Holocene establishment of mangrove forests in the western coast of the Gulf of Mexico

Published in:
CATENA

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2019 Elsevier.
This manuscript is distributed under a Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits distribution and reproduction for non-commercial purposes, provided the author and source are cited.

General rights
Copyright for the publications made accessible via the Queen’s University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen’s institutional repository that provides access to Queen’s research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person’s rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
Abstract: The successful establishment of mangrove ecosystems depends on an intricate network of interactions among physical and biological factors that are highly dynamic through time. At millennial to centennial time scales, regional climates, sea levels, and local geomorphology play critical roles in the establishment of mangroves. Whereas fluvio-marine dynamics define coastal sedimentary settings, regional precipitation and freshwater input modulate salinity and seasonal flooding patterns. We analyzed a ~7800-year-old, continuous sedimentary record from the western coast of the Gulf of Mexico to shed light on regional biophysical coastal processes and the history of the mangroves that occupy the region today. We used a systematic sampling of mud-water interface sediments to generate a modern reference frame for interpreting fossil pollen assemblages. Our results indicate that the cored location that is currently approximately at sea level, was below sea level from ~7800 to 4000 calibrated years before present (cal BP). The establishment of dense mangrove stands took place around 3700 cal BP, when regional sea levels stabilized, resulting in a substantial increase of organic matter and therefore carbon stored in the sediments. However, the mangrove ecological succession that started at ~6000 cal BP was interrupted by a regional drought that extended from ~5400 to 3700 cal BP. From 3700 cal BP to Present, the lagoon has been characterized by relatively stable both substratum and sea level, that together have facilitated the establishment of mangrove forests. Overall, our record demonstrates the complexity of the interactions between local and regional factors in the development and evolution of both coastal geomorphology and ecosystems.
Dear Dr. Cammeraat
We are happy to submit a revised version of the manuscript entitled “Holocene establishment of mangrove forests in the western coast of the Gulf of Mexico”. We are very appreciative of the thorough review of the manuscript because it substantially improved it. The main change we made was including carbon and nitrogen analyses on both modern and fossil samples, giving more solid bases to our interpretations. We have included Jason Curtis and Jaime Escobar as coauthors because they very kindly contributed the C and N analysis and helped with the interpretation of results. Please find below the response to the queries from the reviewer, whereas the idiomatic suggestions marked on the pdf were directly attended on the word documents, which marked up copy we are attaching too. Please extend all our gratitude to the reviewer, he did a fantastic job at raising conceptual and stylistic concerns.
We feel that the new version is much better and stronger, we hope you find it suitable for publications in CATENA.
Sincerely yours,
Alex Correa-Metrio

Reviewer #1: This paper provides a reconstruction of change in the La Mancha lagoon, on Mexico's east coast, based on pollen analysis. In fact, it relies almost entirely on pollen, with only a passing reference to stratigraphy. As the authors themselves note, the evolution of these coastal systems involves the complex interplay of a number of factors, a challenge that really needs a multi-proxy approach. There are some hints that there might be some other information available, but it is not presented (see below).

We are aware of the importance of a multiproxy approach, and thus, we have decided to add analyses of total both carbon and nitrogen in modern and fossil samples. The inclusion of new data has strengthened our case, but we, however, would like to emphasize that the aim of our research, as clearly stated in the manuscript, is reconstructing vegetation dynamics, a goal that is achieved through pollen analysis. Mangrove forests develop under a precise combination of geomorphologic settings as well as fluvial and marine influences, thus the use of mangrove pollen has been recognized as a reliable and efficient means for reconstructing environmental dynamics in costal environments.

The water level reconstructions in particular seem really quite speculative based on pollen alone and the lack of information about the morphology of the modern lagoon.

We have added a basic bathymetry based on data points that were measured during the collection of modern samples.

There are a number of places where more detail is needed and more justification for some of the reconstructions made. This need for clearer justification feeds through to the Highlights listed. Although the quality of the English was generally good, there were a few places where the meaning was not clear (see annotated pdf uploaded).

The document was changed according to the comments on the pdf.
Study area. More about the morphology of lagoon (is there anything in Reassert, 1999?) would be useful.

