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Spectral Efficiency of Multipair Massive MIMO
Two-Way Relaying with Imperfect CSI

Chuili Kong, Student Member, IEEE, Caijun Zhong,Senior Member, IEEE, Michail Matthaiou,Senior Member,
IEEE, Emil Björnson,Senior Member, IEEE, and Zhaoyang Zhang,Member, IEEE

Abstract—We consider a two-way half-duplex relaying sys-
tem where multiple pairs of single-antenna users exchange
information assisted by a multiple-antenna relay. Taking into
account the practical constraint of imperfect channel knowledge,
we study the achievable sum spectral efficiency (SE) of the
amplify-and-forward protocol, assuming that the relay employs
maximum ratio processing. We derive a closed-form expression
for the sum SE for arbitrary system parameters and a large-
scale approximation for the sum SE when the number of relay
antennas,M , becomes sufficiently large. In addition, we study
how the transmit power reduces withM to maintain a desired
SE. Our results show that by using a large number of relay
antennas, the transmit powers of the user, relay, and pilot symbol
can be scaled down proportionally to1/Mα, 1/Mβ , and 1/Mγ

for certain combinations of α, β, and γ, respectively. This elegant
power scaling law reveals a fundamental tradeoff between the
transmit powers of the user/relay and pilot symbol. Finally,
capitalizing on the new expressions for the sum SE, novel power
allocation schemes are designed to further improve the sum SE.

Index Terms—Amplify-and-forward, geometric programming,
massive MIMO, power scaling law, two-way relaying.

I. I NTRODUCTION

Relaying is a low-complexity and cost-effective means to
extend the network coverage and provide spatial diversity,
which has attracted a great deal of research attention from
both academia and industry [1]–[5]. Thus far, most practical
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relaying systems are assumed to operate in the half-duplex
mode where the relay does not transmit and receive signals
simultaneously. Yet, such half-duplex mechanism incurs a
50% spectral efficiency (SE) loss. To reduce this loss in SE,
two-way relaying was proposed in [6]–[12], where the two
communicating nodes perform bidirectional simultaneous data
transmission.

A. Related Work

Multipair two-way relaying is a sophisticated generalization
of single-pair two-way relaying, where multiple pairs of users
simultaneously establish a communication link with the aidof
a single shared relay [13]–[17], hence substantially boosting
the system SE. The major challenge is to properly handle the
inter-pair interference from co-existing communication pairs.
Thus far, a number of advanced techniques have been intro-
duced to mitigate inter-pair interference, such as dirty-paper
coding [18] and interference alignment [19]. Unfortunately,
the practical implementation of these techniques is in general
very complex. On the other hand, the massive multiple-
input multiple-output (MIMO) paradigm has demonstrated
superior interference suppression capabilities, with very simple
and low-complexity linear processing [20]. Besides, the use
of massive MIMO has the potential to achieve orders of
magnitude spectral efficiency improvement with affordable
signal processing complexity. Therefore, deploying large-scale
antenna arrays in two-way relaying systems appears to be a
very promising solution for inter-pair interference mitigation.

Some initial works have studied the fundamental perfor-
mance of such systems [13], [14], [21]–[25]. In particular,
for the half-duplex amplify-and-forward (AF) relaying, [13]
investigated the achievable SE and power scaling laws of
the maximum ratio (MR) and zero-forcing (ZF) processing
schemes. Moreover, [14] derived a closed-form approximation
of the SE of the MR scheme, and addressed the optimal user
pair selection problem. Then, given minimum rate constraints,
[21] proposed two algorithms to maximize the energy effi-
ciency. For the full-duplex protocol, [22] studied the energy
efficiency based on a practical power consumption model,
while [23] considered antenna correlation and discovered the
power scaling laws under various cases. However, one major
limitation of the above works is that perfect channel state
information (CSI) is assumed. Since obtaining perfect CSI
is a formidable challenge in massive MIMO systems, it is
important to look into the realistic scenario of imperfect CSI.
An early attempt was made in [24], where the authors studied
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the sum SE performance of training-based systems utilizing
the ZF scheme. Later, [25] investigated the asymptotic SE with
MR and ZF, and designed an optimal power allocation strategy
to maximize the sum SE under certain practical constraints.
Although the derived results in [24], [25] are useful for
understanding the impact of imperfect CSI on the system
performance, a number of important questions remain to be
addressed. For instance, the fundamental tradeoff between
the transmit powers of pilot, user, and the relay remains an
open problem. Our previous work of [26] has revealed this
tradeoff for the decode-and-forward relaying system. Since
the AF protocol does not need to decode the signals, it is
preferred for applications which are sensitive to complexity
and time latency, hence, is particularly suitable for the URLLC
ecosystem. Therefore, providing a comprehensive analysisof
multipair two-way relaying systems with the AF protocol is
also of great interest. Motivated by this, we extend the analysis
of [26] to the AF relaying systems, and present the achievable
rate, the power tradeoff, and the power allocation design for
the AF protocol. Our contributions are summarized as follows.

B. Contributions

• We investigate a multipair two-way AF relaying system
that employs MR processing with imperfect CSI, and
derive the SE expression in closed-form which is applica-
ble for arbitrary system configurations and a large-scale
approximation of the SE whenM → ∞, whereM is the
number of relay antennas.

• We consider three different transmit powers, i.e., the
relay’s transmit power, the user’s transmit power, and the
transmit power of each pilot symbol, and characterize the
interplay between them, which permits great flexibility in
the design of practical systems. In contrast, most of the
previous works only consider the transmit powers of the
user and the relay, and ignore the power-scaling analysis
in the channel training stage.

• We study the power allocation problem that maximizes
the sum SE, subject to a total power constraint. Using
the same method as in [25], a local optimum solution is
obtained by solving a sequence of geometric program-
ming (GP) problems. In addition, a closed-form power
allocation strategy is obtained for the special case where
users are independent and identically distributed, which
suggests that half of the total power should be allocated
to the relay while the rest is equally allocated to the users.

C. Paper Outline and Notations

The remainder of the paper is organized as follows: Section
II introduces the considered multipair two-way half-duplex
relaying system model. Section III presents the SE in closed-
form for arbitraryM and a large-scale approximation when
M → ∞, with imperfect CSI, while Section IV studies the
power scaling laws of different system configurations. The
power allocation problem is discussed in Section V. The
numerical results are verified in Section VI. Finally, Section
VII provides some concluding remarks.

Notation: We use bold upper case letters to denote matrices,
bold lower case letters to denote vectors and lower case letters
to denote scalars. Moreover,(·)H , (·)∗, (·)T , and(·)−1 repre-
sent the conjugate transpose operator, the conjugate operator,
the transpose operator, and the matrix inverse, respectively.
Also, || · || is the Euclidian norm,|| · ||F denotes the Frobenius
norm, and|·| is the absolute value. In addition,x ∼ CN (0,Σ)
denotes a circularly symmetric complex Gaussian random
vectorx with covariance matrixΣ, Ik is the identity matrix
of sizek, while 1 denotes the vector whose elements are all
1. Finally, the statistical expectation operator is represented by
E{·}, the variance operator is Var(·), and the trace is denoted
by tr(·).

II. SYSTEM MODEL

We consider a multipair two-way relaying communication
network consisting of a relay TR with M antennas, andN
pairs of single-antenna users TA,i and TB,i, i = 1, . . . , N .
We assume that the direct links between TA,i and TB,i do
not exist due to large obstacles or severe shadowing. Thus,
they exchange information with each other via TR, as shown
in Fig. 1. The relay operates in the half-duplex mode, i.e., it
cannot transmit and receive simultaneously.
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Fig. 1: Illustration of the multipair two-way relaying system.

