorphisms have been described to modulate “in vitro” the expression of EGFR gene [28].
EGFR-216 is located in a SP1-binding site, a transcription factor required for EGFR expression,
and the substitution of G to T at this position has been shown to increase the promoter activity
by 30% and the EGFR mRNA expression by 40% [28]. EGFR-191, located four nucleotides
upstream of one of six transcription initiation sites, also modulates promoter activity, but not to
the same extent as the EGFR-216 [28]. In addition, the length of the CA repeat has shown an
inverse correlation with the expression of EGFR mRNA [29].

The relationship between EGFR polymorphisms and clinical outcomes have been investigated
extensively. The EGFR-216 polymorphism has showed better overall survival (OS), PFS and ORR
for patients with T allele (Table 1). For EGFR-191 polymorphism no association with clinical
outcomes have been found (Table 1). However, a study in 175 Caucasian stage IB-IV NSCLC



patients evaluated EGFR -216G/-191C haplotype (G-C; EGFR*1) and reported that the absence
of EGFR*1 was associated with significantly better OS (HR=0.54; 95%Cl|=0.32, 0.91; non-EGFR*1
vs EGFR*1) and PFS (HR=0.65; 95%Cl=0.42, 0.99; non-EGFR*1 vs EGFR*1) [30]. Regarding EGFR
rs11568315 polymorphism, advanced NSCLC patients with shorter intron 1 CA repeats (<16 CA)
of the EGFR gene showed an improved response, OS and PFS (Table 1).

An association between EGFR polymorphisms and toxicity have also been found in several
studies. The T allele for EGFR-216 has been associated with skin rash and diarrhea (Table 1)
[31,32]. In the case of EGFR-191, the A allele has been associated with diarrhea in 80 NSCLC
patients [32]. In contrast, no association with toxicity was found after evaluating EGFR -216G/-
191C haplotype in 109 Caucasian stage IlIA-IV NSCLC patients [33]. For EGFR rs11568315
polymorphism, a study with 52 Asian stage IlIB-IV reported that those with longer intron 1 CA
repeats (>16 CA) of the EGFR gene showed a decreased risk to develop skin rash [34].

Two additional polymorphisms in EGFR, rs11543848 (G—A nonsynonymous substitution at
codon 497, exon 13, Arg—Lys, Argd97Lys) and rs2293347 (G—A synonymous substitution at
codon 994, exon 25, Asp—Asp, Asp994Asp), have also been investigated [35]. The A allele for
EGFR rs11543848 seems to decrease the activity of EGFR [36,37]. EGFR rs2293347 does not
change amino acid sequence of the protein and, to date, the possible functionality of this genetic
alteration has not been evaluated. Nevertheless, synonymous polymorphisms may affect mRNA
stability, translational kinetics, and splicing, resulting in alteration of protein amount, structure
or function [38]. Both polymorphisms have been correlated with clinical outcomes in NSCLC
patients treated with EGFR-TKIs [25,33,39-43].The A allele for EGFR Arg497Lys polymorphism
has been associated with longer OS in 225 Asian stage I-1V NSCLC patients with positive lymph
node metastasis and previous platinum-based chemotherapy (Log-rank test, p = 0.0072 and p=
0.0038, respectively) [39]. A correlation between EGFR Arg497Lys-A allele and lower skin toxicity
has also been reported in 96 Caucasian stage IlIB-IV NSCLC patients [33]. In contrast, the GG
genotype has been associated with higher diarrhea IN [25]. No association between EGFR
Arg497Lys polymorphism and ORR has been found [25,40]. Regarding EGFR Asp994Asp
polymorphism, its association with clinical outcome to EGFR-TKIs remains unclear (Table 1), with
some studies reporting better ORR in patients carrying the A allele [41] and others in patients
with the G allele [42]. The same contradictory results have been reported in the case of PFS and
0S, with some studies finding an association of the GG genotype with a better outcome and
others reaching opposite conclusions (Table 1) [41-43].

5 AKT PATHWAY

Three SNPs for AKT have been studied; namely G—T,rs1130214; A—G, rs1130233 and C—T
rs3730350. A Caucasian study with 230 advanced NSCLC patients treated with erlotinib, gefitinib
or icotinib reported that patients with AKT rs1130214-GG genotype had longer PFS than those
with the GT and TT genotypes (HR=1.39; 95%CI=0.92, 1.95 for TT vs GG)[24]. For AKT rs1130233,
the AA genotype was associated with shorter PFS (p=0.04) and OS (p=0.007) in 96 advanced
NSCLC patients treated with gefitinib [25]. No association has been found between AKT
rs3730350 and clinical outcomes in 96 Caucasian stage IlIB-1V advanced NSCLC patients treated
with EGFR-TKIs [25].

