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Deep Learning-Based Detector for OFDM-IM
Thien Van Luong, Youngwook Ko, Senior Member, IEEE, Ngo Anh Vien, Duy H. N. Nguyen, Member, IEEE,

and Michail Matthaiou, Senior Member, IEEE

Abstract—This letter presents the first attempt of exploiting
deep learning (DL) in the signal detection of orthogonal fre-
quency division multiplexing with index modulation (OFDM-
IM) systems. Particularly, we propose a novel DL-based detector
termed as DeepIM, which employs a deep neural network with
fully-connected layers to recover data bits in an OFDM-IM
system. To enhance the performance of DeepIM, the received
signal and channel vectors are pre-processed based on the domain
knowledge before entering the network. Using datasets collected
by simulations, DeepIM is first trained offline to minimize the
bit error rate (BER) and then the trained model is deployed
for the online signal detection of OFDM-IM. Simulation results
show that DeepIM can achieve a near-optimal BER with a lower
runtime than existing hand-crafted detectors.

Index Terms—DeepIM, deep learning, deep neural network,
index modulation, low-complexity detector, OFDM-IM.

I. INTRODUCTION

Orthogonal frequency division multiplexing with index
modulation (OFDM-IM) [1] has emerged as a promising
multicarrier system to replace the classical OFDM technology.
In OFDM-IM, only a subset of sub-carriers are activated to
convey information bits via not only active sub-carriers but
also their indices. This enables OFDM-IM to enjoy higher
reliability and energy efficiency than OFDM since no extra
power or bandwidth resources are required when using indices
of active sub-carriers to carry data bits. In addition, OFDM-
IM introduces an attractive balance between spectral efficiency
and reliability when adjusting the number of active sub-
carriers. Due to these benefits, OFDM-IM has received a great
deal of research attention recently. For example, frameworks of
analyzing the symbol error probability and bit error rate (BER)
of OFDM-IM with uncertain channel state information (CSI)
were presented in [2] and [3], respectively. Various studies
aimed to improve the performance of OFDM-IM can be found
in [4]–[6] and the references therein. A low-complexity greedy
detector (GD) based on energy detection was proposed in [7],
while its BER was analyzed in [8].

Despite having better performance, OFDM-IM suffers from
high detection complexity compared to conventional OFDM
systems. In fact, current detectors are unable to address this
complexity issue while maintaining a near-optimal perfor-
mance. For instance, maximum likelihood (ML) detection
based on exhaustive search achieves optimal BER performance

This work was supported in part by the Engineering and Physical Sciences
Research Council under Grant EP/N509541/1 and Grant EP/P000673/1.

T. V. Luong, N. A. Vien, M. Mathhaiou and Y. Ko are with the ECIT Insti-
tute, Queen’s University Belfast, Belfast, BT3 9DT, UK, (e-mail: {tluong01,
v.ngo, m.matthaiou, y.ko}@qub.ac.uk).

D. H. N. Nguyen is with the Department of Electrical and Computer
Engineering, San Diego State University, San Diego, CA, USA 92182 (email:
duy.nguyen@sdsu.edu).

with exponentially high complexity. A low-complexity log-
likelihood ratio (LLR) detector was proposed in [1] to achieve
a near-ML performance, however, it requires precise knowl-
edge of the receive noise power spectral density. The GD has
complexity comparable to that of OFDM detector, however, it
suffers from a notable performance loss in comparison with
the ML detector. In this context, deep learning (DL) will be
exploited to deal with the fundamental drawbacks of hand-
crafted detectors.

DL [9] combined with deep neural networks (DNNs) has
been successfully applied in various fields, such as computer
vision and natural language processing. Recently, it also has
been applied to communication systems, especially in physical
layer problems. For example, in [10], a DL autoencoder
was proposed to replace both the transmitter and receiver of
communication systems with DNNs. In OFDM systems, DL
also was utilized to reduce the peak-to-average ratio [11] and
design a joint channel estimation and signal detection receiver
[12]. In [13], an OFDM autoencoder-based system was inves-
tigated in presence of hardware impairments. To the best of
our knowledge, none of existing works has investigated the
potential of applying DL in an OFDM-IM system, especially
in reducing its detection complexity.

In this letter, we first propose a DL-based detector for
OFDM-IM, termed as DeepIM, which can significantly reduce
the complexity over existing hand-designed detectors while
maintaining a near-optimal performance. In DeepIM, the re-
ceived signal and channel information are pre-processed based
on the domain knowledge of OFDM-IM prior to being fed
to the DNN. Meanwhile, the proposed DNN structure only
needs two fully-connected (FC) nonlinear layers to perform
the detection task efficiently under Rayleigh fading channels.
Moreover, the number of nodes of the hidden layer can be
adaptively adjusted to strike a trade-off between the perfor-
mance and complexity. DeepIM is trained offline to minimize
the BER using the simulated data and then the trained model
can be used as an online detector with very low runtime. It
is shown via simulation results that DeepIM can provide a
near-optimal BER under both perfect and imperfect CSI with
lower runtime compared with current hand-crafted schemes.