We assumed that the system operates under the time-
division duplex protocol and channel reciprocity holds. The
channels from TA,i to TR, and TB,i to TR can be respectively
denoted asGAR , [gAR,1, . . . ,gAR,N ] ∈ CM×N and
GRB , [gRB,1, . . . ,gRB,N ] ∈ CM×N . More precisely, by ac-
counting for both small-scale and large-scale fading, the chan-
nel vectors can be expressed asgAR,i ∼ CN (0, βAR,iIM ) and
gRB,i ∼ CN (0, βRB,iIM ), whereβAR,i andβRB,i model the
large-scale path-loss and shadowing effects that are assumed
to be constant over many coherence intervals and known a
priori.

A. Channel Training Stage

In the channel training stage, the channelsGAR andGRB

are estimated by utilizing uplink pilots [20]. In each coherence
interval of lengthτc, TA,i and TB,i simultaneously transmit
their mutually orthogonal pilot sequences of lengthτp to TR,
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for i = 1, . . . , N . Thus, the received pilot matrix at the relay
is given by

Yp =
√
τpppGARΦ

T
A +

√
τpppGRBΦ

T
B +Np, (1)

where pp is the transmit power of each pilot symbol,Np

is AWGN matrix including i.i.d.CN (0, 1) elements.1 The
matricesΦA ∈ Cτp×N andΦB ∈ Cτp×N are respectively the
pilot sequences transmitted from TA,i and TB,i, and satisfy
τp ≥ 2N , ΦT

AΦ
∗
A = IN , ΦT

BΦ
∗
B = IN , andΦT

AΦ
∗
B = 0N to

preserve orthogonality of the pilots.
As in [1], [24], [27], we assume that TR uses the minimum

mean-square-error (MMSE) estimator to estimate the channels
GAR andGRB. From the property of MMSE channel esti-
mation, the channel vectors can be decomposed as

gAR,i = ĝAR,i + eAR,i, (2)

gRB,i = ĝRB,i + eRB,i, (3)

where ĝAR,i, ĝRB,i, eAR,i, and eRB,i are thei-th columns
of the estimated matriceŝGAR, ĜRB, and the estimation
error matricesEAR andERB, respectively, which are mutually
independent. Furthermore, the elements ofĝAR,i, eAR,i are
Gaussian random variables with zero mean, varianceσ2

AR,i

and σ̃2
AR,i, respectively, whereσ2

AR,i ,
τpppβ

2
AR,i

1+τpppβAR,i
and

σ̃2
AR,i ,

βAR,i

1+τpppβAR,i
. Similarly, the elements of̂gRB,i, and

eRB,i are complex Gaussian random variables with zero
mean, varianceσ2

RB,i andσ̃2
RB,i, respectively, whereσ2

RB,i ,
τpppβ

2
RB,i

1+τpppβRB,i
and σ̃2

RB,i ,
βRB,i

1+τpppβRB,i
.

B. Data Transmission Stage

The data transmission stage consists of two separate phases.
In the first phase, theN user pairs simultaneously transmit
their respective signals to TR. Thus, the received signal at TR

is given by

yr =

N∑

i=1

(√
pA,igAR,ixA,i +

√
pB,igRB,ixB,i

)
+ nR, (4)

wherexA,i andxB,i are complex Gaussian signals with zero
mean and unit power transmitted by thei-th user pair,pA,i

and pB,i are the average transmit power of TA,i and TB,i,
respectively, andnR is a vector of additive white Gaussian
noise (AWGN) at TR, whose elements are identically and
independently distributed (i.i.d.)CN (0, 1).

In the second phase, the relay first applies MR processing
on the received signal2, and then broadcasts it to the users.
Thus, the transmit signal from TR can be written as

yt = ρFyr, (5)

where the processing matrixF ∈ CM×M is given by [14]

F = B∗AH , (6)

1Note that for notational convenience, we set the noise variance to be 1
throughout the paper. With this convention, the transmit power in the paper
can be interpreted as the normalized transmit signal to noise (expressed in
dB).

2Note that MR is a very attractive linear processing technique in the context
of massive MIMO systems due to its low complexity. Most importantly, it can
be implemented in a distributed manner [20].

with A ,

[

ĜAR, ĜRB

]

, andB ,

[

ĜRB , ĜAR

]

, andρ is
chosen to satisfy the long-term total transmit power constraint
at the relay, namely,E

{
||yt||2

}
= pr, wherepr is the average

transmit power of the relay. Thus, we haveρ, which is given
by (7), shown on the top of the next page.

As a result, the received signals at TA,i and TB,i are
respectively given by

zA,i = gT
AR,iyt + nA,i, (8)

zB,i = gT
RB,iyt + nB,i, (9)

wherenA,i ∼ CN (0, 1) and nB,i ∼ CN (0, 1) represent the
AWGN at TA,i and TB,i.

III. SPECTRAL EFFICIENCY

In this section, we derive the SE expression in closed-form
for MR processing, which is applicable for arbitrary number
of relay antennas. Furthermore, a large-scale approximation of
the SE is deduced when antenna arrays at the relay are very
large.

Without loss of generality, we focus on the characterization
of the achievable SE of user TA,i. When TA,i receives the
superimposed signal from TR, it first attempts to subtract
its own transmitted message according to its available CSI
(known as self-interference cancellation). Here, we consider
the realistic case where the users only have the statisti-
cal CSI that is obtained by the feedback from the relay.
Therefore, after subtracting the partial self-interference term
ρ
√
pA,iE

{
gT
AR,iFgAR,i

}
xA,i, the received signal at TA,i is

re-expressed as

ẑA,i = zA,i − ρ
√
pA,iE

{
gT
AR,iFgAR,i

}
xA,i (10)

= ρ
√
pB,iE

{
gT
AR,iFgRB,i

}
xB,i

︸ ︷︷ ︸

desired signal

+ ρ
√
pB,i

(
gT
AR,iFgRB,i − E

{
gT
AR,iFgRB,i

})
xB,i

︸ ︷︷ ︸

gain uncertainty

+ ρ
√
pA,i

(
gT
AR,iFgAR,i − E

{
gT
AR,iFgAR,i

})
xA,i

︸ ︷︷ ︸

residual self-interference

+ ρ
∑

j 6=i

gT
AR,iF

(√
pA,igAR,jxA,j +

√
pB,igRB,jxB,j

)

︸ ︷︷ ︸

inter-user interference

+ ρgT
AR,iFnR + nA,i

︸ ︷︷ ︸

compound noise

.

Using a standard approach as in [1], [29], an ergodic
achievable SE of TA,i is

RA,i =
τc − τp
2τc

log2

(

1 +
Ai

Bi + Ci +Di + Ei

)

, (11)

where the pre-log factor1/2 is introduced for the half-duplex
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ρ =

√
√
√
√
√

pr
N∑

i=1

(pA,iE {||FgAR,i||2}+ pB,iE {||FgRB,i||2}) + E {||F||2F}
. (7)

mode, and

Ai = pB,i|E
{
gT
AR,iFgRB,i

}
|2, (12)

Bi = pB,iVar
(
gT
AR,iFgRB,i

)
, (13)

Ci = pA,iVar
(
gT
AR,iFgAR,i

)
, (14)

Di =
∑

j 6=i

E

{
pA,i|gT

AR,iFgAR,j |2
}

(15)

+
∑

j 6=i

E

{
pB,i|gT

AR,iFgRB,j |2
}
,

Ei = E

{
||gT

AR,iF||2
}
+

1

ρ2
.

Thus, the ergodic sum SE of the multipair two-way AF
relaying system is given by

R =
N∑

i=1

(RA,i +RB,i) , (16)

whereRB,i is the SE of TB,i, which can be derived in a similar
fashion.