6 TGF-B PATHWAY

The TGF-B signaling may function both as a tumor suppressor and as a tumor promoter pathway
in a context-dependent manner via acting on SMAD transcriptional regulators [44]. This
behavior depends on cell type and clinical stage of the tumor [44].

Three polymorphisms in SMAD3 (C—T, rs6494633; C—T, rs11071938 and C—T, rs11632964)
were found to be associated with survival in 106 Asian stage IlIB-IV EGFR mutated NSCLC
patients treated with EGFR-TKIs [45]. The rs649446633-CC, rs11071938-CT and rs11632964-CT



genotypes were associated with better PFS (HR=0.55; Clgs%=0.37, 1.00 for CC vs CT/TT; HR=1.75;
Closy=1.06, 2.89 for CC vs CT/TT and HR=3.01; Clgsy=1.54, 5.86 for CC vs CT/TT, respectively) [45].
The CT genotype in the SMAD3 rs11632964 polymorphism was also associated with longer OS
(HR=2.38; Clgs%=1.15, 4.94 for CC vs CT/TT) [45].

7  CELLULAR EFFLUX TRANSPORTERS

ABCB1 and ABCG2 are considered the main EGFR-TKIs efflux transporters [46,47].
Polymorphisms in these genes have been shown to alter protein expression and/or activity of
these transporters [48-56]. Thus, ABCB1 and ABCG2 polymorphisms may modify the elimination
of EGFR-TKIs from the body and as a result affect treatment outcome.

7.1 ABCB1

ABCB1 belongs to the ATP-binding cassette family and plays an essential function on efflux and
distribution of many drugs, including EGFR-TKIs [57,58]. Polymorphisms in this gene have been
associated with lower expression and function of the ABCB1 protein, resulting in increased
extracellular levels of drugs [51-54]. Despite of this key role, none of the polymorphisms studied
to date in the ABCB1 gene (C—>T, rs1045642; G>T/A, rs2032582; C->T, rs1128503) have shown
a significant association with toxicity in NSCLC patients treated with EGFR-TKIs [27,59]. However,
significant differences in toxicity have been demonstrated according to ABCB1 haplotype. A
study with 50 Asian stage IlI-IV NSCLC patients treated with erlotinib have reported that the
ABCB1 rs1045642-TT; rs2032582-TT; rs1128503-TT haplotype was associated with higher
plasma concentration of EGFR-TKI and the risk of developing higher toxicity [27]. The influence
of these haplotypes on ORR, PFS and OS has not been determined.

7.2 ABCG2

ABCG2 is another member of the ATP-binding cassette family [60]. Genetic alterations in this
gene have been has been associated with markedly decreased levels of ABCG2 protein
expression and/or activity [48-50,55,56], which increases oral bioavailability of EGFR-TKIs [61].
A great variety of polymorphisms in ABCG2 gene have been studied such as C->T, rs2622604;
C—>A,rs2231142; G>A, rs2231137, G>A, rs7699188 and C>T, rs72552713. Nevertheless, none
of them have shown a significant association with clinical outcomes in NSCLC patients treated
with EGFR-TKIs [62,63]. Only the A allele for rs2231137 has been correlated with grade 2 or
worse skin rash in 83 Asian stage I-IV NSCLC patients treated with gefitinib (p=0.046) [59].

8 CYTOCHROME P450 FAMILY

EGFR-TKIs are metabolized in the liver by cytochrome P450 enzymes (CYPs), primarily by
CYP3A4/5, CYP2D6 and CYP1A1 [64-67]. Polymorphisms in these genes may alter the metabolic
activities of these enzymes and thereby drastically influence EGFR-TKIs plasma concentrations
and detoxification, resulting in individual variation in response and toxicity to EGFR-TKIs [40,67-
69].

