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Active Fault Diagnosis via Reachable Set Separation
using Interval Methods

Mihalis Tsiakkasa,∗, Pantelis Sopasakisb, Francesca Boemc, Christos Panayiotoua and Marios Polycarpoua

Abstract— This paper presents an optimization-based ap-
proach for active fault isolation in linear time invariant systems
subject to additive disturbances which are bounded in intervals.
We model the evolution of the system states and outputs using
interval dynamics with the input signals also bounded within
given intervals. The proposed approach is based on determining
a sequence of control actions to minimize a function which
quantifies the overlap of output intervals, while taking into
account the prescribed input bounds. The resulting optimization
problem is nonconvex, yet the cost function has Lipschitz-
continuous gradient and the constraints are simple, which
allows us to solve them efficiently. A numerical example is used
to illustrate the implementation and suitability of the proposed
optimization approach for active fault isolation.

I. INTRODUCTION

Fault diagnosis methods can be separated into two broad
classes [1]: the first group of methods includes passive fault
diagnosis techniques, where input/output data is used to
make a decision about the health status of the system. In
the second group, represented by so-called active methods
(see [2] for a recent survey), the control input is optimized
to help diagnose a fault; these methods are termed active fault
diagnosis (AFD). A major shortcoming of traditional passive
fault diagnosis techniques is that feedback controllers can
compensate the effect of faults, thus hiding their presence or
making them difficult to be distinguished. This may result
in undesirable delays in in detecting and/or isolating faults,
possibly leading to more severe consequences or propagation
to major failures in the system.

As explained in [2], many different methods and scenarios
have been proposed under the umbrella of AFD, considering
deterministic [3], [4] or stochastic uncertainties [5], [6],
hybrid stochastic-deterministic approaches [7], [8], and finite
or infinite AFD auxiliary control sequences [9].

The proposed approach belongs to the class of determin-
istic methods for model discrimination. Recent works have
investigated the use of set membership methods, analyzing
the reachable sets of the nominal and a bank of faulty
models [10]. A common approach is based on the use of
zonotopes [11] to describe the bounded uncertainties models,
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both for fault detection [12] and diagnosis [13], [14]. A sim-
ilar approach is pursued here using interval methods which
simplify the computation of model-to-model distances.

As pointed out in [2], the implementation of active fault
diagnosis techniques in practical settings is still limited,
mainly due to the high computational complexity that these
methods require. Even though some approaches have been
suggested to alleviate the computational complexity (see for
example [15]), this drawback hinders the applicability of
AFD to even low-dimensional systems or networks of few
interconnected systems [16]. This is mainly due to the fact
that the design of the separating input is performed via the
solution of a mixed integer quadratic program, which is not
suitable for real-time implementations.

In this paper, we propose a novel formulation of the active
fault diagnosis problem which does not require the use of
mixed-integer formulations. More specifically, we present
a set membership approach towards active fault isolation
utilizing interval methods. Similar to previous works [10],
we assume each fault is described by a known a priori fault
model subject to deterministically bounded uncertainties
which are modeled by an interval uncertainty vector.

We propose an optimization-based approach, which aims
to derive a finite sequence of control actions that minimizes
the overlapping of possible model outputs. In order to
avoid formulating mixed-integer problems, we introduce an
appropriate inexact penalty function which is sufficiently
smooth and allows the use of efficient numerical algorithms.
The resulting optimization problem turns out to be a smooth
nonconvex problem with simple constraints which can be
solved efficiently.

Summing up, the main contributions of this paper are:
1) An active fault isolation method for systems with

interval uncertainties, not requiring the solution of
mixed integer problems, neither online nor offline;

2) An optimization-based approach which attempts the
simultaneous separation of multiple fault models by
minimizing the overlapping. This leads to the for-
mulation of a nonconvex problem which possesses a
favorable structure, allowing the use of fast methods
for its solution;

3) We show the effectiveness of the proposed methodol-
ogy with an example regarding a ground robot.