We included a basic bathymetry. Also, in Section 2 (Study area), we abounded “La Mancha lagoon belongs to a geomorphic unit known as the Low Cumulative Plain that formed during the Quaternary (Geissert, 1999), allowing deposition of clayey-silt sediments. The lagoon formed at the margin of a volcanic mountain range that interrupts the coastal plain of the Gulf of Mexico (Geissert, 1999; Fig. 1). The current morphology of the area has been mostly shaped by Quaternary dynamics, going from an empty deep basin during times of sea-level low stands to a depositional coastal plain during times of sea-level high stands (Geissert, 1999; Kjerfve, 1994). The mountain ridge that connects La Mancha Hill with the adjacent western mountains divides La Mancha lagoon into two contrasting sub-basins (Fig. 1). Differences in freshwater input, marine influence, energy of the sedimentary environments, and human occupation have created two clearly distinct environments for mangrove forests, which today occupy ~3.55 km² around the lagoon”

What was transect in Fig. 1 based on?

The transect represented an arbitrary line that was drawn aiming to describe the morphology and likely evolution of the area. We have excluded the transect and replaced Fig. 1D.

More detail is needed here about canals (referred to later) and the nature and extent of human impact.
There was an idiomatic misunderstanding, we misused the word “canals” for referring to drainage channels. We have amended the text likewise. Also, we have reworded the last paragraph of Study Area, which now reads “Regional human occupation has been reported since at least ~4,600 BP, and the lagoon has apparently been an important source of resources for human populations (Moreno-Casasola, 2006). This factor has exerted direct pressure on the mangrove forest through deforestation for timber and fuel wood extraction, and more recently in the interruption of surface and subsurface flows in the by infrastructure of the oil industry. These local factors have been especially harsh on the northern sub-basin, where only sparse remnants of the mangrove forest survive today. Thus, whereas vigorous mangrove forests surround the southern sub-basin, the northern sub-basin is occupied by highly disturbed vegetation including sparse mangrove remnants. Regionally, growing human population and the parallel development of infrastructure apply further pressures to coastal ecosystems through pollution, accelerated erosion, increasing sea level, among other elements (Gilman et al., 2008).”

Methods. Were water depths measured when the surface sediment samples were taken?
Yes, we have added a bathymetric map of the lagoon.
Did you measure LOI for these samples to look at spatial variability? Grain size? This information would give an idea of basin bathymetry. Presumably there would be a clear river channel?

We added analyses of TIC, TOC, and TN on surface samples and demonstrated that there are significant differences between the northern and southern sub-basins, providing further, more solid elements for interpreting the fossil record. TC content in modern samples varied between 3.1 and 12.3%, with mean and median of 4.9 and 4.4%, respectively. Although mean values for the northern and southern sub-basins were not statistically differentiable (t = 1.66, p-value = 0.11), the northern sub-basin consistently showed lower values (Fig. 3). Differently, individual fractions of C resulted statistically differentiable, with a higher concentration of TOC in the southern sub-basin (3.56, p-value = 0.002) and a higher concentration of TIC in the northern sub-basin (t = -2.47, p-value = 0.023). TN range between 0.02 and 0.37% with mean and median of 0.23 and 0.24%, respectively (Fig. 3), with southern concentration statistically higher than the northern concentration (t = 5.54, p-value < 0.001). TC resulted statistically associated with TN, TIC, and TOC, although the magnitude of the correlation was substantially higher with the latter (Fig. 3). Whereas TIC resulted moderately associated only with TN, TOC was strongly associated with both TC and TN (Fig. 3).

What evidence do you have to support claim of deep and bucket shape basin?

Where it read “Thus, the lacustrine basin of La Mancha was probably deep and bucket-shaped, impeding the establishment of mangrove forests”, it now reads “Thus, the lacustrine basin of La Mancha was probably deeper than modern, impeding the establishment of mangrove forests”.

Was anything else done on the core other than pollen? LOI? What were the shells, terrestrial? aquatic/ freshwater or marine? Do they tell you anything directly about salinity?

We have added TC and TN analyzed on modern and fossil samples, which greatly strengthened our interpretation. Biological indicators other than pollen provide a wealth of information on different environmental attributes. The goal of our research was reconstructing the evolution of the mangrove forest, which we did through the fossil pollen record, and the modern context provided by the spatial sampling. The shells we found were marine bivalves, and we then clarified in the discussion that their presence through the record evidences a constant marine influence through time. We added to the discussion “Additionally, the constant presence of marine shells through the sedimentary record (Fig. 2) demonstrates a permanent marine influence through the last ~7,800 year.”

Results. Radiocarbon dates - need to add calibrated dates to Table 1.
Calibrated dates were added to Table 1.

Why bulk dates? What was OM content? See query above re LOI.
The material dated was bulk sediment since no other material such as macrofossils or charcoal could be found. We are aware of the possibility of a 14C age offset but were not able to quantify this in the present study. We added TC and TN for the entire record,
making evident that the content of TC of points sampled for radiocarbon analyses varied between 2 and 7%. Although TC content is likely associated with the organic fraction, we did not quantify organic matter content for the fossil samples.