Theorem 1:With the AF protocol, the ergodic SE for an
arbitrary number of relay antennas is given by (11) with

Ai = pB,iM
2(M + 1)2σ4

AR,iσ
4
RB,i, (17)

Bi = pB,i2M (M + 1)βAR,iβRB,i

∑

n6=i

σ2
AR,nσ

2
RB,n (18)

+ pB,iM (M + 1)σ2
AR,iσ

2
RB,i

(
βAR,iσ

2
RB,i + βRB,iσ

2
AR,i

)

+ pB,i2M (M + 1)σ2
AR,iσ

2
RB,iσ̃

2
AR,iσ̃

2
RB,i

+ pB,i2M (M + 1)
2
σ4
AR,iσ

4
RB,i

+ pB,iM (M + 1) (M + 2)σ2
AR,iσ̃

2
AR,iσ

2
RB,i

(
σ2
AR,i + σ2

RB,i

)
,

Ci = 4pA,iM(M + 1)β2
AR,i

∑

n6=i

σ2
AR,nσ

2
RB,n (19)

+ 4pA,iσ
2
AR,iσ

2
RB,iM (M + 1) (M + 2)σ4

AR,i

+ 4pA,iσ
2
AR,iσ

2
RB,iM (M + 1) (M + 5)σ2

AR,iσ̃
2
AR,i

+ 4pA,iσ
2
AR,iσ

2
RB,iM (M + 1) σ̃4

AR,i,

Di =
∑

j 6=i

2M (M + 1)βAR,itj
∑

n6=i,j

σ2
AR,nσ

2
RB,n (20)

+
∑

j 6=i

Mσ2
AR,iσ

2
RB,itjmσ2

AR,i

+
∑

j 6=i

Mσ2
AR,iσ

2
RB,itj2 (M + 1) σ̃2

AR,i

+
∑

j 6=i

MβAR,iσ
2
AR,jσ

2
RB,jm

(
pA,iσ

2
AR,j + pB,iσ

2
RB,j

)

+
∑

j 6=i

2 (M + 1)
(
pA,iσ̃

2
AR,j + pB,iσ̃

2
RB,j

)
,

(21)

Ei = 2M (M + 1)βAR,i

∑

n6=i

σ2
AR,nσ

2
RB,n (22)

+Mσ2
AR,iσ

2
RB,i

(
mσ2

AR,i + 2 (M + 1) σ̃2
AR,i

)

+
1

pr

N∑

i=1

Mσ2
AR,iσ

2
RB,im

(
σ2
AR,ipA,i + σ2

RB,ipB,i

)

+
1

pr

N∑

i=1

Mσ2
AR,iσ

2
RB,i2 (M + 1)

(
σ̃2
AR,ipA,i + σ̃2

RB,ipB,i

)

+
1

pr

N∑

i=1

2M (M + 1) ti
∑

n6=i

σ2
AR,nσ

2
RB,n

+
1

pr
2M (M + 1)

N∑

n=1

σ2
AR,n.σ

2
RB,n,

where tj = pA,iβAR,j + pB,iβRB,j and m =
(M + 1) (M + 3).

Proof: See Appendix A.
Theorem 1 presents the closed-form SE, which is applicable

to arbitrary number of relay antennas. While Theorem 1
enables efficient evaluation of the SE, it is in general difficult
to extract insights due to the involved expression. As such,
we now look into the asymptotic regime where the relay has
a large number of antennas, and derive a simple and accurate
approximation for the SE.

Theorem 2:With the AF protocol, as the number of relay
antennas grows to infinity, then we haveRA,i− R̃A,i

M→∞−→ 0,
whereR̃A,i is given by

R̃A,i ,
τc − τp
2τc

log2

(

1 +
pB,iM

B̃i + C̃i + D̃i + Ẽi

)

, (23)

where

B̃i , pB,i

(

βRB,i

σ2
RB,i

+
βAR,i

σ2
AR,i

)

, (24)

C̃i ,
4pA,iβAR,i

σ2
RB,i

, (25)

D̃i ,
∑

j 6=i

pA,j

(

βAR,j

σ2
RB,i

+
σ4
AR,jσ

2
RB,jβAR,i

σ4
AR,iσ

4
RB,i

)

(26)

+
∑

j 6=i

pB,j

(

βRB,j

σ2
RB,i

+
σ2
AR,jσ

4
RB,jβAR,i

σ4
AR,iσ

4
RB,i

)

,

Ẽi ,
1

σ2
RB,i

(27)

+
1

prσ4
AR,iσ

4
RB,i

N∑

n=1

σ2
AR,nσ

2
RB,n

(
pA,nσ

2
AR,n + pB,nσ

2
RB,n

)
.

Theorem 2 presents a large-scale approximation of thei-th
user’s SE which is asymptotically tight. Despite being obtained
under the massive array assumption, the approximation turns
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out to be very accurate even for practical number of relay
antennas. Most importantly, it is easy to observe the impact
of various factors on the asymptotic SE. It can be seen that
the individual user SER̃A,i decreases with the number of
user pairsN ; this is anticipated since a higher number of
users increases the amount of inter-user interference. Now,
we focus on studying the impact of the transmit power ofi-th
user pairpA,i and pB,i, the transmit power of the relaypr,
and the transmit power of each pilot symbolpp on the system
performance. As can be seen, whenpA,i → ∞ andpB,i → ∞,
the SE is limited bypr and pp; in contrast, it is limited by
pA,i, pB,i, andpp whenpr → ∞.

IV. POWER SCALING LAWS

In this section, we present a detailed analysis of the power
scaling laws. In other words, we characterize that how the
powers can be reduced proportionally toM while maintaining
a desired non-zero SE. Note that power actually refers to
the signal-to-noise ratio and thus the analysis shows how
to achieve the SE either using less power or extending the
coverage. Since our main focus is on the extent of power
reduction rather than the behavior of a particular user, we
assume that all the users have the same transmit power, i.e.,
pA,i = pB,i = pu. Then, based on three different scenarios, we
characterize the interplay between the relay’s transmit power
pr, the transmit power of each userpu, and the transmit power
of each pilot symbolpp, as the number of relay antennasM
grows to infinity.

A. Scenario A

In scenario A,pu and pr are fixed, whilepp =
Ep

Mγ with
γ > 0, andEp being a constant. Such a scenario represents
the potential of power saving in the training stage.

Now define the Condition I: Ep ≪ τpM
γ ×

min {βAR,i, βRB,i}, then we have the following important
result:

Theorem 3:For fixed and finitepu, pr andEp, whenpp =
Ep

Mγ with γ > 0, asM → ∞ and Condition I holds, we have

RA,i −
τc − τp
2τc

log2

(

1 +
τpEpM

1−γ

B̂i + Ĉi + D̂i + Êi

)

M→∞−→ 0,

(28)

where

B̂i ,
1

βRB,i

+
1

βAR,i

, (29)

Ĉi ,
4βAR,i

β2
RB,i

, (30)

D̂i ,
∑

j 6=i

(

βAR,j + βRB,j

β2
RB,i

+
β4
AR,jβ

2
RB,j + β2

AR,jβ
4
RB,j

β3
AR,iβ

4
RB,i

)

,

(31)

Êi ,
1

puβ2
RB,i

(32)

+
1

prβ4
AR,iβ

4
RB,i

N∑

n=1

β2
AR,nβ

2
RB,n

(
β2
AR,n + β2

RB,n

)
.

Theorem 3 implies that the large-scale approximation of
the SERA,i depends on the choice ofγ. Whenγ > 1, RA,i

reduces to zero due to the poor channel estimation accuracy
caused by over-reducing the pilot transmit power. In contrast,
when0 < γ < 1, RA,i grows without bound, which indicates
that the transmit power of each pilot symbol can be scaled
down arbitrarily within this regime. Finally, whenγ = 1, RA,i

converges to a non-zero limit, which suggests that with large
antenna arrays, the transmit power of each pilot symbol can
be scaled down at most by1/M to maintain a given SE.