The rest of this paper is organized as follows. Section II
describes the system model, while Section III presents the
proposed DL-based detector. Simulation results are provided
in Section IV. Finally, Section V concludes the paper.1

1Notation: Upper-case bold and lower-case bold letters are used for matri-
ces and vectors, respectively; CN

(
0, σ2

)
represents the complex Gaussian

distribution with zero mean and variance σ2, while b.c denotes the floor
function and C (.) stands for the binomial coefficient.
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II. SYSTEM MODEL

Consider an OFDM-IM system with Nc sub-carriers that are
split into G groups of N sub-carriers, i.e., Nc = NG. At the
transmitter, the signal processing of every OFDM-IM group is
the same and independent of each other. Thus, we address only
one group for simplicity. Particularly, in every transmission of
each group, only K out of N sub-carriers are activated to send
a total of p data bits that include p1 = K log2M bits carried
by K complex data symbols and p2 = blog2 C (N,K)c bits
carried by indices of active sub-carriers, i.e., p = p1+p2. Here,
M is the M -ary modulation size. Notice that the mapping
from p1 bits to a combination of K active indices can be
implemented using either combinatorial methods or a look-up
table [1]. As a result, based on p incoming bits, the transmitted
vector x = [x1, ..., xN ] is formed by assigning K non-zero
data symbols to corresponding K active sub-carriers, i.e., xi
is non-zero if sub-carrier i is active and xi = 0 otherwise,
i = 1, ..., N . We denote such bit-to-symbol mapping by a
function x = fOFDM-IM (b), where b stands for a sequence of
p incoming bits in one group.

At the receiver, the received signal in the frequency domain
is expressed by

y = h� x + n, (1)

where � stands for the element-wise multiplication, h =
[h1, ..., hN ] is assumed to be the Rayleigh fading channel with
hi ∼ CN (0, 1) and n represents the additive white Gaussian
noise (AWGN) with its entries ni ∼ CN

(
0, σ2

)
, i = 1, ..., N .

The average received signal-to-noise ratio (SNR) is given by
γ̄ = Es/σ

2, where Es is the average energy of a transmitted
M -ary symbol.

For signal detection, as discussed in Section I, all existing
detection schemes of OFDM-IM such as ML, GD or LLR have
drawbacks regarding either high complexity or performance
loss. In the next section, DL appears to be an ideal approach to
strike the best balance between performance and complexity.

III. PROPOSED DL-BASED DETECTOR

In this section, the network structure of the proposed
DeepIM detector is first presented and then we describe the
training procedure and online deployment of DeepIM.

A. Structure of DeepIM

The structure of the proposed DeepIM is depicted in Fig.
1. Similar to the current detection schemes of OFDM-IM, the
channel information is assumed to be known at the receiver.
Thus, the received signal y and the channel h are considered
as the coarse inputs of the DNN. To achieve a better detection
performance, y and h will be pre-processed based on the
domain knowledge of OFDM-IM before entering the DNN
model. In particular, firstly, the well-known zero-forcing (ZF)
equalizer is employed to get an equalized received signal
vector as follows ȳ = y � h−1. Intuitively, this is expected
to improve the reconstruction of the M -ary symbols at the
active sub-carriers. Secondly, the energy of the received signal,
i.e., ym =

[
|y1|2 , ..., |yN |2

]
is computed and then combined

with ȳ to create the input of the DNN. Notice that in the

Fig. 1. The structure of the proposed DeepIM detector for OFDM-IM.

GD detector, ym is also used to decode indices of active sub-
carriers, thus such the proposed pre-processing of the input
data based on the domain knowledge of GD can improve the
index detection compared to just using the coarse inputs. As
shown in Fig. 1, the real and imaginary parts of ȳ, i.e., ȳR

and ȳI , and the received energy vector ym are concatenated
to form the 3N -dimensional input vector z = [ȳR, ȳI ,ym].