Add actual dates to Fig 2.
Actual dates are in Table 1, thus we considered it was not necessary repeating this information on Fig. 2 as the figure is already crowded.

What was/is human disturbance in N basin? When did it start? (see above).
In the study area it now reads “Regional human occupation has been reported since at least ~4,600 BP, and the lagoon has apparently been an important source of resources for human populations (Moreno-Casasola, 2006). This factor has exerted direct pressure on the mangrove forest through deforestation for timber and fuel wood extraction, and more recently in the interruption of surface and subsurface flows in the by infrastructure of the oil industry. These local factors have been especially harsh on the northern sub-basin, where only sparse remnants of the mangrove forest survive today. Thus, whereas vigorous mangrove forests surround the southern sub-basin, the northern sub-basin is occupied by highly disturbed vegetation including sparse mangrove remnants. Regionally, growing human population and the parallel development of infrastructure apply further pressures to coastal ecosystems through pollution, accelerated erosion, increasing sea level, among other elements (Gilman et al., 2008).”

Was NMDS run on core samples alone to improve discrimination between these?
No; as stated in the text, NMDS was run on both modern and fossil samples as our interest was to investigate the establishment of modern systems in the area.

Discussion. More about the % mangrove taxa in the surface sediment and core samples compared to modern % vegetation cover would be useful.
We don’t have reliable quantitative data on the forest surrounding La Mancha. We discuss mangrove representation in the first two paragraphs of the discussion, where we demonstrate that although mangrove taxa percentages are generally high, there is a clear distinction of percentages between the two sub-basins.

Base of core - sea water flooding - text indicates this recorded at 12-13m below modern surface. How far below modern was sea level 8 - 6 Ka? Is it 6m (see bottom of p.23)? Is there any other evidence to support the idea of sea-water flooding and then a deep water body? (see above).
See level regional curves for the Gulf of Mexico and the Caribbean are shown in Fig. 7 (former Fig. 6), and their difference with sediment depth were used for estimating lagoon water depth. We explained better in the discussion that now reads “Through this time period, the mud-water interface was between 13 and 9 m below the modern surface, which today is at sea level. At the same time, average sea level was between 9 and 5 m below modern. The difference between mud-water interface depth and sea level can only be accounted by lagoon water depth, which was ~ 4 m below sea level (Fig. 6A).”

On Fig. 6 do the depths on the y axis relate to both core depth and the height of sea level relative to modern?
Fig. 7 (former Fig. 6) is meant to compare the depth and age scales of core depth and sea level, and thus they have to necessarily be the same. To avoid confusion, the y-axis label that read “Depth (m)”, now reads “Depth (m below modern surface)”.

6300-5400 Is there any clear evidence to support the claim of complete closure of the lagoon? Period of more silt deposition. Are these sediments more organic? We tried to clarify through the manuscript that the establishment of mangroves (either true mangrove trees or marshland vegetation) requires depositional environments, which an open lagoon would not have provided given the high energy of direct sea influence. We hope to have strengthened our interpretation by adding the curves of TC and TN.

5400-3700 What's the real basis for identifying modern seasonal cycle? This is just an interpretation based on the fact that sea level and sediment interface level apparently became similar. We explained better in the text that now reads “Whereas the rate of sea-level rise continued to decrease, relatively high sedimentation rates were evident in La Mancha sequence up to ~5000 cal BP, when apparently the rates of sediment deposition in the lagoon and those of sea level rise became similar (Fig. 6A). Such equilibrium between sediment deposition and sea-level rise implies the definition of a coastal erosive baseline that allowed the deposition of sand in the coast by the northerly currents during the dry season, creating the sandbar that dams the lagoon. Differently, during the wet season, the fluvial input would have the capacity to erode the sandbar, opening the direct contact between the lagoon and the sea and, thus, resulting in the modern seasonal flood cycle.”

