
A global piecewise smooth Newton method for fast large-scale model
predictive control

Patrinos, P., Sopasakis, P., & Sarimveis, H. (2011). A global piecewise smooth Newton method for fast large-
scale model predictive control. Automatica, 47(9), 2016-2022. https://doi.org/10.1016/j.automatica.2011.05.024

Published in:
Automatica

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2011 Elsevier.
This manuscript is distributed under a Creative Commons Attribution-NonCommercial-NoDerivs License
(https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits distribution and reproduction for non-commercial purposes, provided the
author and source are cited.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Open Access
This research has been made openly available by Queen's academics and its Open Research team. We would love to hear how access to
this research benefits you. – Share your feedback with us: http://go.qub.ac.uk/oa-feedback

Download date:02. May. 2024

https://doi.org/10.1016/j.automatica.2011.05.024
https://pure.qub.ac.uk/en/publications/fa2995b3-081b-4553-9e0a-2ad5bdc7fb7f

A global piecewise smooth Newton method for fast large-scale model
predictive control

Panagiotis Patrinosa, Pantelis Sopasakisa, Haralambos Sarimveis*a

E-mail addresses: patrinos@mail.ntua.gr (P. Patrinos), chvng@mail.ntua.gr (P. Sopasakis), hsarimv@central.ntua.gr (H.
Sarimveis).

Abstract

In this paper, the strictly convex quadratic program (QP) arising in model predictive control for constrained linear
systems is reformulated as a system of piecewise affine equations. A regularized piecewise smooth Newton method
with exact line-search on a convex, differentiable, piecewise-quadratic merit function is proposed for the solution of
the reformulated problem. The algorithm has considerable merits when applied to MPC over standard active set or
interior point algorithms. Its performance is tested and compared against state-of-the art QP solvers on a series of
benchmark problems. The proposed algorithm is orders of magnitudes faster, especially for large-scale problems and
long horizons. For example, for the challenging crude distillation unit model of Pannocchia et al. (2006) with 252
states, 32 inputs and 90 outputs the average running time of the proposed approach is 1.57 ms.

1. Introduction

Model predictive control (MPC) owes its popularity to the fact that it is the only control methodology that can
stabilize linear or nonlinear systems subject to hard input and state constraints. The rationale of the method is to
solve at each time instant a finite horizon optimal control problem, obtain an optimal input sequence and apply to
the system the first element of that sequence. The popularity of the method is due to the strong theoretical
background that has been developed over the past few years (Mayne, Rawlings, Rao, Scockaert, 2000, Rawlings &
Mayne, 2009) the development of efficient optimization algorithms and codes, and the substantial increase in
computational power. For linear systems the resulting optimal control problem can be formulated as a quadratic
program (QP) and off-the-shelf QP solvers allow the application of MPC for small to medium scale processes with a
moderate prediction horizon and slow dynamics.

However, the repeated solution of the finite horizon optimal control on-line remains the main bottleneck of the
methodology. Specifically, for high sampling rates and large scale systems the computational time needed to solve
the QP sub problem becomes a limiting factor of the method. Furthermore, standard MPC theory suggests that a
terminal cost and a terminal set need to be incorporated in the finite horizon optimal control problem to guarantee
asymptotic stability and constraint satisfaction for the closed-loop system. However, for large-scale linear systems it
is prohibitive to compute a polyhedral terminal invariant set, such as the maximal positive invariant set
corresponding to the system in closed loop with the unconstrained LQR control law. One could also use a sublevel
set of the terminal cost as a terminal constraint but then the favorable structure of the problem would be lost since
this is a convex quadratic inequality. Thus, the only viable route to achieve stability for large scale systems is to use
a long prediction horizon and possibly to place a larger weight in the terminal cost so as to force the terminal state to
lie on the terminal set (Limon, Alamo, Salas, Camacho, 2006, Mayne, Rawlings, 2009). In that case, a large
prediction horizon is mandatory and the increase in the size of the QP problem is unavoidable.

There are two major categories of QP algorithms, active set and interior point methods. Active set methods try to
identify the set of inequality constraints that are satisfied as equalities at the optimal solution, and can be classified
into primal and dual feasible algorithms. Primal active set algorithms require an initial feasible solution and at each
iteration, an equality constrained QP corresponding to the working set (the active set of the current solution) is
solved in order to compute a direction along which the objective function is decreased. If this direction is nonzero
then the maximum step size that maintains primal feasibility is selected and a new working set is computed,

otherwise the constraint that corresponds to the smallest Lagrange multiplier is deleted from the working set. Thus,
primal active set methods add or drop constraints from the initial active set as they move towards the optimal
solution while maintaining primal feasibility. Due to the complicated structure of the primal solution set, primal
active set methods spend on average about one third to one half of the total effort to compute an initial feasible
solution (Goldfarb & Idnani, 1983).

On the other hand, dual active set algorithms (Goldfarb & Idnani, 1983) start with a feasible dual vector and
constraints are added or deleted from the working set, increasing the objective function of the dual while
maintaining dual feasibility. It is easy to compute an initial feasible dual vector since the feasible dual set is usually
described by non-negativity or box constraints. Specifically in MPC, one can shift by one stage the primal-dual pair
obtained at the previous time step and use it as a warm-start solution for the dual active set solver at the current step.
A disadvantage of the dual active set method is that a primal feasible solution corresponding to a dual solution can
only be guaranteed upon termination of the algorithm. Hence, a meaningful control sequence, in the sense that it
satisfies input, state and terminal constraints can be obtained only upon convergence of the algorithm.

Although theoretically the worst-case running time of active set methods can be exponential in the dimension of the
problem, they usually perform very well in practice. On the downside, a notable drawback of active set methods is
that the working set changes slowly as the algorithm moves towards the solution. Furthermore, active set methods
require the solution of an equality constrained QP at each iteration, which means that a linear system of dimension
equal to the number of primal variables plus the number of active constraints needs to be solved. This is usually
performed by updating the QR factorization of the indefinite KKT (Karush-Kuhn-Tucker) matrix and then solving
the corresponding linear system by backward substitution. Alternatively, Bartlett & Biegler (2006) use a Schur
complement technique for updating the working set in the dual active set algorithm, exploiting inherent problem
structure present in many problems like model predictive control.

Interior point algorithms, Wright (1997), Nesterov & Nemirovskii (1994), move from an interior point of the
feasible set towards the optimal solution by following the so called central path. The main advantage of interior
point algorithms against active set methods is their fast convergence rate and their ability to exploit structure in the
problem. The latter is due to the fact that the structure of the large system of linear equations that needs to be solved
at each iteration, remains unchanged. Specifically, Rao, Rawlings & Wright (1998) applied Mehrotra’s predictor-
corrector algorithm (Mehrotra, 1992) using a discrete-time Riccati recursion to solve the system of linear equations
in MPC problems, thus reducing the computational effort to 3(())O N m n+ , where N is the prediction horizon, m
is the number of input variables and n is the number of state variables. Recently, Wang & Boyd (2010) proposed an
infeasible start primal barrier method, where the structured system of linear equations at each Newton iteration is
solved efficiently using block elimination. They also propose variants of the method where the barrier parameter or
the iteration limit is kept fixed. However in that case, the resulting solution may not be primal feasible. In the large,
it can be argued that for MPC problems with long prediction horizons interior point methods are more efficient than
active set algorithms. Furthermore, interior point methods have polynomial worst-case complexity. However,
interior point algorithms possess two considerable disadvantages when applied to MPC, compared to active set
solvers. Firstly, although the system of linear equations that needs to be solved at each iterate is structured, its
dimension can be considerably larger than that of active set methods. Secondly, since interior point methods need a
strictly feasible primal-dual pair as a starting point, warm-starting is an open issue. To sum up, active set methods
usually require a large number of computationally cheap iterations while interior point methods need only a few but
more expensive steps.