The rest of the paper is structured as follows. The adopted
notation and some useful preliminary results are presented in
Section II. In Section III the considered problem is illustrated
and the use of intervals for system dynamics representation is
introduced in Section IV. The proposed approach for active



fault isolation is then presented in Section V. Numerical
simulations are shown in Section VI and some concluding
remarks can be found in Section VII.

II. PRELIMINARIES

Hereafter, we denote by IR, IRn, IRm×n, IN and IN[k1,k2]

the sets of real numbers, n-dimensional real vectors, m-by-n
real matrices, nonnegative integers and the set of nonnegative
integers which are in the interval [k1, k2]. We denote the
transpose of a matrix A by A>.

The interval x = [x, x] where x, x ∈ X ⊆ IR ∪ {∞}
and x ≤ x represents the range of numbers {x ∈ X | x ≤
x ≤ x}. For the sake of clarity, we, henceforth, denote all
intervals by boldface letters. The field of intervals over a
set X ⊆ IR is denoted by [X ]. This notation is extended
to interval vectors in X ⊆ IRn where ≤ is meant in the
element-wise sense.

For intervals x = [x, x] ∈ [IRn] and y = [y, y] ∈ [IRm]
we define their Cartesian product, x × y, to be the interval
x× y = [[ x> y> ]

>
, [ x> y> ]

>
] ∈ [IRn+m].

Before proceeding, we define the following interval op-
erations. Let x = [x, x] ∈ [IR] and y = [y, y] ∈ [IR]. Then
x+y = [x+y, x+y] and x−y = [x−y, x−y]. Furthermore,
the width of an interval is given by |x|[IR] := x − x, while
its center point is given by c(x) = 1

2 (x + x). The center
and width operators are extended to [IRn] in the element-
wise sense. Vectors t ∈ IRn can be, trivially, identified by
intervals t ∈ [IRn] with c(t) = t and |t|[IR] = 0.

The following lemma is provided without proof but fol-
lows easily from basic interval arithmetic operations

Lemma 1: Let x,y ∈ [IR] and α, β ∈ IR, then

|αx + βy|[IR] = |α||x|[IR] + |β||y|[IR]

and c(αx + βy) = αc(x) + βc(y). (1)

As a result of the above lemma we have that given
A ∈ IRm×n and x ∈ [IRn] then c(Ax) = Ac(x) and
|Ax|[IR] = |A||x|[IR] where |A| = [|aij |]i,j . The above
lemma suggests that | · |[IR] is an additive seminorm and c(·)
is a linear operator.

A discrete-time, linear, time-invariant (LTI) system is a
dynamical system which is identified by the tuple P =
(A,B,C,D) with dynamics

x(k + 1) = Ax(k) +Bu(k) + v(k), (2a)
y(k) = Cx(k) +Du(k) + w(k), (2b)

where x ∈ IRnx is the system state, u ∈ IRnu is the
manipulated input, y ∈ IRny is the measured output, while
v ∈ IRnx and w ∈ IRny are disturbances acting on the system
dynamics and output respectively. Using the above defini-
tions for interval arithmetic, LTI systems can be extended to
accommodate interval-valued states x(k) = [x(k) x(k)]> ∈
[IRnx ] and interval disturbances v ∈ [IRnx ] and w ∈ [IRny ].
Throughout this paper, it is assumed that disturbances and
uncertainties are bounded and that the corresponding bounds
are time-invariant, hence v and w are independent of k.

III. PROBLEM FORMULATION

Suppose that the system we want to monitor can be
described by a nominal model P0 and N known possible
faulty models, each of which is described by an LTI system
of the same order as P0. Now, let each of the faulty models
be denoted Pi for i ∈ IN[1,N ] and have dynamics given
by (2) where Pi = (Ai, Bi, Ci, Di). Moreover, xi(k) =
[xi(k), xi(k)] ∈ [IRnx ] is the interval state vector and vi =
[vi, vi] ∈ [IRnx ] and wi = [wi, wi] ∈ [IRny ] are the state
and output interval uncertainty vectors respectively. Finally,
u(k) ∈ IRnu is the system manipulated input.