B. Scenario B

In scenario B,pp is fixed, while pu = Eu

Mα , pr = Er

Mβ ,
with α ≥ 0 and β ≥ 0, andEu, Er are constants. Hence,
the channel estimation accuracy remains unchanged, and the
objective is to study the potential power savings in the data
transmission stage, as well as, the interplay between the user
and relay transmit powers.

Now define the following conditions, namely, Condition II:
Mα

Euσ
2
RB,i

+ Mβ

Erσ
4
AR,iσ

4
RB,i

N∑

n=1
σ2
AR,nσ

2
RB,n

(
σ2
AR,n + σ2

RB,n

)
≫

βRB,i

σ2
RB,i

+
βAR,i

σ2
AR,i

+
4βAR,i

σ2
RB,i

+
∑

j 6=i

(
βAR,j

σ2
RB,i

+
σ4
AR,jσ

2
RB,jβAR,i

σ4
AR,i

σ4
RB,i

)

+

∑

j 6=i

(
βRB,j

σ2
RB,i

+
σ2
AR,jσ

4
RB,jβAR,i

σ4
AR,i

σ4
RB,i

)

, Condition III:

1
Eu

≫ Mβ−1

Erσ
4
AR,iσ

2
RB,i

N∑

n=1
σ2
AR,nσ

2
RB,n

(
σ2
AR,n + σ2

RB,n

)
, and

Condition IV:
Mα−1

Eu
≪ 1

Erσ
4
AR,iσ

2
RB,i

N∑

n=1
σ2
AR,nσ

2
RB,n

(
σ2
AR,n + σ2

RB,n

)
,

then we have:
Theorem 4:For fixed and finitepp, Eu, andEr, whenpu =

Eu

Mα , pr = Er

Mβ , with α ≥ 0, β ≥ 0, asM → ∞ and Condition
II holds, we have (33), which is shown on the top of the next
page.

Theorem 4 reveals that in Scenario B, the estimation error,
the residual self-interference, and the inter-user interference
vanish completely, and only the compound noise remains, as
M → ∞. The reason is that the power scaling pushes the
system into a noise limited regime. Moreover, it is observed
that the compound noise consists of two parts, namely Part
I and Part II as shown in (33), which represent the noise at
the relay and the noise at the user TA,i, respectively. This
observation can be interpreted as: when both the transmit
powers of each user and the relay are scaled down inversely
proportional toM , the effect of noise becomes increasingly
significant. In addition, we can also see that when the channel
estimation accuracy is fixed, the large-scale approximation of
the SERA,i depends on the value ofα andβ. When we cut
down the transmit powers of the relay and/or of each user too
much, namely,α > 1 and/orβ > 1, RA,i converges to zero.
On the other hand,RA,i grows unboundedly for0 ≤ α < 1
and0 ≤ β < 1. Only if α = 1 and/orβ = 1, RA,i converges
to a finite limit as detailed in the following corollaries.

Corollary 1: For fixed and finitepp, Eu, and Er, when
α = β = 1, namely,pu = Eu

M
, pr = Er

M
, asM → ∞ and

Condition II holds, the SE has the limit (34), which is shown
on the top of the next page.
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RA,i −
τc − τp
2τc

log2














1 +
1

Mα−1

Euσ2
RB,i

︸ ︷︷ ︸

Part I

+
Mβ−1

Erσ4
AR,iσ

4
RB,i

N∑

n=1

σ2
AR,nσ

2
RB,n

(
σ2
AR,n + σ2

RB,n

)

︸ ︷︷ ︸

Part II














M→∞−→ 0. (33)

RA,i →
τc − τp
2τc

log2






1 +

1

1
Euσ

2
RB,i

+ 1
Erσ

4
AR,i

σ4
RB,i

N∑

n=1

(

σ2
AR,nσ

2
RB,n

(

σ2
AR,n + σ2

RB,n

))







. (34)

From Corollary 1, we observe that when both the transmit
powers of the relay and of each user are scaled down with the
same speed, i.e.,1/M , RA,i converges to a non-zero limit.
Moreover, this non-zero limit increases withEu andEr, as
expected. Now consider the special case of all the links having
the same large-scale fading, e.g.,βAR,i = βRB,i = 1, for
i = 1, . . . , N , then the sum SE of the system reduces to

R → τc − τp
τc

N log2

(

1 +
σ2
1EuEr

Er + 2NEu

)

, (35)

whereσ2
1 =

τppp

τppp+1 . Therefore, the sum SE in (35) is equal to
the one ofN parallel single-input single-output channels with
transmit power σ2

1EuEr

Er+2NEu
, without interference and small-scale

fading. Note that we only need2N(Eu+τpEp)+Er

M
amount of

power (the transmit power of each user isEu

M
, the transmit

power of each pilot sequence isτpEp

M
, and the transmit

power of the relay isEr

M
) in multipair two-way AF relaying

systems when using very large number of relay antennas. This
represents a remarkable power reduction, thereby showcasing
the huge benefits from the perspective of radiated energy
efficiency by deploying large antenna arrays.

Corollary 2: For fixed and finitepp, Eu andEr, whenα =
1 and0 ≤ β < 1, namely,pu = Eu

M
, pr = Er

Mβ , asM → ∞
and Conditions II and III hold, the SE has the limit

RA,i →
τc − τp
2τc

log2
(
1 + Euσ

2
RB,i

)
. (36)

Corollary 2 presents an interesting phenomenon, that if the
transmit power of each user is overly cut down compared to
the reduction of the relay transmit power, the value of Part Iis
dominant compared to Part II in (33), and thusRA,i converges
to a non-zero limit that is determined by the noise at the relay.
This observation is intuitive, since when both TA,i and TB,i

transmit with extremely low power, the effect of noise at the
relay becomes the performance limiting factor. Similarly,when
0 ≤ α < β = 1, we have the following corollary.

Corollary 3: For fixed and finitepp, Eu, and Er, when
0 ≤ α < 1 and β = 1, namely,pu = Eu

Mα , pr = Er

M
, as

M → ∞ and Conditions II and IV hold, the SE has the limit

RA,i →
τc − τp
2τc

(37)

× log2






1 +

Erσ
4
AR,iσ

4
RB,i

N∑

n=1

(

σ2
AR,nσ

2
RB,n

(

σ2
AR,n + σ2

RB,n

))







.

Similar to the analysis in Corollary 2, if the down-scaling
of the relay transmit power in the second phase is faster than
that of the users’ transmit power in the first phase, the limit
of RA,i will only depend on the noise at the users.

C. Scenario C

In scenario C, all the transmit powers scale with the number
of relay antennas, i.e.,pu = Eu

Mα , pr = Er

Mβ , andpp =
Ep

Mγ ,
with α ≥ 0, β ≥ 0, and γ > 0, Eu, Er, and Ep are
constants. This is the most general scenario where we are able
to flexibly adjust the transmit powers of the considered system
to maintain the desired performance.

Now define the following conditions, namely, Condition V:
Mα

Euβ
2
RB,i

+ Mβ

Erβ
4
AR,iβ

4
RB,i

N∑

n=1
β2
AR,nβ

2
RB,n

(
β2
AR,n + β2

RB,n

)
≫

1
βRB,i

+ 1
βAR,i

+
4βAR,i

β2
RB,i

+
∑

j 6=i

(
βAR,j

β2
RB,i

+
β4
AR,jβ

2
RB,j

β3
AR,i

β4
RB,i

)

+

∑

j 6=i

(
βRB,j

β2
RB,i

+
β2
AR,jβ

4
RB,j

β3
AR,iβ

4
RB,i

)

,

Condition VI:
1
Eu

≫ Mβ+γ−1

Erβ
4
AR,i

β2
RB,i

N∑

n=1
β2
AR,nβ

2
RB,n

(
β2
AR,n + β2

RB,n

)
,

and Condition VII:
Mα+γ−1

Eu
≪ 1

Erβ
4
AR,i

β2
RB,i

N∑

n=1
β2
AR,nβ

2
RB,n

(
β2
AR,n + β2

RB,n

)
,

then we have:
Theorem 5:For fixed and finiteEu, Er, and Ep, when

pu = Eu

Mα , pr = Er

Mβ , and pp =
Ep

Mγ , with α ≥ 0, β ≥ 0,
andγ > 0, asM → ∞ and Conditions I and V hold, we have
(38), shown on the top of the next page.