To overcome the limitations of the aforementioned techniques, some other alternatives have been proposed in the
literature for solving efficiently MPC problems. Specifically, taking advantage of the simplicity of the constraints
appearing in the dual of a strictly convex QP, Axehill & Hansson (2008) proposed a gradient projection method
(Nocedal & Wright, 2006) applied to the dual QP of the MPC problem. Unlike, the dual active set algorithm,
gradient projection permits large changes of the working set. In Richter, Jones & Morari (2009) the optimal gradient

method of Nesterov (1983) is employed to solve MPC problems with lower and upper bound constraints on the
manipulated variables only. The method requires only a matrix-vector product per iteration for computing the
gradient. The simple structure of the constraint set allows to compute the projection efficiently. Using the theory of
Nesterov (1983), they provide an upper bound for the number of iterations needed to achieve certain accuracy for
the optimal solution of the MPC problem. However, the inability of the approach to handle state constraints is
certainly a limiting factor for the method. Furthermore, although the method of Nesterov is optimal in terms of rate
of convergence among methods that use first order information, it may require many iterations to achieve a desired
level of accuracy when the condition number of the hessian is large. Another drawback is that the upper bound in the
number of iterations for the warm-start approach requires the off-line solution of a non-convex multi-level
optimization problem, which is extremely hard to solve, especially for large-scale systems.

On the other hand, the observation that MPC for constrained linear systems can be formulated as a parametric QP
(Bemporad, Morari, Dua & Pistikopoulos, 2002), has enabled the off-line solution of the optimal control problem
and the explicit calculation of the MPC controller as a piecewise affine mapping of the measured state. Therefore,
only the evaluation of a piecewise affine mapping is needed to compute the MPC control law on-line. Despite the
fact that efficient algorithms for parametric QPs have been recently developed, Patrinos & Sarimveis (2010),
Fukuda, Jones & Columbano (2009), the complexity of the MPC controller increases exponentially with the state
and input dimensions, and the prediction horizon. Hence, the applicability of parametric programming is limited to
small to medium scale systems and prediction horizons. To overcome the limitation of parametric MPC, Ferreau,
Bock & Diehl (2008) propose an online active set strategy that exploits the solution information of the previous QP
by moving along a homotopy path (Best, 1996) from the previous to the current solution while adding and dropping
constraints like a usual active set algorithm. Provided that the active set does not change much from one QP to the
next, this approach performs faster than a standard active set solver. Explicit MPC enumerates all critical regions for
an MPC problem, i.e. all full dimensional polyhedral sets for which a given combination of active constraints
remains optimal. However, in real-time the system traverses only a small fraction of those critical regions. Based on
this observation, Pannocchia, Rawlings & Wright (2007) proposed the partial enumeration method. As the name
suggests, only a small number of active sets and expressions of the PWA control law are computed off-line via
simulations and stored in a look-up table. In real-time, the table of active sets is scanned in terms of decreasing order
of frequency of appearance. If none of the already stored active sets satisfies the KKT conditions they provide some
alternative options, like solving an MPC problem with a smaller horizon, look for the least suboptimal active set, or
use the previously computed control sequence. Independently of the controller’s calculation, they solve the MPC
problem to obtain the true optimal active set and update the look-up table.

In the present work, we show how MPC for linear systems with arbitrary polyhedral state and control constraints
reduces to finding a zero of a system of piecewise affine equations. One could then apply a piecewise smooth
Newton method (Kojima & Shindo, 1986, Facchinei & Pang, 2003b) in order to find the MPC control law. The
algorithm converges in quadratic rate locally. In order to globalize the Newton method and obtain convergence from
any starting point, whether it is feasible or not for the QP, one can follow the route used in most of the globalized
versions of Newton methods and perform line search based on a merit function. For the MPC problem one can
easily obtain a convex, continuously differentiable, piecewise quadratic merit function, i.e. a convex quadratic
spline, whose gradient is equivalent to the optimality conditions of the MPC problem. Therefore, MPC essentially
reduces to the unconstrained minimization of a convex quadratic spline. The technique is inspired by the work of Li
& Swetits (1997, 1999). It is worth noting that such kind of reformulations have been proposed for support vector
machine classification with very encouraging results (Mangasarian, 2002). Furthermore, similar piecewise smooth
Newton methods have been employed for the solution of Huber’s M-estimation problems in linear regression
(Madsen & Nielsen, 1990, Chen & Pinar, 1998) with very encouraging results. Exploiting the structure of the
problem, it will be shown that the system of linear equations that needs to be solved at each iteration is positive
semidefinite and of significantly smaller dimension than that of the dimensions of the problem. The linear system of
equations can be solved effectively by updating the Cholesky factor at each iteration. Furthermore, exact line-search
can be performed very fast, leading to very fast convergence rates and small computational times.

The proposed algorithm is compared against a dual active set solver (QPC, Wills, 2009), an interior point solver
(BPMPD, Mészáros, 1999) and the online active set strategy (qpOASES) of Ferreau, Bock and Diehl (2008) in
random instances of MPC problems and various benchmark problems from the literature. The results are very
encouraging, especially for large-scale systems and long prediction horizons.

The paper is organized as follows: Section 2 describes the notation used throughout the paper. Section 3 contains the
standard MPC formulation for constrained linear systems. Section 4 presents the reformulation of the strictly convex
quadratic program resulting from MPC as a system of piecewise affine (PWA) equations and a local piecewise
smooth Newton method is presented. In section 5 a continuously differentiable piecewise quadratic merit function
for the system of PWA equations. Section 6 describes the regularized piecewise smooth Newton method with exact
line search. Section 7 contains implementation details regarding Cholesky factor updates and the line search
procedure. Section 8 gives a detailed implementation of the proposed algorithm for MPC problems. Section 9
presents a qualitative comparison between the regularized Newton method and known algorithms for QP when
applied to MPC. In section 10, the proposed algorithm is compared against state-of-the art QP solvers in benchmark
MPC problems. Finally, the paper ends with some concluding remarks and possible future extensions at section 11.

2. Notation

The finite set of integers 1{ ,..., }m is denoted by

1[,]m . For a set 1[,]mI ⊆ cI denotes its complement in 1[,]m ,

i.e. 1[,] \c mI I= .

If ×∈ m nA R is a matrix, m∈c R is a vector and 1[,]mI ⊆ , 1[,]nJ ⊆ then ⋅AI is the matrix

formed by the rows of A whose indices are in I , AIJ denotes the matrix formed by the rows and columns of A

whose indices are in I and J respectively and cI denotes the vector formed by the elements of c whose indices

are in I . When we find it convenient, we will use the following notation 1 1: , :k j
A to denote the submatrix of A

formed by the first k rows and j columns of A . The symbol ⊗ denotes the kronecker product. For a vector
m∈y R , []y + denotes a vector whose i -th component is 0max{ , }

i
y . For a given pair of vectors m∈ R , m∈u R ,

with
i i
u for 1[,]i m∈ , mid(, ;)u y denotes the vector whose i -th component is max{min{ , }, }

i i i
y u for

any m∈y R .

3. Model predictive control for constrained linear systems

We consider the following discrete-time linear, time-invariant system:

 (1) () ()t t tA Bx x u+ = + (1)

where () xntx ∈ R is the state and () untu ∈ R is the control input. We assume perfect state measurement and that

(,)A B is stabilizable. The system’s input and state should belong to the following polyhedral set:

min max
{(,) | }u xn n F Fu xu x f u x fZ = ∈ × +R R (2)

where Fu , Fx , are
c u
n n× and

c x
n n× matrices respectively,

min
cn∈f R ,

max
cn∈f R with

min max
i i−∞ < ∞f f .

Consider the following regulator problem:

0

1 1

0

()

(()) min (,) ()
(,) , [0, 1]

N k k k
N k k f Nk

k k

N f

t

V t V
k N

A B
x x
x x u

x x u x
x u
x

Z
X

− +
=

⎧ ⎫=
⎪ ⎪

= +⎪ ⎪= +⎨ ⎬∈ ∈ −⎪ ⎪
⎪ ⎪∈⎩ ⎭

∑

(3)

where 1
2(,) ()Q Rx u x x u u′ ′= + and 1

2()
f f
V Px x x′= and

min max
{ | }xn

f f
Hx k x kX = ∈ R is a polyhedral

terminal set, where
f
H is an

f x
n n× matrix and

min
fn∈k R ,

max
fn∈k R with

min max
i i−∞ < ∞k k . We assume

that R is symmetric positive definite and Q ,
f
P are symmetric positive semidefinite matrices of compatible

dimensions. . Notice that we have used lower and upper bounds in the definition of Z and
f
X . This assumption is

not restrictive, since we allow upper or lower bounds to be equal to infinity. In fact, it is a common practice in MPC
to have lower and upper bounds on the input and state variables. Furthermore, it will be shown next that this
formulation significantly reduces the complexity of the proposed technique. Let 0(, ,)

N
x x x= … and

0 1(, ,)
N

u u u −= … .