8.1 CYP3A4/5

CYP3A4 and CYP3AGS are key enzymes for EGFR-TKIs metabolism [64-67]. To date, 34 CYP3A4
alleles (haplotypes) have been published on the Human Cytochrome P450 Allele Nomenclature
Committee homepage [70]. However, their effects on outcome to EGFR-TKIs has not been
investigated. Only the CYP3A4*1/*1G polymorphism (G>A, rs2242480), within intron 10 of the
CYP3A4 gene, has been studied in 31 Asian stage IlIB-IV NSCLC patients treated with gefitinib
but no significant differences in toxicity was found [68]. For CYP3A5, 11 haplotypes have been
described but only the CYP3A5*3 (A—>G, rs776746) polymorphism, within intron 3 of the CYP3A4
gene has been studied in 31 Asian stage IlIB-IV NSCLC patients treated with gefitinib [68].
Nevertheless, no significant association between CYP3A5*3 polymorphism and EGFR-TKIs was



found [68]. The relationship between both SNPs with response and survival has not been
evaluated.

8.2 CYP2D6

CYP2DE6 also plays a minor role on EGFR-TKIs metabolism [64-67]. A total of 109 CYP2D6 alleles
have been described so far, but only the CYP2D6*1, *2, *3, *4, *5, *6, *9, *10 and *41 alleles
have been studied. In 30 healthy volunteers treated with gefitinib [70], those with the CYPD6
extensive metabolizer genotype (*¥*1/*4, *1/*2, *2/*4, *1/*3, *2/*5, *2/*41) presented higher
gefitinib plasma concentration in comparison with those with CYPD6 poor metabolizer genotype
(*4/*4, *4/*5, *3/*4, *4/*6, *3/*5, *4/*4x2) [67]. Two studies in Asian NSCLC patients treated
with gefitinib have also evaluated the effect of CYPD26 (*5 and *10) polymorphisms on gefitinib
toxicity but no significant differences were found in the frequency of diarrhea, skin rash, or
hepatotoxicity among the genotypes of these polymorphisms [68,69]. Currently, no data are
available regarding the influence of these SNPs on response and survival to EGFR-TKIs.

8.3 CYP1Al

CYP1A1l is a major enzyme involved in EGFR-TKIs metabolism [64-67]. Based on the CYP450
database, 13 CYP1A1 haplotypes has been described but only CYP1A1*2A (T—C substitution at
3’ non-coding region) and CYP1A1*2C (A—G substitution at exon 7, Val—lle) have been
examined in NSCLC patients treated with EGFR-TKIs [40]. Both CYP1A1*2A and CYP1A1*2C
alleles have been associated with increased enzyme activity [71,72]. An Asian study with 115
advanced NSCLC patients treated with an EGFR-TKI reported that patients with CYP1A1*2A-TT
had an improved response (p=0.011; TT vs CT/CC) and OS (HR=0.48; Clss%=0.31, 0.73 for TT vs
CT/CC) to EGFR-TKI [40]. However, for CYP1A1*2C, no association with clinical outcome for
patients treated with EGFR-TKIs has been reported [40]. Finally, no studies have evaluated
polymorphisms in CYP1A1 and their associations with toxicity.

9 CONCLUSIONS

The influence of gene polymorphisms in the EGFR pathway on clinical outcome and toxicity has
been extensively investigated in advanced NSCLC patients treated with EGFR-TKIs. The EGFR-
216 polymorphism have reported a strong association between response and/or survival to
EGFR-TKIs in Caucasian population. Similarly, the positive effect of EGFR-CA repeats
polymorphisms on survival of advanced NSCLC patients treated with EGFR-TKIs have been
confirmed in both Caucasian and Asian population. The influence on toxicity of the -216, -191,
CA repeats, Argd97Lys and Asp994Asp polymorphisms in EGFR have also been confirmed both
in Caucasian and Asian population.

Polymorphisms in AKT (rs1130214 and rs1130233) and SMAD3 (rs6494633, rs11071938 and
rs11632964) have been associated with survival in advanced NSCLC patients treated with EGFR-
TKIs. However, data come from a limited number of studies and need to be confirmed.

Finally, polymorphisms in genes coding proteins of the membrane transporters and cytochrome
P450 enzymes have been less extensively investigated. There are few studies with small
samples, which complicated the generalization of their role in EGFR-TKIs treatment.

In summary, polymorphisms in genes most extensively studied such as EGFR are promising
biomarkers for the selection of treatment and follow-up of NSCLC patients. In clinical practice,
EGFR polymorphisms may serve as a useful source of information to predict those patients with
better response, higher survival and lower toxicity. Therefore, these biomarkers could be a
valuable tool for patient stratification. However, polymorphisms in AKT, SMAD3, ABCBI,
CYP3A4, CYP3A5, CYP2D6, CYP1A1 genes need further examination in larger samples (stratified
by gender, age and smoking status) and longer follow up.
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