Theorem 5 reveals the coupled relationship between the
training power and user (or relay) transmit power. When
α + γ > 1 and/orβ + γ > 1, RA,i converges to zero, due
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RA,i −
τc − τp
2τc

log2






1 +

1

Mα+γ−1

τpEpEuβ
2
RB,i

+ Mβ+γ−1

τpEpErβ
4
AR,iβ

4
RB,i

N∑

n=1
β2
AR,nβ

2
RB,n

(

β2
AR,n + β2

RB,n

)







M→∞−→ 0. (38)

to either poor estimation accuracy or low user/relay transmit
power. On the other hand, when0 < α + γ < 1 and
0 < β+γ < 1, RA,i grows without bound. Only ifα+γ = 1
and/orβ + γ = 1, RA,i converges to a non-zero limit. In the
following, we take a closer look at these particular cases of
interest.

Corollary 4: For fixed and finiteEu, Er, and Ep, when
α = β > 0 andα+ γ = 1, namely,pu = Eu

Mα , pr = Er

Mβ , and
pp =

Ep

Mγ , with γ > 0, asM → ∞ and Conditions I and V
hold, the SE has the limit (39), shown on the top of the next
page.

Corollary 4 suggests that no matter howα, β, andγ change,
as long as the overall power reduction SE at the user/relay
and pilot symbol remains the same, i.e.,α+ γ = 1, the same
asymptotic SE can be attained. In other words, it is possible
to balance between the pilot symbol power to the user/relay
transmit power.

Corollary 5: For fixed and finiteEu, Er, and Ep, when
α > β ≥ 0 andα+ γ = 1, namely,pu = Eu

Mα , pr = Er

Mβ , and
pp =

Ep

Mγ , with γ > 0, asM → ∞ and Conditions I, V, and
VI hold, the SE has the limit

RA,i →
τc − τp
2τc

log2
(
1 + τpEpEuβ

2
RB,i

)
. (40)

Corollary 5 shows the same trade-off betweenα andγ as
in Corollary 4. However, similar to Corollary 2, the SE is only
related to the noise at the relay.

Corollary 6: For fixed and finiteEu, Er, and Ep, when
0 ≤ α < β andβ + γ = 1, namely,pu = Eu

Mα , pr = Er

Mβ , and
pp =

Ep

Mγ , with γ > 0, asM → ∞ and Conditions I, V, and
VII hold, the SE has the limit

RA,i →
τc − τp
2τc

(41)

× log2






1 +

τpEpErβ
4
AR,iβ

4
RB,i

N∑

n=1
β2
AR,nβ

2
RB,n

(

β2
AR,n + β2

RB,n

)







.

Corollary 6 indicates that when we cut down the transmit
power of the relaypr more compared with the transmit power
of each userpu, i.e.,0 ≤ α < β, to obtain a constant limit SE,
the trade-off betweenpr and the transmit power of the relay
each pilot symbolpp should be satisfied, namely,β + γ = 1.
This trade-off provides valuable insights, since we can adjust
pr and pp flexibly based on different demands, to meet the
same limit. In addition, Corollary 6 also shows thatRA,i is
an increasing function with respect toEp and Er, while a
decreasing function ofN . In other words, when the number
of user pairsN increases, the relay and/or each pilot symbol
should increase their power in order to maintain the same
performance. This is due to the fact that a larger transmit

power of the relay and/or more accurate channel estimation
can compensate the individual SE loss caused by stronger
inter-user interference.

V. POWER ALLOCATION

In this section, we formulate a power allocation problem
maximizing the sum SE subject to a total power constraint,

i.e.,
N∑

i=1

(pA,i + pB,i) + pr ≤ P . For notational simplicity, we

defineN , {1, . . . , N}, pA , [pA,1, . . . , pA,N ]T , andpB ,

[pB,1, . . . , pB,N ]
T .

For mathematical tractability, instead of using the sum
SE expression in Theorem 1, we work with the large-scale
approximation from Theorem 2 which turns out to be tight for
even moderateM in the simulation results of Section VI-A.
Thus, the power allocation optimization problem is formulated
as [25]

maximize
pA,pB ,pr

N∑

i=1

(

R̃A,i + R̃B,i

)

(42)

subject to
N∑

i=1

(pA,i + pB,i) + pr ≤ P,

0 ≤ pA ≤ p01,0 ≤ pB ≤ p01, 0 ≤ pr ≤ p1,

where R̃B,i is the large-scale approximation for the SE of
TB,i, which can be derived in a similar fashion,p0 andp1 are
the peak power constraints ofpA,i (pB,i) andpr, respectively.

Since log(·) is an increasing function, (42) can be equiva-
lently reformulated as:

P1 : minimize
pA,pB,pr

γA,γB

N∏

i=1

(1 + γA,i)
−1 (1 + γB,i)

−1

subject to γA,i ≤
pB,i

ξi
, γB,i ≤

pA,i

ξ̃i
, i ∈ N

N∑

i=1

(pA,i + pB,i) + pr ≤ P,

0 ≤ pA ≤ p01,0 ≤ pB ≤ p01, 0 ≤ pr ≤ p1,

where γA , [γA,1, . . . , γA,N ]
T , γB , [γB,1, . . . , γB,N ]

T ,
γAR,i andγRB,i are considered as the signal-to-interference-
plus-noise ratio (SINR) of̃RA,i and R̃B,i, respectively. Also,
ξi and ξ̃i are respectively given by

ξi =
N∑

j=1

(ai,jpA,j + bi,jpB,j)

+ p−1
r

N∑

j=1

(ci,jpA,j + di,jpB,j) + ei, (43)
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RA,i →
τc − τp
2τc

log2






1 +

1

1
τpEpEuβ

2
RB,i

+ 1
τpEpErβ

4
AR,iβ

4
RB,i

N∑

n=1

(

β2
AR,nβ

2
RB,n

(

β2
AR,n + β2

RB,n

))







. (39)

and

ξ̃i =

N∑

j=1

(

ãi,jpA,j + b̃i,jpB,j

)

+ p−1
r

N∑

j=1

(

c̃i,jpA,j + d̃i,jpB,j

)

+ ẽi, (44)

where

ai,j =
1

M







4βAR,i

σ2
RB,i

, j = i,

βAR,j

σ2
RB,i

+
σ4
AR,jσ

2
RB,jβAR,i

σ4
AR,i

σ4
RB,i

, j 6= i,
(45)

bi,j =
1

M







βRB,i

σ2
RB,i

+
βAR,i

σ2
AR,i

, j = i,

βRB,j

σ2
RB,i

+
σ2
AR,jσ

4
RB,jβAR,i

σ4
AR,iσ

4
RB,i

, j 6= i,
(46)

ci,j =
σ4
AR,jσ

2
RB,j

Mσ4
AR,iσ

4
RB,i

, (47)

di,j =
σ2
AR,jσ

4
RB,j

Mσ4
AR,iσ

4
RB,i

, (48)

ei =
1

Mσ2
RB,i

, (49)

and ãi,j , b̃i,j , c̃i,j , d̃i,j , ẽi are obtained by replacing the
subscripts “AR”, “RB” with “RB”, “AR” in bi,j , ai,j , di,j , ci,j ,
ei, respectively. Note that we have replaced the equality “=”
with “≤” in the first two constraints of problemP1; however,
this does not change or relax the original problem (42), since
the objective function is decreasing withγAR,i and γRB,i.
Therefore, we can guarantee that these two constraints must
be active at any optimal solution ofP1.