 Removing equality constraints, performing trivial algebraic manipulations and omitting terms from the cost
function that are independent of u , the finite horizon optimal control problem can be expressed as:

1
min max2

min{ (()) | (()) (())}t t tM Gu u c x u b x u b x′′ +

(4)

where ′= +M R BQB , () Cc x x= , ′=C B QA ,
min min

() F Axb x f x= − ,
max max

() F Axb x f x= − ,

N

f

⎡ ⎤⊗
= ⎢ ⎥
⎢ ⎥⎣ ⎦

I Q 0
Q

0 P
,

N
= ⊗R I R ,

N

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

I
A

A

A

, ()N
= ⊗B E I B ,

1 2

x

x

x

n

n

N N
n

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0 0 0
I 0 0

E A I 0

A A I

…
…
…

…

 and where

N u

⎡ ⎤⊗
= ⎢ ⎥
⎢ ⎥⎣ ⎦

I F
F

0u ,

N x

f

⎡ ⎤⊗
= ⎢ ⎥
⎢ ⎥⎣ ⎦

I F 0
F

0 Hx ,

min
min

min

N
⎡ ⎤⊗

= ⎢ ⎥
⎢ ⎥⎣ ⎦

1 f
f

k
,

max

max
max

N
⎡ ⎤⊗

= ⎢ ⎥
⎢ ⎥⎣ ⎦

1 f
f

k
.

A similar formulation can be obtained for set-point tracking, offset-free MPC and disturbance rejection problems.
We omit the details for brevity.

4. Reformulation of MPC problem as system of piecewise affine equations

Consider the strictly convex quadratic program:

1
min max2

min{ | }M Gu u c u b u b′ ′+ (5)

The structure of (5) is the same with that of the MPC problem (4), but the dependence on the current state has been
omitted for shake of clarity of exposition. According to the Karush-Kuhn-Tucker conditions, u is optimal for (5) if
and only if there exists a m∈y R such that:

0′+ + =M Gu c y (6)

 0
0

 0

min

min max

max

i i i

i i j i

i i i

⋅

⋅

⋅

= ⇒

< < ⇒ =

= ⇒

G

G

G

b u y

b u b y

u b y

 (7)

The complementarity conditions (7) are obviously equivalent to:

 0
 0

 0

min

min max

max

i i i

i i j i

i i i

τ τ

τ τ τ

τ τ

⋅

⋅

⋅

= ⇒

< < ⇒ =

= ⇒

G

G

G

b u y

b u b y

u b y

 (8)

for any positive scalar τ . The meaning of τ will be clear later on. Thus, (6) and (8) are both necessary and
sufficient conditions for optimality for any 0τ > .

Since M is positive definite, we can solve (6) to express u as an affine function of y :

1()M Gu y c− ′= − + (9)

In order to express the complementarity conditions (8) as a system of nonlinear equations we will use the following
definition of a B -function (Facchinei & Pang, 2003b).

Definition 1

Given a pair of extended valued scalars σ and σ′ with σ σ′< , we call a function 2(, ; ,) :φ σ σ′ ⋅ ⋅ →R R a B -

function (B for box) if 0(, ; ,)r sφ σ σ′ = if and only if rσ σ′ and (,)r s satisfies:

 0
0

 0

r s

r s

r s

σ

σ σ
σ

= ⇒
′< < ⇒ =
′= ⇒

 (10)

Hence, a B -function allows the reformulation of complementarity constraints like (8) as a system of nonlinear
equations. For our purposes we will consider the B -function derived from the mid function. It is easy to verify that:

(, ; ,) mid(, ;)r s r r sφ σ σ σ σ′ ′= − + (11)

is a piecewise affine B -function. Therefore, the complementarity conditions (8) can be expressed using (11) as
follows:

0min maxmid(, ;)τ τ τ τG Gu b b u y− + = (12)

Next, equation (9) is employed to eliminate u from (12), arriving at the following system of piecewise affine
equations:

mid 0
,

()
τ

Φ y = (13)

where:

 mid
min max

,
() () mid(, ; ())

τ
Φ τ τ τ τD Dy y d b b y y d= + + − + (14)

 with 1− ′≡D GM G and 1−= GMd c . Notice that D is positive semidefinite (Horn & Johnson, 1990). We denote
the set of solutions of (13) as Y . Since (13) is equivalent to the optimality conditions for the dual of the QP in (5),

it follows that Y is polyhedral. Summing up, one can compute the solution of the QP (4) by solving the system of
PWA equations (13) to compute a dual optimal solution and then use (9) to compute u .

The piecewise affine mapping has an amenable structure that deserves further investigation. Let 1
min

,
(,]

i i
S τb− −∞ ,

0
min max

,
[,]

i i i
S τ τb b and 1

max
,

[,)
i i
S τb≡ ∞ . For 1(,...,)

m
κ κ κ= with 1 0 1{ , , }

i
κ ∈ − , define:

 1
,

{ | () , [,]}
i

m
i i i

C S i mκ κτ Dy y y d= ∈ − + ∈ ∈R

(15)

Obviously C
κ

 is a polyhedral set and
1 0 1{ , , }m

mC
κ κ∈ −

=∪ R . For each 1 0 1{ , , }mκ ∈ − let 1 0{ [,] | }
j

j mκα κ= ∈ = ,

1 1{ [,] | }
j

j mκβ κ= ∈ = − , { }1 1[,] |
j

j mκγ κ= ∈ = and κ κ κβ γδ = ∪ . For each subset δ of 1[,]m let
δ
E denote

the m m× diagonal matrix with its j -th diagonal element being equal to 1 if j δ∈ and 0 otherwise. Then the
piecewise affine mapping (14) can be described as follows:

mid
min max

,
() () ()

κ κ κ κ κα β γτ δ δ
Φ τ τE D E E E Ey y d b b= + + + + , if Cκ∈y (16)

Hence, the mapping mid,τΦ coincides with an affine mapping of the form (16) in each polyhedral set Cκ .

For an arbitrary m∈y R consider the following index sets:

 1
1
1
1
1

min max

min

min

max

max

() { [,] | () }

() { [,] | () }

() { [,] | () }

() { [,] | () }

() { [,] | () }

i i i i

i i i

i i i

i i i

i i i

i m

i m

i m

i m

i m

α

β

β

γ

γ

τ τ τ

τ τ

τ τ

τ τ

τ τ

D

D

D

D

D

y b y y d b

y b y y d

y b y y d

y y y d b

y y y d b

=

<

=

>

= ∈ < − + <

= ∈ = − +

= ∈ > − +

= ∈ − + =

= ∈ − + >

(17)

Let () () ()β γδ y y y< >= ∪ and () () ()β γδ y y y= = == ∪ . Consider the following family of index sets:

1 () { [,] | () , ()}m δ δ δ δy y yI I =
′ ′= ⊆ = ⊆∪B (18)

For each ()yI ∈B , let () τH E D EI NI = + , where 1[,] \mN I= . Consider the set valued map

mid : m m m×A ⇒R R :

{ }mid() () ()Hy yA I I= ∈B (19)

Notice that mid()yA contains ()2 δ= y matrices. It is easy to notice that each of the ()2 δ= y matrices corresponds to the

Jacobian of the affine pieces (16)to which y belongs. The set valued mapping mid : m m m×A ⇒R R plays the same

role as the Jacobian of a smooth system of equations in the classical Newton method. In fact, it can be easily shown
that midA is a strong Newton approximation in the sense of Definition 7.2.2 in Facchinei & Pang (2003b). The

Newton direction is calculated by solving the following linear system:

mid,
()

τ
ΦHr y= − (20)

for any mid()H yA∈ . In the spirit of Algorithm 7.2.14 in Facchinei & Pang (2003b), we consider the following local

Newton method:

Algorithm 1: Piecewise Smooth Newton Algorithm

Input : 0 m∈y R

Step 1: Set 0k =

Step 2: If mid,
|| () ||k ε

τ
Φ y stop

Step 3: Select an element mid()k kH yA∈ . Find a solution k m∈r R of the linear system mid,
()k k

τ
ΦH r y= −

Step 4: Set 1k k k+ = +y y r and 1k k← + . Go to step 2.