Suppose that at time kf a fault is detected in the system. It
is important to identify and diagnose the source of the fault
which would then allow for the restructuring of the control
system in order to maintain stability and safe operation. This
step can be achieved using active fault isolation techniques;
an interval based approach to this purpose is presented in
this paper. Since the fault detection module might produce
false alarms, the nominal model P0 will also be considered
as a possible contingency for model isolation.

The objective of this work is to design an input sequence
U = {u(kf ), . . . , u(kf + kh)} over a horizon kh such that
the output interval vectors do not overlap (see Fig. 1 for
an illustrative explanation), thus allowing for the diagnosis
and possible isolation of the system fault. This way, by
applying the computed input sequence, the measurements
will be consistent with a single fault model only. Interval
arithmetic is used to model both the nominal and faulty cases
so as to capture bounded uncertainties and non-linearities in
the physical system.

A brief motivating example is given below. Consider the
LTI model

Pi =
([−0.083 −0.051

0.051 −0.083
]
,
[−0.102 i−0.319

0.5i 0.313

]
,
[−0.865 −0.030

0.929 0.350

]
, 0
)

with i ∈ IN[0,1] and disturbances vi and wi satisfying
c(vi) = c(wi) = 0 and |v1|>[IR] = [ 0.376 0.128 ], |v2|>[IR] =
[ 0.253 0.349 ], |w1|>[IR] = [ 0.420 0.197 ] and |w2|>[IR] =
[ 0.127 0.251 ]. Now suppose that at time k = kf a fault
is detected and furthermore suppose that (for simplicity)
xi(kf ) = 0. Figures 1 and 2 show the responses of the two
models to the input sequences

U s =
{[−0.021
−0.062

]
, [ 0.0130.765 ]

}
, Uns = {[ 0.3760.128 ] , [ 0.2530.349 ]} ,

respectively. It can be seen by the two figures that under
U s the output intervals of the two models are completely
separated (i.e., they do not intersect), hence an output mea-
surement at time k = kf + 2 would allow one to deduce
which of the two models is active thus diagnosing the fault.
On the other hand, with Uns the intersection between the two
output interval vectors means that the possibility exists that
the output measurement can be explained by both models.

IV. INTERVAL EVOLUTION MODELING

In this section we study the modeling aspects of dynamical
systems whose states, output and disturbance signals are
interval valued. We focus on the structure given by (2) with



−0.2 0 0.2

−0.2

−0.1

0

0.1

(a) k = kf + 1.

−0.5 0 0.5
−0.5

0

0.5

1

(b) k = kf + 2

Fig. 1: Response to separating input sequence U s.
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Fig. 2: Response to non-separating input sequence Uns.

the various variables as defined in the problem formulation.
It turns out that the centers and widths of the state and output
interval vectors follow an LTI dynamics resulting in a state
space parametrization with double the number of states in
relation to the original model.

By applying Lemma 1 to (2a) we obtain the following dy-
namics for the width of the state vector, x̃i(k) := |xi(k)|[IR],

x̃i(k + 1) =|Aixi(k) +Biu(k) + vi|[IR]

=|Aixi(k)|[IR] + |Biu(k)|[IR] + |vi|[IR]

=|Ai||xi(k)|[IR] + |vi|[IR]

where |Biu(k)|[IR] = 0 since Biu(k) ∈ Rn is a vector (due
to the fact that u(k) is assumed to be perfectly known) which,
when interpreted as an interval, has zero width. Therefore,

x̃i(k + 1) = |Ai|x̃i(k) + |vi|[IR],

which yields

x̃i(k) = |Ai|kx̃i(0) +

k−1∑
i=0

|Ai|i|vi|[IR]. (3)

Since all elements of |Ai| and |vi|[IR] are non-negative, it
follows that x̃i(k + 1) ≥ x̃i(k) for all k ≥ 1.