The above problemP1 is identified as a complementary
geometric programming problem, which is nonconvex [30],
hence, the optimal solution is intractable. Responding to this,
we propose an efficient suboptimal solution for problemP1,
which significantly outperforms the uniform power allocation
scheme. Specifically, noticing that if the objective function is
a monomial function, the problemP1 becomes a standard GP
problem, and can be solved efficiently with standard optimiza-
tion tools such as CVX [31] or ggplab [32]. The key idea is
to use a monomial functionωX,i (γX,i)

µX,i to approximate
1+γX,i near an arbitrary point̂γX,i > 0, whereX ∈ {A,B},
µX,i =

γ̂X,i

1+γ̂X,i
and ωX,i = (γ̂X,i)

−µX,i (1 + γ̂X,i). At each
iteration, the GP is obtained by replacing the posynomial
objective function with its best local monomial approximation
near the solution obtained at the previous iteration. Then,
a local optimum of the original problemP1 can be found
by solving a sequence of GPs, capitalizing on the technique

proposed in [33, Lemma 1].3 Now, we outline the successive
approximation algorithm to solve the original problemP1 in
the following.

Algorithm 1 Successive approximation algorithm forP1

1) Initialization. Define a toleranceǫ and parameterθ. Set
k = 1, the initial values of̂γA,i andγ̂B,i are chosen according
to the SINR in Theorem 2 when lettingpA,i = pB,i =

P
4N ,

andpr = P
2 .

2) Iteration k. ComputeµA,i =
γ̂A,i

1+γ̂A,i
andµB,i =

γ̂B,i

1+γ̂B,i
.

Then, solve the following GP problem:

P2 : minimize
pA,pB,pr

γA,γB

N∏

i=1

(γA,i)
−µA,i (γB,i)

−µB,i

subject to θ−1γ̂A,i ≤ γA,i ≤ θγ̂A,i, i ∈ N
θ−1γ̂B,i ≤ γB,i ≤ θγ̂B,i, i ∈ N
γA,ip

−1
B,iξi ≤ 1, i ∈ N

γB,ip
−1
A,iξ̃i ≤ 1, i ∈ N

N∑

i=1

(pA,i + pB,i) + pr ≤ P,

0 ≤ pA ≤ p01,0 ≤ pB ≤ p01, 0 ≤ pr ≤ p1.

Denote the optimal solutions byγ(k)
A,i andγ(k)

B,i, i ∈ N .

3) Stopping criterion. If maxi |γ(k)
A,i − γ̂A,i| < ǫ and/or

maxi |γ(k)
B,i − γ̂B,i| < ǫ, stop; otherwise, go to step 4).

4) Update initial values. Setγ̂A,i = γ
(k)
A,i andγ̂B,i = γ

(k)
B,i, and

k = k + 1. Go to step 2).

Note that we have neglectedωA,i andωB,i in the objective
function of P2, since they are constants and do not affect
the problem solution at each iteration. Also, some trust region
constraints, i.e., the first two constraints, are added, which limit
how much the variables are allowed to differ from the current
guessγ̂A,i and γ̂B,i. The limit of any convergent sequence
generated by Algorithm 1 is a Karush-Kuhn-Tucker point, and
the detailed proof can be found in [35]. The parameterθ > 1
controls the desired accuracy. More precisely, whenθ is close
to 1 it provides good accuracy for the monomial approximation
but with slower convergence speed, and vice versa ifθ is large.
As discussed in [33], [36], [37],θ = 1.1 offers a good tradeoff
between the accuracy and convergence speed.

Regarding the complexity of algorithm 1, we notice that
algorithm 1 is executed by solving a sequence of GP problems.
According to [34], GP can be solved by the interior point

3During the submission of the current work, an independent work has
appeared in [25], which also uses the technique proposed in [33] to tackle the
power allocation issue in the context of multipair massive MIMO two-way
relaying systems.
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method with provably polynomial time complexity. Also, it
can be efficiently implemented with high-quality software such
as the MOSEK package.

To gain further insights, we now consider the special case
when all the users transmit with the same power, i.e.,pA,i =
pB,i = pu. Also, we remove the peak power constraints by
assuming thatp0 andp1 are very high. Then, the optimization
problem (42) reduces to

P3 : maximize
pu,pr

N∑

i=1

(

R̃A,i + R̃B,i

)

subject to 2Npu + pr ≤ P,

pu ≥ 0, pr ≥ 0.

Theorem 6:P3 is a convex optimization problem.
Proof: See Appendix B.

Since the optimization problemP3 is convex, the optimal
solutionspopt

u ∈
(
0, P

2N

]
and popt

r ∈ (0, P ] maximizing the
sum SE can be obtained efficiently by adopting some standard
techniques, such as the bisection method with respect toP .
However, we cannot directly obtain closed-form expressions
of popt

u and popt
r , since the objective function relies on the

statistical characteristics of all the channel vectors. Inorder
to simplify the analysis and provide some further insights,we
assume that all the users have the same large-scale fading, e.g.,
βAR,i = βRB,i = 1, thereby resulting inσ2

A,i = σ2
B,i = σ2,

σ̃2
A,i = σ̃2

B,i = σ̃2, R̃A,i = R̃B,i, and then the optimization
problemP3 can be analytically solved in the following theo-
rem:

Theorem 7:The optimization problemP3 for the scenario
where all the users have the same large-scale fading, e.g.,
βAR,i = βRB,i = 1 is solved by

{

popt
u = P

4N ,

popt
r = P

2 .
(50)

Theorem 7 suggests that, for a given power budget2Npu+
pr ≤ P , half of the total power should be allocated to the
relay regardless of the number of users, and the remaining
half should be equally allocated to the2N users. Such a
symmetric power allocation strategy is rather intuitive due to
the symmetric system setup. In addition, it can be directly
inferred that the optimal powerpopt

u decreases monotonically
by increasing the number of user pairsN , which serves as a
useful guideline for practical system design.

VI. N UMERICAL RESULTS

In this section, we present numerical results to validate the
previous analytical results. For all illustrative examples, the
following set of parameters are used in simulation. Unless
otherwise specified, the length of the coherence interval is
τc = 196 symbols, chosen by the LTE standard. The length
of the pilot sequences isτp = 2N which is the minimum
requirement. For simplicity, we set the large-scale fading
coefficientβAR = βRB = 1, and assume that each user has
the same transmit power, i.e.,pA,i = pB,i = pu.

A. Validation of analytical expressions

Fig. 2 shows the sum SE versus the transmit power of each
userpu for different number of relay antennas withpp = pu
and pr = 2Npu. Note that the “Approximations” curves are
obtained by using (23), and the “Numerical results” curves are
generated according to (16) by averaging over104 independent
channel realizations, respectively. As can be readily observed,
the large-scale approximations are very accurate, especially for
large antenna arrays. Also, as expected, increasing the number
of relay antennas significantly yields higher SE.
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Fig. 2: Sum SE versuspu for N = 5, pp = pu and
pr = 2Npu.

B. Power scaling

In this subsection, we present numerical simulation results
to verify the previous power scaling law analysis for three
different scenarios, and demonstrate the power efficiency of
using large number of antennas at the relay.
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Fig. 3: Sum SE versus the number of relay antennasM for
N = 5, pu = 10 dB, pr = 20 dB, andpp = Ep/M

γ with
Ep = 10 dB.
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1) Scenario A: Fig. 3 verifies the analytical results for
Scenario A. Note that the curves labelled as “Scenario A” are
plotted according to Theorems 3. We can see that whenM is
large, the two curves are almost overlapped, which means that
the previous asymptotic analysis is very accurate. In addition,
whenγ > 1, e.g.,γ = 2, the SE gradually approaches zero.
In contrast, when0 < γ < 1, e.g.,γ = 0.8, the SE grows
unbounded. Finally, whenγ = 1, the SE converges to a non-
zero limit.