The proposed DNN structure consists of two fully-
connected (FC) layers including one hidden FC layer of Q
nodes and one FC output layer of p nodes as illustrated in Fig.
1. At the hidden layer, either the rectifier linear unit (Relu),
fRelu (x) = max (0, x), or the hyperbolic tangent (Tanh)
function, fTanh (x) = 1−e−2x

1+e−2x , can be used as the activation
function. Meanwhile, the Sigmoid function, fSig (x) = 1

1+e−x ,
is applied at the output layer to output the estimate of the
transmitted data bits b̂. In particular, since the output of the
Sigmoid lies between 0 and 1, we would decide one element
of b̂ either to be bit 0 when its value is less than 0.5 or to
be bit 1 otherwise. It is worth noting that the proposed DNN
needs only two nonlinear layers to be sufficient for the highly
accurate detection of both M -ary and index bits of OFDM-IM.
Specifically, let us denote by W1, b1 and W2, b2 the weights
and the biases of the first and second FC layers, respectively.
The output vector of the DeepIM model can be expressed as

b̂ = fSig (W2fTanh/Relu (W1z + b1) + b2) . (2)

We now highlight some key insights of the proposed DNN
structure. First, the input and output lengths of DeepIM are
determined by the system parameters such as N, K and M ,
while the length of the hidden layer, i.e., Q, needs to be prop-
erly selected to achieve a desired performance for each system
configuration. Intuitively, when the number of transmitted bits
p per OFDM-IM group increases, we need Q large enough
to guarantee a pre-determined performance. Moreover, just by
adjusting Q, we can attain a satisfactory trade-off between
the detection accuracy and the model complexity. Another
advantage of the proposed DeepIM is that the length of the
input vector z depends on N only, this interestingly makes
the complexity of DeepIM less dependent on K and M . In
contrast, the complexity of current detectors strongly relies on
these parameters. All the aforementioned benefits of DeepIM
will be validated by simulation results afterwards.
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B. Training Procedure

Before using the proposed DeepIM detector, we need to
train offline the DNN model with the data collected from
simulations. Particularly, various sequences of p bits b are ran-
domly generated to obtain a corresponding set of transmitted
vectors as x = fOFDM-IM (b). These vectors are then sent to the
receiver subject to the effects of the Rayleigh fading channel
and AWGN noise. Here, the channel and noise vectors are
also randomly generated and changed from one bit sequence to
another, based on their known statistical models. The collected
received signal and channel vectors, i.e., y and h are pre-
processed as described in the previous section to attain the
input dataset z whose labels are corresponding bit sequences
b. Note that the number of training data samples (z,b) should
be large enough to prevent overfitting in the training.

Using the collected data, the DeepIM model is trained to
minimize the BER, or equivalently, to minimize the difference
between b and its prediction b̂. Thus, we simply adopt the
mean-squared error (MSE) loss function for the training

L
(
b, b̂; θ

)
=

1

p

∥∥∥b− b̂
∥∥∥2 , (3)

where θ = {Wi, bi}i=1,2 are the weights and biases of the
model. The model parameters θ can be updated for the batches
randomly picked up from data samples, using the stochastic
gradient descent (SGD) algorithm as follows

θ+ := θ − η∇L
(
b, b̂; θ

)
, (4)

where η is the learning rate that defines the step size of the
SGD. In our training, we adopt an advanced update algorithm
based on the SGD, known as the adaptive moment estimation
(Adam) optimizer, which can be easily implemented in various
off-the-shelf DL platforms, such as Tensorflow and Keras.

In order to efficiently train DeepIM, the SNR level used
for training (denoted as γ̄train) must be properly selected since
the performance of the model is very sensitive to it. More
precisely, it is essential to choose the best γ̄train such that the
model trained by this SNR level still performs well for any
other SNRs of interest. For instance, if γ̄train is too small, the
effect of the noise will not be taken into account in the training,
leading to a poor generalization of the obtained model. The
details of selecting a specific training SNR for each experiment
setting will be subsequently provided in the simulation results.

C. Online Deployment

Once trained offline, the DeepIM model with the optimized
parameters θ is utilized for the online deployment of the
signal detection of OFDM-IM with arbitrary received SNRs
and channels of interest. More specifically, the proposed
scheme can be implemented in a real-time manner to estimate
the data bits over various channel fading conditions with
no extra training for θ. Whenever the received signal and
channel information are fed to DeepIM, it will autonomously
output the estimated bits in very short computation time. Most
importantly, our proposed scheme performs as good as the ML
detector under channel estimation errors, though it is trained
with perfect CSI, i.e., we do not need to retrain the model.

0 5 10 15 20 25

SNR (dB)

10-4

10-3

10-2

10-1

100

B
E

R

DeepIM, Q=128, Relu

DeepIM, Q=32, Relu

DeepIM, Q=32, Tanh

DeepIM, Q=16, Tanh

ML

GD

Data rate: 1 bps/Hz

Fig. 2. BER comparison between the proposed DeepIM and the reference
detectors under perfect CSI condition and (N,K,M) = (4, 1, 4).