Similarly, using (1) the dynamics of the center of xi(k),
denoted x̌i(k) := c(xi(k)), is given by

c(xi(k + 1)) = c(Aixi(k) +Biu(k) + vi)

= Aic(xi(k)) +Biu(k) + c(vi).

Hence,

x̌i(k + 1) = Aix̌i(k) +Biu(k) + c(vi).

Finally, combining the above we have the dynamics of
the interval-valued state x is given in terms of its width and

center as follows[
x̃i(k+1)
x̌i(k+1)

]
=

[
|Ai|

Ai

][
x̃i(k)
x̌i(k)

]
+

[
0
Bi

]
u(k) +

[
|vi|[IR]

c(vi)

]
. (4)

Similarly, let y̌i(k) and ỹi(k) denote the center and width
of the output vector at time k respectively (i.e., y̌i(k) :=
c(yi(k)) and ỹi(k) := |yi(k)|[IR]). Then

[
ỹi(k)
y̌i(k)

]
=

[
|Ci|

Ci

][
x̃i(k)
x̌i(k)

]
+

[
0
Di

]
u(k) +

[
|wi|[IR]

c(wi)

]
. (5)

Using (4), the state interval vector center x̌i(k) can be
expressed in terms of u(k) as follows

x̌i(k) = Aki x̌i(0) +

k−1∑
t=0

Ak−1−ti Biu(t) +

k−1∑
t=0

Atic(vi) (6)

By defining Γ(A,B, k) as

Γ(A,B, k) =
[
Ak−1B · · · AB B

]
,

the expression for x̌i(k) given by (6) can be simplified to

x̌i(k) = Aki x̌i(0) +

k−1∑
t=0

Atic(vi)

+
[
Γ(Ai, Bi, k) 0

]
U(k) (7)

where U(k) =
[
u(0)> · · · u(k)>

]>
.

Now substituting (3) and (7) into (5) we obtain

ỹi(k) = |Ci||Ai|kx̃i(0) + |Ci|
k−1∑
t=0

|Ai|t|vi|[IR] + |wi|[IR],

y̌i(k) = Gi(k) +
[
CiΓ(Ai, Bi, k) Di

]
U(k),

where

Gi(k) = CiA
k
i x̌i,0 + Ci

k−1∑
l=0

Alic(vi) + c(wi).

Then define an output function δi,j(k), which depends also
on U , for models i and j whose lth element is given by

δli,j(k) = (ξli,j(k))2 − (ϑli,j(k))2, (8)

where

ξi,j(k) = |y̌i(k)− y̌j(k)| and
ϑi,j(k) = 1

2 (ỹi(k) + ỹj(k)),

the elements of which quantify the distance between the state
intervals, xi(k) and xj(k), of the two models along each
direction.

V. ACTIVE INTERVAL SEPARATION

We now proceed to the main results of this paper. In this
section, some separation conditions are given first followed
by an optimization-based approach where an attempt is made
to simultaneously separate all models.



A. Separation conditions
We begin by formally defining the terms separation and

separability in the context of interval arithmetic. Let x ∈
[IRn] and y ∈ [IRn]. The two intervals vectors are said to
be separated if x ∩ y = ∅. Now suppose that the interval
vectors being considered are parametrized by θ ∈ Θ; then
the two are said to be separable if there exists a θ ∈ Θ such
that x(θ) ∩ y(θ) = ∅.

Lemma 2: Two intervals x,y ∈ [IRn] are separated if and
only if there exists an l ∈ IN[1,n] so that xl and yl are
separated where xl and yl denote the lth elements of x and
y respectively.