2) Scenario B:Fig. 4 investigates how the transmit power
of each userpu = Eu

Mα and the transmit power of the relay
pr = Er

Mβ scale withM . To fully evaluate the SE behavior,
we consider three different cases based on the values ofα and
β, namely, 1) Case I:α = β = 1; 2) Case II:α = 1, β = 0.2;
3) Case III:α = 0.4, β = 1. Note that the curves labelled
as “Scenario B” are generated by using Theorem 4, while the
curves labelled as “Scenario B-Case X” with X∈ {I, II , III }
are plotted according to Corollaries 1–3, respectively. Fig. 4(a)
shows that the sum SE saturates in the asymptotical largeM
regime for all the three cases, which agrees with Corollaries 1–
3. Furthermore, Case I has the lowest SE due to simultaneously
cutting the transmit powers of each user and of the relay, while
Case II and Case III achieve the same performance due to the
setting ofEr = 2NEu.

Fig. 4(b) illustrates the system performance when the trans-
mit power down-scaling is either too aggressive or too mod-
erate. As expected, as the number of relay antennas increases,
the sum SE gradually reduces to zero forα > 1, β ≥ 0,
α ≥ 0, β > 1, or α > 1, β > 1. However, the speed
of reduction varies significantly depending on the scaling
parameters. The larger the scaling parameters, the faster the
decay of the SE. In contrast, if we cut down the transmit
powers of each user and of the relay moderately, the sum SE
grows unboundedly.

3) Scenario C: Fig. 5 presents the tradeoff between the
user/relay power and the pilot symbol power. We set two
examples, i.e.,α = 1.3, β = 1.1, γ = 0.5 and α = 0.8,
β = 0.6, γ = 1, which satisfyα+ γ = 1.8 andβ + γ = 1.6.
As predicted, the sum SE converges to zero for too aggressive
power down-scaling. Moreover, the gaps between the two sets
of curves narrow down withM and eventually vanish. This
indicates that as long asα + γ andβ + γ are the same, the
asymptotic sum SE remains unchanged. Now, let us focus
on the two curves associated withN = 5. Interestingly,
we see that the curve associated withγ = 0.5 yields better
performance in the finite antenna regime, despite the fact that
the user or relay power is over-reduced compared to theγ = 1
case, which suggests that the channel estimation accuracy is
crucially important for the system. The same behavior appears
for the unbounded SE scenario whereα + γ = 0.9 and
β + γ = 0.8.

C. Power allocation

Fig. 6 illustrates the impact of the optimal power allocation
scheme on the sum SE. The different large-scale fading pa-
rameters are arbitrarily generated byβAR,i = zi (rAR,i/r0)

α

andβRB,i = zi (rBR,i/r0)
α, wherezi is a log-normal random
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variable with standard deviation8 dB, rAR,i and rRB,i are
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the locations of TAR,i and TRB,i from the relay,α = 3.8
is the path loss exponent, andr0 denotes the guard interval
which specifies the nearest distance between the users and
the relay. The relay is located at the center of a cell with
a radius of1000 meters andr0 = 100 meters. We choose
P = 10 dB, pp = 10 dB, N = 5, p0 = P/2N , p1 = P ,
βAR = [0.2688, 0.0368, 0.00025, 0.1398, 0.0047], andβRB =
[0.0003, 0.00025, 0.0050, 0.0794, 0.0001]. The optimal power
allocation curves are generated by Algorithm 1. Also, we plot
the sum SE with uniform power allocation as a benchmark
scheme for comparison. As can be observed, the optimal
power allocation policy provides 23.1% SE enhancement when
M = 300. Moreover, by focusing on the case where every user
has the same transmit power, i.e,pA,i = pB,i = pu, we can see
that the optimal user transmit power is a decreasing function
with respect to the number of user pairsN , which aligns with
Theorem 7.
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Fig. 6: Sum SE for a given power budgetP = 10 dB.

VII. C ONCLUSION

We have investigated the sum SE of a multipair two-way
half-duplex relaying system employing the MR scheme taking
into account of realistic CSI. In particular, a closed-formex-
pression and a large-scale approximation were derived for the
sum SE. Moreover, different power scaling laws of the system
were characterized, which showed that the transmit powers of
user, relay, and pilot symbol can be scaled down inversely
proportional to the number of relay antennas. In addition, it
was revealed that there exists a fundamental tradeoff between
the user/relay transmit power and pilot symbol power, which
provides great flexibility for the design of practical systems.
Finally, the transmit powers of each user and the relay were
optimized to enhance the sum SE.

APPENDIX A
PROOF OFTHEOREM 1

The end-to-end SINR given in (11) consists of five terms:
1) desired signal powerAi; 2) estimation errorBi; 3) residual
self-interferenceCi; 4) inter-user interferenceDi; 5) com-
pound noiseEi.

1) ComputeAi:

E

{
gT
AR,iFgRB,i

}
(51)

= E

{
|ĝH

AR,iĝRB,i|2 + ||ĝAR,i||2||ĝRB,i||2
}

= M (M + 1)σ2
AR,iσ

2
RB,i.

Consequently, we obtain

Ai = pB,iM
2(M + 1)2σ4

AR,iσ
4
RB,i. (52)

2) ComputeBi:

E

{
|gT

AR,iFgRB,i|2
}

(53)

= E

{
N∑

n=1

N∑

l=1

gT
AR,iCngRB,ig

H
RB,iC

H
l g∗

AR,i

}

,

where Cn =
(
ĝ∗
RB,nĝ

H
AR,n + ĝ∗

AR,nĝ
H
RB,n

)
, which can be

decomposed into three different cases:

a) for n 6= l 6= i, we haveE
{
|gT

AR,iFgRB,i|2
}
= 0.

b) for n = l 6= i, we have

E

{
|gT

AR,iFgRB,i|2
}

(54)

= 2M (M + 1)βAR,iβRB,i

∑

n6=i

σ2
AR,nσ

2
RB,n.

c) for n = l = i, we have

E

{
|gT

AR,iFgRB,i|2
}

(55)

= E

{
gT
AR,iĝ

∗
RB,iĝ

H
AR,igRB,ig

H
RB,iĝAR,iĝ

T
RB,ig

∗
AR,i

}

+ E

{
gT
AR,iĝ

∗
RB,iĝ

H
AR,igRB,ig

H
RB,iĝRB,iĝ

T
AR,ig

∗
AR,i

}

+ E

{
gT
AR,iĝ

∗
AR,iĝ

H
RB,igRB,ig

H
RB,iĝAR,iĝ

T
RB,ig

∗
AR,i

}

+ E

{
gT
AR,iĝ

∗
AR,iĝ

H
RB,igRB,ig

H
RB,iĝRB,iĝ

T
AR,ig

∗
AR,i

}
.