The solution of the linear system (20) in step 3 is the critical step of the piecewise smooth Newton method.
However, due to the simplicity of the elements of midA , (20) has considerably favorable structure that can be

exploited to reduce computations. Specifically, consider a m∈y R and choose ()yI ∈B . Let
min max

() () () () () ()β β γ γδ δ
E E Ey y y y y yq d b b

= < = > =
= + +∪ ∪ ∪ . Then, using (16), (20) becomes:

() [()]τ τE D E E D Er y qI N I N+ = − + + (21)

System (21) can be decomposed as follows:

 ()τ τ τ

I 0
D D D

r y
r y q

NN N N

IN II I I I⋅

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= −⎢ ⎥ ⎢ ⎥ ⎢ ⎥+⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (22)

Consequently, system (22) is equivalent to:

= −r yN N (23)

()D Dr y qII I II I I= − + (24)

Since D is positive semidefinite, DII is also positive semidefinite, as a principal submatrix of D . Therefore, in

order to compute the Newton direction one has to solve a positive semidefinite system of order | |I . This is

particularly favorable for MPC, since the set of active constraints I , is usually very small compared to N .

The convergence properties of algorithm 1 are given in Theorem 1.

Theorem 1. Assume that m∈y R is a solution of mid 0
,

()
τ

Φ y = and that any mid()H yA∈ is nonsingular. Then

for any 0y sufficiently close to y , the Algorithm 1 is well defined and generates a sequence { }ky that converges

to y Q - quadratically.

Its proof follows easily from Theorem 7.2.15 in Facchinei & Pang (2003b) and the fact that the Jacobians of the
pieces of mid,τ

Φ , being affine, are globally Lipschitz.

5. Reformulation of MPC problem as unconstrained minimization of a convex quadratic spline

Algorithm 1 is a local Newton method in the sense that it converges only when started from an initial vector close to
the solution. In order to globalize the Newton method, so as to converge from any starting point, the usual technique
is to use a line-search on a merit function in order to appropriately scale the Newton direction (Dennis & Schnabel,
1996, Facchinei & Pang, 2003b). We define a merit function for the system of piecewise affine equations (13) as a
function : mψ

τ
→R R such that arg minψ

τ
= Y , i.e. the set of minimizers of ψ

τ
 equals the set of solutions to

mid 0
,

()
τ

Φ y = . An obvious selection of a merit function would be 21
mid2 ,

() || () ||ψ
τ τ

Φy y= . However this function is

neither smooth nor convex, and is difficult to rely on to perform a line-search.

It turns out that for (13) we can chose a merit function which is convex, continuously differentiable and piecewise
quadratic, i.e. a convex quadratic spline (Li, Swetits, 1997). Hence, solving (13) is equivalent to the unconstrained
minimization of a convex quadratic spline. By picking any τ such that 0 1/ || ||τ D< , the matrix τ−I D is
positive definite. Therefore (13) is equivalent to :

mid 0
,

() ()
τ

τ ΦI D y− = (25)

Using the identity mid(,) [] []z z z zσ σ ; σ σ+ +
′ ′= + − − − , mid,

()
τ

Φ y can be expressed as:

mid
min max

,
() [()] [()]

τ
Φ τ τD Dy y y d b y y y d b+ += + + + − − − + + (26)

Using (26)and the calculus rule 21
2(|| [] ||) []z z+ +

′ = one can easily infer that mid,
() ()

τ
τ ΦI D y− is the gradient of the

following piecewise quadratic function:

2 21 1 1
2 2 2

min max() () || [()] || || [()] ||ψ
τ

τ τ τI D D Dy y y y d b y y y d b+ +
′= − − + + − − − + + (27)

Obviously ψ
τ

 is continuously differentiable and piecewise quadratic. Furthermore, it is convex (Li, Swetits, 1997).

Obviously, argminψ
τ
= Y and since Y is equal to the solution set of the dual of (5), one can compute a dual

optimal solution of (5) by computing an unconstrained minimizer of ψ
τ

.

6. Global Piecewise Smooth Newton Method with Exact Line Search

Another difficulty one may encounter when starting from a vector not sufficiently close to the solution is that the
Newton system (20) may not be consistent. Even if it is consistent, it may have multiple solutions. However, one
would want to use the Newton direction when (20) is consistent. For that purpose, Li & Swetits (1997, 1999)
proposed the following notion of regularized solutions of linear systems:

Definition 2: Consider the linear system =Hr s , where k m×∈H R and k∈s R . Consider a subset J of 1[,]k such

that HJJ is nonsingular and has the same rank with H . Then the unique vector n∈r R such that c c=r s
J J

 and

c c= −H Hr s rJJ J J JJ J
 is called a regularized solution of =Hr s corresponding to the index set J .

Notice that when =Hr s is consistent, then a regularized solution is actually a solution of the original system
(Theorem 4.1, Li & Swetits, 1998). Having all tools necessary for a global version of the Piecewise Smooth Newton
method (algorithm 1) in our disposal, we propose the following regularized Newton method with exact line search.

Algorithm 2: Regularized Piecewise Smooth Newton Method with Exact Line Search

Input : 0 m∈y R
Step 1: Set 0k =

Step 2: If mid,
|| () ||k ε

τ
Φ y stop

Step 3: Select an element mid()k kH yA∈ . Find a regularized solution k m∈r R of the linear system mid,
()k k

τ
ΦH r y= −

Step 4: Compute step-size min(arg min ())k k
k t
t tψ

τ
y r= +

Step 5: Set 1k k k
k
t+ = +y y r and 1k k← + . Go to step 2.

There are two differences between Algorithm 2 and Algorithm 4.1 in Li & Swetits (1997). The first is that in
Algorithm 2 any element of the family of matrices midA , which serves as the Newton approximation (see Facchinei

& Pang, 2003b), is chosen to compute the Newton direction. Li & Swetits (1997) use Li()kH H I= for

Li () ()δ δy yI == ∪ in step 3. Notice that Li ()yI ∈B and in fact Li ⊇I I for any ()yI ∈B . Therefore, our

scheme allows more flexibility and perhaps less computations since the system in (24) is of order | |I . The second

difference is that we do not require the step-size to be smaller than one. However, since () ()k kt tφ ψ
τ τ

y r+ may

have many minimizers (in fact the interval of minimizers may not be upper-bounded) we select the smallest one.
This is a technique similar to that proposed in Chen & Pinar (1998) for Huber’s robust M-estimation problems.
Allowing values larger than one for the step size can significantly accelerate the convergence of the algorithm.

As in the local Newton method, at iteration k , let ()k
k

yI ∈B and 1[,] \
k k

mN I= . Then, one can compute a

regularized solution of (20) solving the following simplified system:

k k

k= −r yN N (27a)(28)

 ()c c c
kk k k k

kDr y qIJ J I J
= − + (27b)(29)

() c c
k k k k k k k k k k

kD D Dr y q rJ J J J I I J J J J
= − + − (27c)(30)

where
k k
⊆J I is such that

k k
DJ J is nonsingular and has the same rank with

k k
DI I . It follows that

k
rN and c

k

r
J

 are

trivially determined and one has to solve the linear system in (30) to obtain the Newton direction. However, since

k k
DI I is always positive semidefinite and

k k
DJ J is a nonsingular principal submatrix of

k k
DI I , it follows that

k k
DJ J

is positive definite. Therefore,
k
rJ can be obtained by computing the Cholesky factorization of the positive definite

matrix
k k

DJ J and then solving the corresponding lower and upper triangular linear systems. In fact, the process of

selecting the index set
k k
⊆J I and computing the Cholesky factor of

k k
DJ J can be performed in one step, using

the regularized Cholesky method (Li & Swetits, 1999).

Theorem 2 gives the favorable convergence properties of Algorithm 2. Its proof follows from previous works (Li &
Swetits, 1997, Li & Swetits, 1999, Chen & Pinar, 1998, Facchinei & Pang, 2003).

Theorem 2.

(a) For every limit point y of a sequence { }ky generated by Algorithm 2 we have ∈y Y .

(b) Algorithm 2 terminates in a finite number of iterations

(c) Suppose that any mid()H yA∈ is nonsingular and that { }ky converges to y . Then { }ky converges Q -

quadratically to y .

Proof

(a) This follows from the fact the kr is a descent direction (remark (iv) in Li & Swetits, 1999), Lemma 3.4 of Li &
Swetits (1997) and the fact that any minimize of ψ

τ
 belongs to Y .

(b) This follows from theorem 4.4 of Chen & Pinar (1998) with some obvious modifications.

(c) This follows from the fact that unit step-size is eventually accepted in step 4 (see theorem 4.4 in Chen & Pinar,
1998) and theorem 1.