0 1 2 3
0

0.5
1

1.5
2

x

y

Fig. 3: Graphical proof of Lemma 2.

Equipped with the above lemma, we say that two interval
vectors x,y ∈ [IRn] are separated along direction l ∈ IN[1,n]

if xl ∩ yl = ∅.
The separation of two intervals can be established based on

their centres and widths as outlined in the following lemma.

Lemma 3: Two intervals x,y ∈ [IR] are separated if and
only if |c(x)− c(y)| > 1

2

(
|x|[IR] + |y|[IR]

)
.

IR

x y

|c(x)− c(y)|

1/2|x|[IR]
1/2|y|[IR]

Fig. 4: Graphical proof of Lemma 3.

Figure 3 gives a graphical proof for Lemma 2, where it can
be seen that the two intervals x and y are overall separated
even though they overlap in the vertical direction. Similarly,
a proof of Lemma 3 above is given in Figure 4.

The following theorem exploits the measure defined in
(8) in conjunction with the results presented in Lemmas 2
and 3 above, to test whether the output interval vectors of
two models are separated.

Theorem 4 (Separation criterion): Consider two models
Pi and Pj of the form given in (2) extended as in (4) and (5)
and let δi,j(k) be defined as in (8). Then the output interval
vectors of the two models are separated at time k if and only
if at least one element of δi,j(k) is positive.

Proof. The result follows by applying Lemmas 2 and 3.

B. Optimization-based simultaneous separation
Suppose that as before we have N + 1 models1 for

which we wish to separate the reachable state intervals.

1The nominal model plus N possible faults.

Additionally, as it is typically the case in practice, assume
that the input variables are constrained to be within an
interval U ∈ [IRnu ]. Using δi,j(k) as defined in (8) and
following Theorem 4, a necessary and sufficient condition
for separation to be achieved at time index k is that

min (−δi,j(k)) < 0, (9)

for all i, j ∈ IN[0,N ] with i 6= j.
We define the operator [ · ]+ : IR→ IR+ as follows

[x]+ :=

{
0 if x ≤ 0,
x if x > 0.

Now let ε > 0 be a positive constant and denote by δli,j(k)
the lth element of δi,j(k). Then (9) is equivalent to

φi,j(U, k) = 0,

for i, j ∈ IN[0,N ], where φi,j : IRnuk × IN → IR+ is the
function

φi,j(U, k) :=

ny∏
l=1

[ε− δli,j(k)]2+.

We may also define the following measure of overlap at
time k as

Φ(U, k) :=

N∑
i,j=0
i 6=j

φi,j(U, k).

In order for all N subsystems to be separated at time k,
it is desirable that Φ(U, k) becomes sufficiently small as
explained in the following proposition.

Lemma 5: Assume that there exists a separating sequence
in Uk−1 for some k ∈ IN. Let U satisfy Φ(U, k) < ε2ny .
Then, U is a separating sequence.

Proof. For a sequence x1, . . . , xn ≥ 0. with
∏n
i=1 xi ≤ εn,

it holds that xi ≤ ε for some i. Indeed, if not, xi > ε for all
i and

∏n
i=1 xi > εn — a contradiction.

Since Φ(U, k) < ε2ny , we have that φi,j(U, k) < ε2ny for
every pair i, j ∈ IN[0,N ], i 6= j. In turn, this implies that
there is an l ∈ IN[1,ny ] so that [ε− δli,j(k)]+ < ε, therefore,
δli,j(k) > 0, which completes the proof.

Lemma 5 provides a criterion for separation at time k
using Φ(U, k) as a gauge function. In fact, we are interested
in achieving separation at any time k no larger than a given
maximum time kmax. To that end, we define

Ψδ(U, kmax) :=

kmax∏
k=1

Φ(U[k], k),

where U[k] = [u(0)> . . . u(k)>]> and U = U[kmax].
We will show that the models are separated at some k0 ∈

IN[1,kmax] if Ψδ(U, kmax) becomes sufficiently small.
Our main goal is to determine a solution U to

Ψδ(U, kmax) = 0, however, we are interested in doing so
while meeting two more requirements.