The first term in (55) becomes

E

{
gT
AR,iĝ

∗
RB,iĝ

H
AR,igRB,ig

H
RB,iĝAR,iĝ

T
RB,ig

∗
AR,i

}
(56)

= E

{
|g̃AR,i|4||ĝRB,i||4

}
+ σ̃2

AR,iE
{
|g̃AR,i|2||ĝRB,i||4

}

+ σ̃2
RB,iE

{
|g̃RB,i|2||ĝAR,i||4

}

+ σ̃2
RB,iE

{
|ĝH

RB,ieAR,i|2
}
E

{
||ĝAR,i||2

}
,

whereg̃AR,i ,
ĝ
H
AR,iĝRB,i

||ĝRB,i||
andg̃RB,i ,

ĝ
H
AR,iĝRB,i

||ĝAR,i||
. The vector

g̃AR,i is a Gaussian random variable with zero mean and
varianceσ2

AR,i which is independent of̂gRB,i, whereas̃gRB,i

is a Gaussian random variable with zero mean and variance
σ2
RB,i which is independent of̂gAR,i. Therefore, (56) can be

calculated as

E

{
gT
AR,iĝ

∗
RB,iĝ

H
AR,igRB,ig

H
RB,iĝAR,iĝ

T
RB,ig

∗
AR,i

}
(57)

= M (M + 1)σ2
AR,iσ

2
RB,i

(
βAR,iσ

2
RB,i + βRB,iσ

2
AR,i

)

+M2σ2
AR,iσ

2
RB,iσ̃

2
AR,iσ̃

2
RB,i.

Following the same procedure, the last three terms in (55)
can also be derived. Finally, combining a), b), and c), we
obtainBi.

3) ComputeCi: By utilizing the same technique as in the
derivation ofBi, we obtainCi.
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4) ComputeDi:

E

{
|gT

AR,iFgAR,j|2
}

(58)

= E

{
N∑

n=1

N∑

l=1

gT
AR,iCngAR,jg

H
AR,jC

H
l g∗

AR,i

}

,

which can be decomposed into six different cases:

a) for n 6= l 6= i, j (j 6= i), we haveE
{
|gT

AR,iFgAR,j |2
}
=

0.

b) for n = l 6= i, j (j 6= i), we have

E

{
|gT

AR,iFgAR,j |2
}

(59)

= 2M (M + 1)βAR,iβAR,j

∑

n6=i,j

σ2
AR,nσ

2
RB,n.

c) for n = l = i (j 6= i), we have

E

{
|gT

AR,iFgAR,j |2
}

(60)

= MβAR,jσ
2
AR,iσ

2
RB,i (M + 1) (M + 3)σ2

AR,i

+MβAR,jσ
2
AR,iσ

2
RB,i2 (M + 1) σ̃2

AR,i.

d) for n = l = j (j 6= i), we have

E

{
|gT

AR,iFgAR,j |2
}

(61)

= MβAR,iσ
2
AR,jσ

2
RB,j (M + 1) (M + 3)σ2

AR,j

+MβAR,iσ
2
AR,jσ

2
RB,j2 (M + 1) σ̃2

AR,j .

e) for n = i and l = j (j 6= i), we have
E

{
|gT

AR,iFgAR,j |2
}
= 0.

f) for n = j and l = i (j 6= i), we have
E

{
|gT

AR,iFgAR,j |2
}
= 0.

Altogether,E
{
|gT

AR,iFgAR,j |2
}

is given by

E

{
gT
AR,iFgAR,j

}
(62)

= 2M (M + 1)βAR,iβAR,j

∑

n6=i,j

σ2
AR,nσ

2
RB,n

+MβAR,jσ
2
AR,iσ

2
RB,i (M + 1) (M + 3)σ2

AR,i

+MβAR,jσ
2
AR,iσ

2
RB,i2 (M + 1) σ̃2

AR,i

+MβAR,iσ
2
AR,jσ

2
RB,j (M + 1) (M + 3)σ2

AR,j

+MβAR,iσ
2
AR,jσ

2
RB,j2 (M + 1) σ̃2

AR,j .

Following the same technique as in deriving (62), we can
obtainE

{
|gT

AR,iFgRB,j |2
}

and finally deriveDi.

5) ComputeEi:

(a) ComputeE
{
||gT

AR,iF||2
}

:

Again, using the same technique as in the derivation of (62),
we obtain

E

{
||gT

AR,iF||2
}

(63)

= 2M (M + 1)βAR,i

∑

n6=i

σ2
AR,nσ

2
RB,n

+Mσ2
AR,iσ

2
RB,i (M + 1) (M + 3)σ2

AR,i

+Mσ2
AR,iσ

2
RB,i2 (M + 1) σ̃2

AR,i.

(b) Computeρ2:

E

{
||F||2F

}
= E

{
tr
(
ABTB∗AH

})
, (64)

= tr
(

E

{

ĜARĜRBĜ
∗
RBĜ

H
AR

})

+ tr
(

E

{

ĜARĜRBĜ
∗
ARĜ

H
RB

})

+ tr
(

E

{

ĜRBĜARĜ
∗
RBĜ

H
AR

})

+ tr
(

E

{

ĜRBĜARĜ
∗
ARĜ

H
RB

})

,

= 2M (M + 1)

N∑

n=1

σ2
AR,nσ

2
RB,n.

CombiningE
{
||FgAR,i||2

}
, E
{
||FgRB,i||2

}
, and (64),ρ2

is expressed as

ρ2 =
pr

N∑

i=1

(ai + bi) + 2M (M + 1)
N∑

n=1
σ2
AR,nσ

2
RB,n

, (65)

where

ai = 2 (M + 1)
(
σ̃2
AR,ipA,i + σ̃2

RB,ipB,i

)
(66)

+Mσ2
AR,iσ

2
RB,i (M + 1) (M + 3)

(
σ2
AR,ipA,i + σ2

RB,ipB,i

)
,

bi = 2M (M + 1) (βAR,ipA,i + βRB,ipB,i)
∑

n6=i

σ2
AR,nσ

2
RB,n

(67)

We arrive at the desired resultEi by combining (63) and
(65).

APPENDIX B
PROOF OFTHEOREM 6

For a givenpu, the objective function of the optimization
problemP3 is an increasing function with respect topr, while
for a given pr, this function is an increasing function with
respect topu; hence, the objective function is maximized when
2Npu + pr = P [38].

Now, focusing onR̃A,i and substituting2Npu + pr = P
into R̃A,i, we have

R̃A,i =
1

2
log2

(

1 +
1

a+ b
pu

+ c
d−pu

)

, (68)

where a = 1
M

(
βRB,i+4βAR,i

σ2
RB,i

+
βAR,i

σ2
AR,i

)

+

1
M

∑

j 6=i

(
βAR,j

σ2
RB,i

+
σ4
AR,jσ

2
RB,jβAR,i

σ4
AR,i

σ4
RB,i

)

+

1
M

∑

j 6=i

(
βRB,j

σ2
RB,i

+
σ2
AR,jσ

4
RB,jβAR,i

σ4
AR,i

σ4
RB,i

)

, b = 1
Mσ2

RB,i

,

c = 1
2MNσ4

AR,i
σ4
RB,i

N∑

n=1

(
σ2
AR,nσ

2
RB,n

(
σ2
AR,n + σ2

RB,i

))
,

andd = P
2N .
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Taking the second derivative with respect topu yields

∂2R̃A,i

∂p2u
= −

b2
(

2cd2 + (1 + 2a) (d− pu)
3
)

(d− pu)

2 ln 2f2g2

− c (c+ 2ac+ 2a (1 + a) (d− pu)) p
4
u

2 ln 2f2g2

−
bpu

(

c2d2 + a (1 + a) (d− pu)
4
)

ln 2f2g2

− bpu (1 + 2a) c (d− pu)
(
d2 − dpu + p2u

)

ln 2f2g2
< 0,

where f = b (d− pu) + (c+ a (d− pu)) pu and g = f +
(d− pu) pu Thus, R̃A,i is a strictly concave function with
respect topu. Since nonnegative weighted sums preserve con-

vexity [39], the objective functionτc−τp
τc

N∑

i=1

(

R̃A,i + R̃B,i

)

is

also a strictly concave function with respect topu. Recall that
the constraints of the optimization problemP3 are all affine
functions, and henceP3 is a convex optimization problem.
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