IV. SIMULATION RESULTS

We provide simulation results of the BER and computational
complexity of the proposed DeepIM in comparison with exist-
ing schemes, including ML and GD detectors. In all considered
experiment settings, the proposed DeepIM is trained with 103

epochs, each of which contains 20 batches of 103 data samples
(also known as batch size). Since samples of each batch are
randomly generated while training, there are a total of 2×104

batches involving in total 2×107 different samples for training.
The learning rate η is set to 0.001, while a number of other
DL parameters, such as Q and γ̄train are selected based on
the OFDM-IM parameters in each experiment. Although we
consider Rayleigh fading channels in our experiments, the
DeepIM detector can be applied to any other channel models.

A. BER Performance

Fig. 2 compares the BER among the proposed, ML and
GD detectors, when (N,K,M) = (4, 1, 4) and perfect CSI is
assumed. In DeepIM, different values of Q and corresponding
activation functions are considered, while γ̄train is set to 10 dB.
Particularly, at the hidden layer, for large Q, i.e., Q = 128,
the Relu is used, while for smaller Q, i.e., Q = 16, 32, the
Tanh is used. This is due to the fact that the output of the Tanh
is not limited to be non-negative as the Relu, thus provides
higher model capacity than the Relu. This makes the Tanh
more appropriate for DeepIM with small Q, which does not
have enough model capacity to perform the detection task.
As shown in Fig. 2, DeepIM with Q = 128 achieves a BER
very close to ML and significantly outperforms GD. When Q
decreases to 32 and 16, DeepIM exhibits performance losses
of only 1 dB and 2 dB, respectively, compared to ML, while
still performs better than GD. Finally, as expected for the same
small Q = 32, the Tanh has much better BER than the Relu.

The BER comparison for higher data rates, i.e., 2 bps/Hz
when (N,K,M) = (4, 3, 4) is illustrated in Fig. 3. Herein,
higher data rate means larger p, or equivalently, larger number
of classes involved in DeepIM. Hence, the DNN model needs
to have higher model capacity than the previous setting; this
observation justifies the selection of larger Q in Fig. 3 than
that in Fig. 2. Unlike Fig. 2, γ̄train is now set to 15 dB. Again,
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Fig. 3. BER comparison between the proposed DeepIM and the reference
detectors under perfect CSI condition and (N,K,M) = (4, 3, 4).
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Fig. 4. BER comparison between the proposed DeepIM and the reference
detectors under imperfect CSI and (N,K,M) = (4, 1, 4).

there is just a slight performance gap between the proposed
detector and ML, while the BER of GD is much worse than our
detector. Moreover, as seen from two figures, DeepIM provides
an attractive trade-off between performance and complexity
when adjusting Q, which is not available in existing detectors.

In Fig. 4, we demonstrate the BER of DeepIM in com-
parison with competing schemes under CSI uncertainty. In
particular, we adopt the minimum mean square error (MMSE)-
based variable imperfect CSI model as presented in [2], where
the CSI error variance ε2 varies as a function of the average
SNR, i.e., ε2 = (1 + γ̄)

−1. It is clear from Fig. 4 that under
imperfect CSI, DeepIM achieves a performance identical to
ML as it is trained with perfect CSI to have an ability to learn
and remember the characteristics of the true channel.

B. Complexity Comparison

To evaluate the complexity of DeepIM, we convert the
DeepIM model obtained by training on Tensorflow library
to MATLAB to compute the runtime per sample. This is to
ensure a fair comparison as the ML and GD detectors are
also executed on MATLAB of the same computer. Table I
compares the complexity of three detectors in terms of the
runtime measured in milliseconds (ms). Herein, DeepIM is
assumed to employ Q = 128 with the Relu and Q = 64 with

TABLE I
COMPLEXITY COMPARISON AMONG DEEPIM, ML, AND GD DETECTORS

(N,K,M) ML GD DeepIM/Relu DeepIM/Tanh
(4, 1, 4) 0.1 0.041 0.01 0.011
(4, 2, 4) 0.28 0.053 0.011 0.012
(4, 3, 4) 1.6 0.057 0.012 0.013

the Tanh for all cases. As observed in Table I, the runtimes of
DeepIM with the Relu and Tanh are quite similar and much
less than that of both ML and GD, especially when K gets
larger. For example, when K = 3, the runtime of DeepIM is
about 130 and 5 times less than ML and GD, respectively.
As expected in Section III.A, unlike ML, increasing K has a
negligible impact on the complexity of DeepIM.

V. CONCLUSION

We have illustrated the effectiveness of the DNN in signal
detection of OFDM-IM in terms of both the error performance
and complexity. Specifically, the proposed detector called as
DeepIM pre-processes received signal and channel vectors
based on the domain knowledge such as the ZF equalizer and
energy detection before the DNN with fully-connected layers
is trained to efficiently recover data bits. It is shown that once
trained, DeepIM can be deployed in an online manner with
very low runtime while obtaining a near-optimal performance.
We believe that such key benefits of DeepIM will inspire future
work of applying DL to various advanced IM schemes.
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