7. Implementation of Regularized Piecewise Smooth Newton Method with Exact Line Search

In this section, details on the implementation of the regularized piecewise smooth Newton method are presented.
The two critical steps of the method are the computation the regularized Newton direction (step 3) and the line-
search (step 4).

7a. Updating the Cholesky factor

Regarding step 3, instead of computing the Cholesky factor at iteration from scratch we can compute it by
modifying the Cholesky factor obtained at the previous iteration, performing much less work. Let 1k−J denote the

index set corresponding to the regularized solution of the Newton system (20) at iteration 1k − and let L denote
the corresponding Cholesky factor, i.e.

1 1k k− −
′=D LLJ J with L lower triangular. Our goal is to obtain the Cholesky

factor of
k k

DJ J , where
k k
⊆J I is such that

k k
DJ J is positive definite and has the same rank with

k k
DI I . One can

easily see that
k k

DI I can be obtained from
1 1k k− −

DJ J by adding and deleting rows and columns corresponding to

indices belonging to 1\
k k−I J and 1 \

k k−J I , respectively. A similar procedure is proposed in Li, Nijs (2003) using

LDL factorizations. Next, the procedures of modifying the Cholesky factor of a positive definite matrix when a row
and column is added or deleted, are described.

Row and column addition: Consider a k k× symmetric positive definite matrix D and its Cholesky factor L . Let

1

1 2

 c

⎡ ⎤
= ⎢ ⎥′⎢ ⎥⎣ ⎦

D
D

c
c

 , i.e. the () ()1 1k k+ × + matrix obtained by appending the vector 1

2c

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

c
c and its transpose, where

1
k∈c R and 2c ∈ R , at the end of the columns and rows of D . Notice that D may not be positive definite. We will

next show how one can obtain the Cholesky factor L of D , if D is positive definite, or conclude that D is merely
positive semidefinite.

We have:

1

1 2 1 2 1 2

 0 0
 c

′⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥′ ′ ′⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

L L D c
c

 (28)

from which we obtain:

1 1=L c (29a)

2
2 2 1 1

′= −c (29b)

Therefore, D is positive definite if and only if 2 1 1
′−c is positive. Summing up, we obtain the following

algorithm for concluding if D is positive definite and if so, for obtaining its Cholesky factor from that of D .

Algorithm 3: cholAdd[,] (,)pL L c= Row and column addition

Input : Cholesky factor of k k×∈D R , L , vector ()1 1k+ ×∈c R

Output : Cholesky factor L of 1

1 1

:

:

k

k k
c +

⎡ ⎤
= ⎢ ⎥′⎢ ⎥⎣ ⎦

D
D

c
c

 if D is positive definite.

Step 1 : Solve lower triangular system 1 1:k=L c for 1

Step 2 : 1 1k
d ′= −c

Step 3 : if 0d > then 2 d= ,
1 2

 0

⎡ ⎤
= ⎢ ⎥′⎢ ⎥⎣ ⎦

L
L , otherwise D is not positive definite.

Step 1 is the solution of a lower triangular system by forward substitution and requires 2k flops. Step 2 requires
additional 3 1k − flops, while step 3 requires 1 flop in the case of D being positive definite. Consequently, the total

number of flops required by algorithm 1 is 2 3k k+ .

Row and column deletion: Suppose that we have the Cholesky factor of the k k× symmetric positive definite
matrix D and we want to compute the Cholesky factor of the matrix D obtained from D by deleting its j -th

column and j -th row. Denote by 12 22 32 c ′⎡ ⎤′ ′= ⎣ ⎦c c c the j -th column of D . Since D is symmetric, its j -th row is

′c . Also let 11 1 1 1 1: , :j j− −=D D , 31 1 1 1: , :j k j+ −=D D and 33 1 1: , :j k j k+ +=D D .

Before deleting row and column j we have the original factorization:

11 11 12 31 11 12 31

12 22 22 32 12 22 32

31 32 33 33 31 32 33

c

⎡ ⎤ ⎡ ⎤ ⎡ ⎤′ ′ ′
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

′ ′ ′ ′ ′= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥′⎣ ⎦ ⎣ ⎦ ⎣ ⎦

L 0 0 L L D D
LL 0 0

L L 0 0 L D D

c
c c

c
 (30)(31)

After deleting row and column j , we have:

11 3111 11 31

31 33 31 3333

⎡ ⎤′ ′⎡ ⎤ ⎡ ⎤′
′ = =⎢ ⎥⎢ ⎥ ⎢ ⎥

′⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

L LL 0 D D
LL

L L D D0 L
 (31)(32)

Combining (30) and (31) we obtain:

11 11=L L (32a)(33)

31 31=L L (32b)(34)

33 33 33 33 32 32
′ ′ ′= +L L L L (32c)(35)

From (35) we observe that 33L is the Cholesky factor of 32 32
′+S , where S is the matrix whose Cholesky factor is

33L . Therefore, 33L can be computed by a standard rank-1 update (Dongarra, Bunch, Moler & Stewart, 1979) of

33L . Consequently we obtain the following algorithm for modifying the Cholesky factor of a matrix whose j -th

column and j -th row are deleted.

Algorithm 4: cholDelete(,)jL L= Row and column deletion

Input : Cholesky factor of k k×∈D R , L , index j to delete
Output : Cholesky factor L of D obtained from D by deleting its j -th row and column

Step 1 : 1 1 1 1 1 1 1 1: , : : , :j j j j− − − −=L L , 1 1 1 1 1 1: , : : , :j k j j k j− − + −=L L

Step 2 : Perform rank-1 update: 1 1 1 1 1 1 1 1 1 1: , : : , : : , : : , : : , : ,j k j k j k j k j k j k j k j k j k j j k j− − − − + + + + + +
′ ′ ′= +L L L L L L

The total number of flops required by algorithm 2 is equal to the number of flops required to perform the rank-1
update, which is 22 4() ()k j k j− + − using method C1 of Gill, Golub, Murray & Saunders (1974), see also Davis &
Hager (1999).

Returning to step 3 of the regularized piecewise smooth Newton method, an index set
k k
⊆J I such that

k k
DJ J is

positive definite and has the same rank with
k k

DI I and the Cholesky factor of
k k

DJ J , can be obtained by the

following procedure.

Algorithm 5: 1updateCholesky[,] (, , ,)
k k k

L L DJ I J −= Cholesky Factor updating

Step 1: 1 1 \
k k

τ −= J I , 2 1\
k k

τ −= I J , 1k k k−=J I J∩ , 1| |n
τ

τ=

Step 2: while 0n
τ
> , do cholDelete(, ())n

τ
τL L← , 1 1 1\ ()n

τ
τ τ τ← , 1n n

τ τ
← − end while

Step 3: for j in 2τ , { }
k

jJ J= ∪ , do cholAdd[,] (,)
j

p
τ

L L DJ← . If 1p = then
k
←J J , end for

7b. Line Search

 The line search procedure in step 4 of algorithm 2 looks for the smallest step-size that minimizes the univariate
function:

 () ()t tθ ψ
τ
y r= + (33)(36)

Function θ is continuously differentiable as a composition of continuously differentiable functions, and convex
piecewise quadratic as the composition of a convex piecewise quadratic function with an affine function (Exercise
10.22 (b), Rockafellar & Wets, 2009). Also, θ is bounded below since ψ

τ
 is bounded below. Therefore, there exists

a finite t such that 0()tθ = . Furthermore, since r is a descent direction (see theorem 2) it follows that 0 0()θ′ <

and since θ′ is nondecreasing it follows that 0t > .

Next, notice that θ′ can be expressed as:

() []t t tθ η β +
′ ′= + − −δ δ γ (34)(37)

where ()η r r r′= − , ()β r r y′= − ,
 ()

()
=

r r
r r

⎡ ⎤−
⎢ ⎥− −⎢ ⎥⎣ ⎦

δ ,
min

max ()

y y b

b y y

⎡ ⎤− −
= ⎢ ⎥

− −⎢ ⎥⎣ ⎦
γ , ()τ Dy y d= + and τ= Dr r

Notice that θ′ is a piecewise affine function with breakpoints /
j j j
s γ δ= , 1 2[,]j m∈ . The following algorithm

finds the smallest t such that 0()tθ′ = in a finite number of operations, where we have we assumed that the

positive breakpoints of θ′ have been sorted in ascending order (see also Madsen & Nielsen, 1990).