The first is that, especially for open-loop unstable systems,
it is desirable that the system state remains as close as
possible to a given reference value, r(k). To enforce that
the state of all subsystems does not stray too much from the
prescribed set point, we may use the cost function

Ψr(U, kmax) =

kmax∑
k=1

N∑
i=0

‖Q(y̌i(k)− r(k))‖22, (10)

where Q ∈ IRny×ny is a weighting matrix.
The second objective is that we need to achieve separation

at a minimum actuation effort. We naturally introduce the
following actuation cost function

Ψu(U) = ‖RU‖22
for some weighting matrix R ∈ IRnu(kmax+1)×nu(kmax+1).

We define the following optimization problem

P(λ) : minimize
U∈Ukmax−1

λΨδ(U, kmax) + Ψr(U, kmax) + Ψu(U)

where Uk = U × · · · × U (k times) and × is a Cartesian
product of intervals defined in Section II.

Problem P(λ) is a nonconvex problem which has a C1

cost with locally Lipschitz gradient and constraints on which
we may easily compute projections (either analytically or nu-
merically). Additionally, in all problems of practical interest,
primarily for safety reasons, sets U are bounded. Under these
assumptions, there exist very efficient algorithms, which are
suitable for embedded applications using which we may
solve such problems [17], [18].

With this optimization problem, if feasible, we find a
minimum-norm actuation sequence which leads to high
separation at an early stage.

In order to enforce that Ψδ(U, kmax) = 0, we employ the
penalty method [19], [20] which boils down to the iterative
procedure of Algorithm 1.

Algorithm 1 Penalty method

Input: λ(0) > 0, initial guess U (0), tolerance µ > 0, β > 1,
maximum separation time kmax ∈ IN

Output: (i) Time ks when simultaneous separation happens,
(ii) Solution U[k] ∈ Uk−1 with Φ(U, k) ≤ µ,
λ← λ(0)

U− ← U (0)

while Φ(U, k) ≥ µ for all k ∈ IN[1,kmax] do
Solve P(λ) for U with initial condition U−
U− ← U
λ← βλ

Lemma 6 (Convergence of Algorithm 1): Assume that
there exists a separating sequence in Uk−1 for some k ∈
IN[1,kmax] and let Uν be a solution of P(λν) and λν →∞.
Then, all cluster points, U? of Uν satisfy Ψδ(U

?, kmax) = 0
and the conditions of Lemma 5.

Proof. Define fν(U) = λνΨδ(U, kmax) + Ψr(U, kmax) +
Ψu(U). Then, the sequence fν epi-converges to f(U) =

g(U) + Ψr(U, kmax) + Ψu(U), where

g(U) =

{
0, if Ψδ(U, kmax) = 0

+∞, otherwise

as it can be easily seen by [21, Def. 7.1, Ex. 4.3b]. According
to [21, Thm. 7.33] (all requirements of which are satis-
fied), infU f

ν(U) → infU f(U) and lim sup(arg min fν) ⊆
arg min f , where lim sup here denotes the outer limit [21,
Def. 4.1]. Since Uν ∈ arg min fν , every cluster point U? of
(Uν)ν is a minimizer of f , thus satisfies Ψδ(U

?, kmax) = 0,
which proves the assertion.

Note that since Ukmax−1 is bounded, Uν does have a clus-
ter point by the Bolzano-Weierstrass Theorem [22, Sec 11.2].
For the same reason, lim sup(arg min fν) is non-empty.

As a result of Lemma 6, some iterate U of Algorithm 1
will satisfy Ψδ(U, kmax) < ε2nykmax . This implies that there
is a k ∈ IN[1,kmax] so that Φ(U, k) < ε2ny , so by virtue of
Lemma 5, we obtain a separating sequence.