Algorithm 6: LineSearch(, , ,)t η β δ γ← Exact PWA line search

Step 1: { [1,2] | 0}
j

j m δP = ∈ > , { [1,2] | 0}
j

j m sL = ∈ > , | |nL L= , 0k =

Step 2: 2
j

j

a η δ
∈

= + ∑
J

,
j j

j

b β γδ
∈

= − ∑
J

where (\) ()J P L L \ P= ∪

Step 3: for i ∈L
Step 4: 1k k← +

Step 5: if 0
i
as b+ then /t b a= − stop

Step 6: if i ∈P then 2

i
a a δ← − ,

i i
b b δ γ← + , else if k n< L then 2

i
a a δ← + ,

i i
b b γδ← −

Step 7: end for
Step 8: /t b a= −

Algorithm 6 starts from the smallest positive breakpoint and successively updates the slope and intercept of the
affine expression of θ′ valid on the interval 1(,]

i i
s s− . If 0()

i
sθ′ (step 5) then there exists zero of θ′ that

coincides with the zero of the affine expression on that interval. Otherwise, the algorithm proceeds by computing the
affine expression in the next interval (step 6). Furthermore, since the search is started from the smallest positive
breakpoint the algorithm is guaranteed to find the left-most t such that 0()tθ′ = . The slope and intercept are

updated in step 6 using the following reasoning: For any t ∈R let
1
() { [1,2] | 0}

j j
t j m t s , δJ = ∈ > > and

2
() { [1,2] | 0}

j j
t j m t s , δJ = ∈ < . Then:

1 2 1 2

2
2

1 { [1,2]: 0} () () () ()

() () () ()
j j

m

j j j j j j j j j
j j m t j t t j t t

t t t t t t
γ

θ η β γ η β γ η β γ
δ

δ δ δ δ δ δ
J J J J

+
= ∈ − ∈ ∈

′ = + − − = + − − = − + +∑ ∑ ∑ ∑
∪ ∪

Suppose that the breakpoints are sorted in ascending order, i.e.
1 2 2

...
m

s s s . Then:

1
() { [1, 1] | 0}
i j
s j i δJ = ∈ − > and

2
() { [,2] | 0}
i j
s j i m δJ = ∈ <

For any 1(,]
i i

t s s−∈ we have
1 1
() ()

i
t sJ J= and

2 2
() ()

i
t sJ J= . Hence ()

i i
t a t bθ′ = + for 1(,]

i i
t s s−∈ , with

1 2

2

() ()i i

i j
j s s

a η δ
J J∈

= − ∑
∪

,
1 2() ()i i

i j j
j s s

b β γδ
J J∈

= + ∑
∪

Next, consider 1is + . Then
1 1
() { [1,] | 0}
i j
s j i δJ + = ∈ > and

2 1
() { [1,2] | 0}
i j
s j i m δJ + = ∈ + <

Therefore 1
1 1

1

() { }, 0
()

() , otherwise
i i

i
i

s i
s

s

δJ
J

J+

⎧ >⎪= ⎨
⎪⎩

∪
 and 2

2 1
2

() \ { }, 0
()

(), otherwise
i i

i
i

s i
s

s

δJ
J

J+

⎧ <⎪= ⎨
⎪⎩

Thus, we obtain the following updating rule for the slope and the intercept of the piecewise affine function θ′ :

2

21

 , if 0

 , if 0
i i i

i
i i i

a
a

a

δ δ

δ δ+

⎧ − >⎪= ⎨ + <⎪⎩
and

1

 , if 0

 , if 0
i i i i

i
i i i i

b
b

b

γ
γ

δ δ
δ δ+

⎧ + >⎪= ⎨ − <⎪⎩

 It remains to examine what happens for 2mt s> . In that case, only
1
()tJ can change:

2

2 2
2 1

2

, if 0

 , if 0
m m i

m
m i

a
a

a

δ δ
δ+

⎧ − >⎪= ⎨ <⎪⎩
 and

2 2 2
2 1

2

, if 0

 , if 0
m m m i

m
m i

b
b

b

γδ δ
δ+

⎧ + >⎪= ⎨ <⎪⎩

8. Detailed implementation for MPC

In this section the detailed implementation of the regularized piecewise smooth Newton method for constrained
linear MPC is presented. Offline the following matrices are calculated: 1− ′≡D GM G , τ=D D , 1τ −=S GM C ,

τ=B F Ax , min
min

τ=f f , max
max

τ=f f , 1
1: ,:nu
− ′= −K M Gx , 1

1: ,:nu
−= −K M Cy , where 0 1τ< D . At each time

instant, after the system state becomes available the following algorithm (MPCNewton) is applied. MPCNewton
takes as input arguments the current state ()tx , the vector 1()tSd x= − , the dual solution vector of the previous

time step denoted by y , the vector = +Dy y d and the Cholesky factor and index set J corresponding to the
regularized solution of the previous time step. The output arguments of MPCNewton are the MPC control law

MPC(())tκ x , and the updated versions of , , , ,Ld y y J .

Algorithm 7: MPC =MPCNewton[(()), , , , ,] ((), , , , ,)t tκ L Lx d y y x d y yJ J

Step 1 : ()tSg x← , min min ()tBb f x← − , max max ()tBb f x← −

Step 2 : ← + −y y g d

Step 3: ← −e y y ,
mid min max

mid(, ;)Φ y b b e← +

Step 4 : if
mid

|| || εΦ then calculate control law MPC(()) ()t tκ K Kx yx x y← + , ←d g and exit.

Step 5 : min
() () () () () ()β β β β β βy y y y y yq g b

< = < = < =
← +∪ ∪ ∪ , min

() () () () () ()γ γ γ γ γ γy y y y y yq g b
> = > = > =

← +∪ ∪ ∪ . Choose ()yI ∈B ,

 1[,]mN \ I← , ← −r yN N

Step 6 : (,) updateCholesky(, , ,)L D LJ I J←

Step 7 : if =J I then

Solve = −Lz qI for z . Solve ′ =L s z for s . ← −r s yI I

else,

 ()c c cDr y qIJ J I J
← − + . Solve () c cL D Dz y q rJI I J JJ J

= − + − for z . Solve ′ =L r zI for rI

Step 8 : ← Dr r , ← −z r r , η ′← z r , β ′← z y , min

max

γ

⎡ ⎤−
← ⎢ ⎥

−⎢ ⎥⎣ ⎦

e b
b e

,

δ
⎡ ⎤

← ⎢ ⎥−⎢ ⎥⎣ ⎦

z
z

 , LineSearch(, , ,)t η β δ γ←

Step 9 : t← +y y r , t← +y y r Go to step 3

Regarding the complexity of the algorithm, step 6 requires approximately 2(| |)O I flops, step 7 requires 2(| |)O J

flops while step 8 requires 2()O m operations at worst case. However, we have observed that the line search usually

requires very few operations in practice. Step 1 builds the appropriate problem matrices in ()
x

O mn operations and

is executed only once. In step 3 the MPC control algorithm is calculated upon convergence of the algorithm and can
be performed in ((| |))

u x
O n n J+ operations. All other steps require only vector operations of order at most ()O m .

Notice that the Cholesky factor L and index set J from the previous run of MPCNewton are passed as input
arguments, so there is no need to compute the Cholesky factor from scratch, not even at the first iteration.
Specifically, we have observed that this provides considerable computational savings provided that the active sets
between two consecutive time steps do not differ too much.

9. Comparison with existing approaches

Compared to active set and interior point algorithms, the regularized piecewise smooth Newton method with exact
line search has some considerable advantages when applied to MPC. First, at each iteration, the simplified positive
semidefinite linear system (24) is solved. The dimension of the system is equal to the cardinality of the set of active
constraints which is usually considerably smaller than the total number of constraints, especially for MPC problems.
On the other hand, active set algorithms solve an indefinite system of linear equations with dimension equal to the
number of variables plus the number of active constraints. As far as interior point methods are concerned, the system
of linear equations solved at each iteration involves both primal and dual variables but has favorable sparsity pattern
for MPC problems (Rao et al., 1998, Wang & Boyd, 2010).

The regularized piecewise smooth Newton method can take larger steps to optimality by performing exact line
search on the piecewise quadratic merit function. On the other hand, the step-size in active set methods is dictated by
the need to maintain primal or dual feasibility, while in interior point methods, the step-size is selected so as to
maintain both primal and dual feasibility. Therefore, step-sizes are usually larger in the piecewise smooth Newton
method, leading to larger moves towards optimality.