Remark 7: In any practical scenario, faster separation is
preferable. To that end, the following extension to our cost
function can be employed.

Ψt(U, kmax) =

kmax∑
k=1

2−ρkΦ(U[k], k),

for some coefficient ρ > 0. This function penalizes lower
values of k thus encouraging the solver to produce a shorter
separating input sequence. ♦

VI. NUMERICAL EXAMPLE

A numerical example will be presented in this section to
demonstrate the practical use of the developed methodology.
The example will consider a two-wheel mobile ground robot
such as the one described in [23].

When considering the input as the voltage delivered to
each of the motors and the output as the linear velocity
(yv) and angular position (yθ) of the robot, a model for the
dynamics of the system can be obtained as2

Pi =
([

0.878 0 0
0 0.787 0
0 0.089 1

]
,
[
0.066 0.061
0.062 −0.058
0.003 −0.003

] [
1−f1

1−f2

]
,[

1−f3 0 0
0 0 1−f4

]
, 0
)
. (11)

All fault models will be derived from (11), with each case
represented by the parameters fi for i ∈ IN[1,4], the values
of which are given in Table I.

i f1 f2 f3 f4
0 0 0 0 0
1 0.334 0 0 0
2 0 0.223 0 0
3 0 0 0.399 0
4 0 0 0 0.480

TABLE I: Fault model parameters.
2For simplicity and brevity, the motors are given a static model (i.e.:

modelled as a simple gain). This assumption does not affect the presented
results and could be easily lifted if so desired.



For this example, we impose the assumption that for all
fault models i, c(vi) = 0 and c(wi) = 0. As a result of
this assumption, we have that for all vi and wi there exist
vi ∈ IRnx and wi ∈ IRny such that vi = [−vi, vi] and wi =
[−wi, wi]. Hence the model uncertainty can be quantified by
the matrices[

v0 · · · v4
]

= 102 ·
[
1.629 1.827 0.557 1.930 1.914
1.812 1.265 1.094 0.315 0.971
0.254 0.195 1.915 1.941 1.601

]
,[

w0 · · · w4

]
= 102 · [ 5.250 3.766 7.099 12.462 8.245

2.949 3.240 2.276 1.279 13.758 ] .

Finally, we consider that all models have the same initial
conditions, equivalent to the state at detection time.

For the simulation, the tracking error weight was set to
Q = 107I thus enabling the tracking cost while R was set to
R = I . After 20 outer loop iterations (1.176 s) the algorithm
terminated and the resulting separating input sequence was
given by

U[3] =
{[−7.836

0.659

]
,
[−7.629

8.087

]
,
[−11.465

12.000

]
,
[−11.642

1.577

]}
,

with Φ(U[3], 4) = 6.589 · 10−9 and Ψr(U[3], 4) = 5.401.
The results are shown in Figure 5. It can be observed that
the generated input sequence achieves simultaneous output
interval separation as desired.

−1 −0.5 0 0.5

−0.5

0

yv

y θ

P0 P1 P2 P3 P4

Fig. 5: Output trajectories under the separating input se-
quence U[3].

In the above example, note that in practice a maximum
of 4 time steps is required for separation. By applying the
computed sequence of control actions, we may be able to
diagnose the fault in two steps if P1 is the active model.

VII. CONCLUSION

An active fault diagnosis methodology was presented in
this paper based on set-membership methods. All possible
system modes of operation (including the nominal and fault
models) are modelled using interval arithmetic. The use of
interval methods results in a more conservative approach but
also gives easier to compute reachable sets and their pairwise
distances. An optimization problem is formulated that out-
puts an input sequence that guarantees simultaneous model
separation within some predefined horizon. The effectiveness
of the developed algorithm is shown in simulation by an
application to a mobile ground robot.
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