The other advantage of great importance is that the regularized Newton method, unlike interior point and active set
methods, does not require a feasible starting point. Specifically, our experience from numerous simulations on MPC
problems suggests that a very good starting point is the dual solution obtained at the previous step of the MPC.

10. Examples

A MATLAB implementation of the proposed algorithm (about 100 lines of code) was tested against state-of-the art
QP solvers in MPC problems for systems of various dimensions and prediction horizons: The primal-dual interior
point solver, BPMPD (Mészáros, 1999, http://www.sztaki.hu/~meszaros/bpmpd/), the dual active set solver QPC
(Wills, 2009, http://sigpromu.org/quadprog/), and the online active-set solver qpOASES (Ferreau et al., 2008,
http://www.kuleuven.be/optec/software/qpOASES). The first two are programmed in C, while the third is
programmed is C++. BPMPD is based on Mehrotra’s predictor-corrector algorithm and it was found to be the fastest
QP solver in the recent benchmark (http://plato.asu.edu/ftp/qpbench.html). For the interior-point solver the MPC
problem is formulated as in Rao et al. (1998), Wang & Boyd, 2010). That is, the equality constraints corresponding
to the state-update equations are not eliminated. BPMPD is an advanced solver that can identify the favorable

sparsity pattern of the problem, therefore we expect the computational effort to increase linearly in terms of the
prediction horizon. For the two active set solvers, the MPC problem was formulated as in (4). The online active set
strategy, qpOASES, is able to handle inequality constraints with upper and lower bounds. For the dual active set
solver, QPC, the constraints had to be converted to upper bounded inequalities. Since this increases the dimension of
the dual vector, we expect some extra overhead for QPC. In all the examples, we choose 1 1 01/ (.)τ D= for the

MPCNewton method. All simulations were run on an Intel Core 2 Quad CPU Q9400 at 2.66GHz with 4 GB RAM,
running Debian Linux.

For the active set solvers we expect the running time to increase quadratically with respect to the prediction horizon.
Surprisingly, numerous simulations have provided the evidence that for MPCNewton, the increase in computational
complexity is at most linear with respect to the prediction horizon. This result is not a consequence of the special
block tridiagonal structure of MPC problems, since MPCNewton uses formulation (4) as an implicit active set
method. However, since in MPC problems only a fraction of state and control variables are saturated throughout the
prediction horizon and since MPCNewton always solves systems of linear equations with dimension equal to the
active set, we obtain this favorable property. In fact, as it will be observed in the examples, the dimension of the
system and the prediction horizon affect only slightly the running time of MPCNewton. This is a big advantage of
MPCNewton, compared to any other QP algorithm because it allows the application of MPC for large-scale systems
with very high sampling frequency.

A. Oscillating masses

This first example is taken from Wang & Boyd (2010). It consists of a sequence of six masses connected by springs
to each other, and to walls on either side. There are three actuators, which exert tensions between different masses.
For this example 12∈x R , 3∈u R and we also assume that a random force drawn from a uniform distribution on

0 5 0 5[. , .]− acts on each mass as a disturbance. For a detailed description of the problem, we refer to Wang & Boyd
(2010). The purpose of this example is not only to compare the various solvers in terms of CPU times but also to
observe how their runtimes scale with the increase on the prediction horizon. Therefore, we let the prediction
horizon to range between 10 to 100 with increment 10. For each prediction horizon, 10 simulations of 100 steps
were run, starting from different random initial states and using different random sequences of disturbances every
time. In the comparison, we also present results for the approximate interior-point barrier solver (fastMPC) of Wang
& Boyd (2010, http://www.stanford.edu/~boyd/fast_mpc/). For fastMPC, we used a fixed barrier parameter of value

210− . Figure 1, depicts the dependence of the runtime for each algorithm in terms of the prediction horizon. As
expected, the runtime of the interior point solvers (BPMPD and fastMPC) grows linearly with the prediction
horizon, while that of the active-set solvers (QPC and qpOASES) grows quadratically. However, we can observe

that the runtime of MPCNewton is of order ()O N .

Figure 1. Runtimes with respect to prediction horizon for oscillating masses example

B. Crude Distillation Unit

The next example is the crude distillation unit model of Pannocchia et al., (2006) with 252∈x R , 32∈u R , 90
outputs and bound constraints on the inputs only. The data for this example are taken from the online QP benchmark
collection (http://www.kuleuven.be/optec/software/onlineQP/). Since the data is in the form of the matrices of
problem (4) we were not able to compare with the interior point solvers. Average and maximum runtimes and
number of iterations for MCNewton, QPC and qpOASES are presented in table 1.

 Runtime (ms) Number of iterations

 Average Maximum Average Maximum

MPCNewton 1.75 80 1.17 5

qpOASES 125 266 3.92 313

QPC 853 2599 75.39 266

Table 1. Runtime results for the Crude Distillation Unit example

For this example, there are 7201 simulation steps, and 5 set-point changes are performed causing large changes for
the active sets between consecutive steps. Although on average, the runtime of qpOASES is comparably small, at
those changes it needs to perform a large number of iterations in order to move from one active set to another. For
example, for the maximum number of changes in the active set (307), qpOASES performfs 313 iterations in 8.12
seconds, while QPC performs 252 iterations in 2.48 seconds. At the sime time, MPCNewton needs only 4 iterations

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

Horizon (N)

m
s

MPCNewton
BPMPD
qpOASES
fastMPC
QPC

to identify this large change in the active set, at only 80 milliseconds. We mention that the worst runtime observed
in Pannocchia et al., (2006) for their partial enumeration method is 1.3 seconds.

C. Chain of Masses

The example is taken from http://www.kuleuven.be/optec/software/onlineQP/, as well. The goal is to regulate a
chain of nine masses connected by springs to a certain steady state. One end of the chain is fixed on a wall while the
three velocity components of the other end are used as control input. The system has 57 states, 3 inputs while the
prediction horizon of the MPC controller is 80. Furthermore, the system is subject to input bound constraints and
state constraints that ensure that the chain does not hit a vertical wall close to the steady state. Table 2 presents the
results for this example.

 Runtime (ms) Number of iterations

 Average Maximum Average Maximum

MPCNewton 2.64 24.19 2.43 23

qpOASES 7.09 36.26 2.63 16

QPC 24.30 80.82 11.53 61

Table 2. Runtime results for the Chain of masses example

This example is well suited for qpOASES, since only small changes to the active set occur. However, the average
number of iterations performed by MPCNewton and qpOASES is almost the same. Furthermore, the runtime of
MPCNewton is smaller due to the simplified structure of the system of linear equations solved at each iteration.

D. Randomly generated systems

The last numerical example consists of randomly generated systems of various dimensions. The entries of system
matrices, A and B are taken from a normal distribution with zero mean and unit variance. Matrix A is then scaled,
so the system is neutrally stable. Matrices Q and R are random positive definite matrices. White noise is added to
the system state during the simulations. The input variables are constrained to lie in 0 2 0 2[. , .]− while state variables

must lie in 10 10[,]− . The terminal cost matrix is taken to be the solution of the algebraic Riccati equation (ARE)

f f′ ′= −P AP A Q KRK+ and xn

f
=X R . Table 3 presents the running times of the QP algorithms for the various

systems and prediction horizons, while figure 2 illustrates the speed-up achieved using MPCNewton in comparison
with the other solvers.

x
n

u
n N MPCNewton

(ms)
BPMPD

(ms) QPC (ms) qpOASES
(ms)

20 8

30 19.02 62.68 123 199

50 24.33 107 389 608

70 29.35 149 818 1340

90 31.84 195 1430 2022

30 12

30 24.59 167 393 493

50 41.49 289 1545 1943

70 32.08 408 2279 2469

90 39.33 533 4315 4590

40 16

30 24.98 304 528 819

50 30.98 523 1771 1977

70 57.63 777 6211 6885

90 56.81 980 9356 10077

50 22

30 64.47 716 1679 2706

50 106 1260 7650 8766

70 111 1792 15630 16310

90 130 2330 26047 26276

Table 3. Runtime results for randomly generated systems

Figure 2. Speed-up achieved using MPCNewton for randomly generated systems

11. Conclusions and Future Directions

We have presented a new algorithm for fast solution of QP problems arising in MPC for constrained linear systems.
The algorithm is based on a reformulation of the strictly convex QP as the unconstrained minimization of a convex
quadratic spline. Therefore, the optimality conditions reduce to a system of piecewise affine equations. For the

30 50 70 90

5

10

15

25

30

45

Horizon

S
pe

ed
-u

p

n
x
 = 20, n

u
 = 8

BPMPD
QPC
OASES

30 50 70 90

5

15
20

35

45

70
75

110
115

Horizon

S
pe

ed
-u

p

n
x
 = 30, n

u
 = 12

BPMPD
QPC
OASES

30 50 70 90

10
1520

35

55
65

110
120

165
175

Horizon

S
pe

ed
-u

p

n
x
 = 40, n

u
 = 16

BPMPD
QPC
OASES

30 50 70 90

10152025

40

70
80

140145

200

Horizon

S
pe

ed
-u

p

n
x
 = 50, n

u
 = 22

BPMPD
QPC
OASES

solution of the problem, we proposed a piecewise smooth Newton method with line-search, a variant of the
algorithm of Li & Swetits (1997). Furthermore, implementation details were given regarding the updating of the
Cholesky factor and the line search procedure, as well as details regarding the application to MPC problems. The
MATLAB implementation of the algorithm (MPCNewton) was tested on benchmark examples and compared
against state-of-the art QP solvers and QP algorithms specifically tailored for MPC. MPCNewton outperforms all
the QP solvers in terms of runtime, even though all other solvers are programmed in a low level language like C or
C++. The speed-up becomes even larger for very large-scale problems and long prediction horizons. This makes the
algorithm applicable for very demanding MPC problems where a long prediction horizon needs to be chosen in
order to ensure stability of the closed-loop system. For example, for the demanding crude distillation unit model the
maximum CPU time is 80 ms, allowing MPC to be carried out at 12.5Hz.

Future work can be focused on an efficient implementation of the algorithm in C++ and on deriving a bound on the
number of iterations, dependent on system specific parameters only. Recently, a large amount of results has
appeared in the literature regarding local and global error-bounds, i.e. inequalities that bound the distance of a point
from the optimal solution (Luo & Tseng 1992a, 1992b, Li, 1995, Facchinei & Pang, 2003a). However, the constants
appearing on these bounds are difficult to compute for large scale problems (e..g. Hoffman’s error bound for
polyhedral sets). Further work is needed in this direction.

References

Axehill, D., Hanson, A., (2008) A dual gradient projection quadratic programming algorithm tailored for model
predictive control, in Proc. of 47th IEEE Conference on Decision and Control, pp 3057 - 3064.

Bartlett R.A., Biegler L.T. (2006) QPSchur: a dual, active set, Schur complement method for large-scale and
structured convex quadratic programming algorithm. Optimization and Engineering, 7:5–32.

Bemporad, M. Morari, V. Dua, and E.N. Pistikopoulos. (2002) The explicit linear quadratic regulator for constrained
systems, Automatica, 38, 3–20.

Best M.J. (1996) An algorithm for the solution of the parametric quadratic programming problem. Applied
Mathematics and Parallel Computing. Physica-Verlag: Heidelberg, 57–76.

Chen, B., Pinar, C. (1998), On Newton’s method for Huber’s robust M-estimation problems in linear regression,
BIT, 38 (4), 674-684.

Davis, T.A., Hager, W.W. (1999). Modifying a sparse cholesky factorization, Siam J. of Matrix Anal. Appl., 20(3),
606-627.

Dennis, J.E., Schnabel, R. (1996) Numerical methods for unconstrained optimization and nonlinear equations,
SIAM, Philadelphia, PA.

Dongarra, J.J., Bunch, J.R., Moler, C.B. and Stewart, G.W. (1979) LINPACK Users' Guide, SIAM, Philadelphia.

Facchinei, F. & Pang, J.S. (2003a) Finite Dimensional Variational Inequalities and Complementarity Problems, vol.
I, Springer, New York.

Facchinei, F. & Pang, J.S. (2003b) Finite Dimensional Variational Inequalities and Complementarity Problems, vol.
II, Springer, New York.

Ferreau, H. J., H. G. Bock, and M. Diehl, (2008) An Online Active Set Strategy to Overcome the Limitations of
Explicit MPC, Intl. J. Robust Nonlinear Contr. , 18(8), 816.

Fukuda, K., Jones, C.N. & Columbano, S., (2009) An Output-Sensitive Algorithm for Multi-Parametric LCPs with
Sufficient Matrices, CRM Proceedings and Lecture Notes, vol. 48.

Gill, P. E., Golub, G. H., Murray, W. and Saunders, M. A. (1974) Methods for modifying matrix factorizations,
Math. Comp., 28 , pp. 505–535.

Goldfarb D, Idnani A. (1983), A numerically stable dual method for solving strictly convex quadratic programs.
Mathematical Programming, 27:1–33.

Li, W. (1995) Error bounds for piecewise convex quadratic programs and applications. SIAM Journal on Control
and Optimization, 33, 1510-1529.

Li, W. & Nijs, J.J. (2003) An implementation of the Qspline method for solving convex quadratic programming
problems with simple bound constraints. Journal of Mathematical Sciences, 116 (4) 3387-3410.

Li, W. & Swetits J. (1997) A new algorithm for solving strictly convex quadratic programs. SIAM Journal on
Optimization, 7, 595-619.

Li, W. & Swetits J. (1999) Regularized Newton methods for minimization of convex quadratic splines with singular
Hessians. In M. Fukishima and L. Qi (eds.), Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and
Smoothing Methods, Kluwer Academic Publishers (Dordrecht 1999) pp. 235-257.

Limon, D., Alamo, T., Salas, F., Camacho, E.F. (2006) On the stability of constrained MPC without terminal
constraint. IEEE Transactions on Automatic Control 51, 832–836.

Luo, Z.Q. & Tseng P. (1992a) On the linear convergence of descent methods for convex essentially smooth
minimization. SIAM Journal on Control and Optimization, 30, 408-425.

Luo, Z.Q. & Tseng P. (1992b) Error bounds and convergence analysis of feasible descent methods: a general
approach. Annals of Operations Research 46, 157-178.

Kojima, M. and Shindo, S. (1986) Extension of Newton and quasi-Newton methods to systems of PC1 equations.
Journal of Operations Research Society of Japan, 29, 352-374.

Madsen, K. and Nielsen, H.B. (1990) Finite algorithms for robust linear regression, BIT, 30, 682-699.

Mangasarian, O.L. (2002) A finite Newton method for classification problems. Optimization Methods and Software
17, 913-929.

Mayne, D.Q., Rawlings, J.B., Rao, C.V. and Scokaert, P.O.M. (2000) Constrained model predictive control:
Stability and optimality. Automatica, 36(6):789–814.

Mehrotra, S., (1992) On the implementation of a primal-dual interior point method, SIAM Journal on Optimization,
vol. 2, pp. 575-601.

Mészáros, C. (1999) The BPMPD interior-point solver for convex quadratic problems, Optimization Methods and
Software, 11&12, pp. 431–449.

Nesterov, Y. (1983) A method for solving a convex programming problem with convergence rate 1/k2. Soviet Math.
Dokl., vol. 27, no. 2, pp. 372–376.

Nesterov, Y., Nemirovskii, A. (1994) Interior point polynomial methods in convex programming: Theory and
Applications, SIAM, Philadelphia.

Nocedal, J. and Wright, S.J. (1999) Numerical Optimization, Springer, New York.

Online QP Benchmark Collection. http://www.kuleuven.be/optec/software/onlineQP/

Pannocchia, G., Rawlings, J.B. and Wright, S.J. (2006) Fast, large-scale model predictive control by partial
enumeration, Automatica, vol. 43, no. 5, pp. 852–860,

qpOASES Homepage. http://homes.esat.kuleuven.be/~optec/software/qpOASES/

Richter, S., Jones, C.N. & Morari, M. (2009) Real-time input constrained MPC using fast gradient methods, in Proc.
48th IEEE Conference on Decision and Control, CDC, Shanghai.

Rao C.V., Wright S.J., Rawlings J.B. (1998) Application of interior-point methods to model predictive control.
Journal of Optimization Theory and Applications, 99:723–757.

Rawlings, J. B. and Mayne, D.Q. (2009) Model Predictive Control: Theory and Design. Nob Hill Publishing,
Madison.

Wang, Y., Boyd, S. (2010) Fast model predictive control using online optimization, IEEE Transactions on Control
Systems Technology, 18(2):267-278, March 2010.

Wills, A. (2009) QPC- Quadratic Programming in C, Version 2.0, http://sigpromu.org/staff/quadprog

Wright S.J. (1997) Primal–dual Interior-point Methods. SIAM: Philadelphia, PA.