Last 3700 what's the balance between climate, sea level and human disturbance? See note above re what is known about disturbance? I hope this question has been addressed by the multiple changes we made through the document.
Holocene establishment of mangrove forests in the western coast of the Gulf of Mexico

Cordero-Oviedo, C.*, A. Correa-Metrio⁵,⁷, L.E. Urrego⁶, G. Vázquez-Hurtado⁴, M. Blaauw⁵, J. Escobar⁴, J.H. Curtis⁴

*Corresponding author: Alexander Correa-Metrio, acorrea@geologia.unam.mx

Abstract

The successful establishment of mangrove ecosystems depends on an intricate network of interactions among physical and biological factors that are highly dynamic through time. At millennial to centennial time scales, regional climates, sea levels, and local geomorphology...
play critical roles in the establishment of mangroves. Whereas fluvio-marine dynamics
define coastal sedimentary settings, regional precipitation and freshwater input modulate
salinity and seasonal flooding patterns. We analyzed a ~7800-year-old, continuous
sedimentary record from the western coast of the Gulf of Mexico to shed light on regional
biophysical coastal processes and the history of the mangroves that occupy the region
today. We used a systematic sampling of mud-water interface sediments to generate a
modern reference frame for interpreting fossil pollen assemblages. Our results indicate that
the cored location that is currently approximately at sea level, was under sea level
from ~7800 to 4000 calibrated years before present (cal BP). The establishment of dense
mangrove stands took place around 3700 cal BP, when regional sea levels stabilized,
resulting in a substantial increase of organic matter and therefore carbon stored in the
sediments. However, the mangrove ecological succession that started at ~6000 cal BP was
interrupted by a regional drought that extended from ~5400 to 3700 cal BP. From 3700 cal
BP to Present, the lagoon has been characterized by relatively stable both substratum and
sea level, that together have facilitated the establishment of mangrove forests. Overall, our
record demonstrates the complexity of the interactions between local and regional factors in
the development and evolution of both coastal geomorphology and ecosystems.

Keywords: coastal environment; Gulf of Mexico; Holocene; pollen analysis; mangroves;
sea-level changes; pollen analysis

1. Introduction
Mangrove ecosystems are a large component of tropical and sub-tropical coastal landscapes. Occupying intertidal zones (Lugo and Snedaker, 1974), they intermediate regulate the relationship between continental discharge of sediments and water, mainly fluvial, and sea level (Ellison, 1989). The main engineers of these ecosystems are a reduced group of plant species physiologically adapted to brackish-to-saline substrates (Ball, 2002; Vovides et al., 2014). The establishment of mangrove forests creates the conditions for complex food webs that incorporate marine and continental components. The entire mangrove ecosystem is fundamental for providing products and ecological services, which reflect resulting in direct and indirect uses by human populations, mainly fuelwood, fisheries, sediment trapping, and carbon storage (Bouillon et al., 2008; Feller et al., 2017; Méndez et al., 2007; Ward et al., 2016).

Although they represent one of the most important carbon sinks worldwide (Bouillon et al., 2008), together with coral reefs and tropical forests, mangroves are among the most endangered modern ecosystems (Valiela et al., 2001). It has been estimated that through the last two decades of the 20th Century, 35% of the global mangrove area had been lost mostly because of direct and/or indirect anthropogenic causes (FAO, 2007). The main human-related causes of mangroves loss are the conversion to aquaculture and agriculture, urbanization, and pollution (Feller et al., 2017; Gilman et al., 2008; Thorhauga et al., 2017), which in Mexico have translated in a net loss ~240 ha/year through the last decades (Hamilton and Cassey, 2016). The rapid rate at which these threats to mangrove ecosystems are growing highlights the need of-to understanding them in the context of their natural history and the intricate network of factors that interact to facilitate or impede their colonization and establishment.
A wide variety of factors interact to create the specific conditions under which mangrove communities thrive and persist through time (Gilman et al., 2008). Healthy vigorous mangrove forests, and therefore ecosystems, depend on a delicate balance between marine influences and freshwater and sediment input from continental areas acting upon specific geomorphologic settings (Chapman, 1976; Lugo and Snedaker, 1974; Soares, 2009). Whereas marine influences on mangrove ecosystems materialize through tidal regimes and sea level changes that define base level for erosion and accumulation of sediments, regional climates and vegetation cover over the mainland control continental discharge of freshwater and sediments along the coast. Thus, through the Holocene, changes in precipitation, vegetation cover, geomorphologic dynamics, and sea levels have probably led to high environmental variability over the intertidal areas (Geissert, 1999). In the Gulf of Mexico and the Caribbean, regional sea levels have progressively risen since the deglaciation (Milliken and Anderson, 2008; Toscano and Macintyre, 2003), whereas annual precipitation has shown a wide variability associated with extraterrestrial forcings (e.g. solar activity and orbital cycles, Haug et al. 2001, Hodell et al. 2001) and higher frequency processes associated with complex internal systems (e.g. El Niño-Southern Oscillation, Moy et al. 2002). The balance between fluvial loads and sea-level rise modulates local geomorphologic and sedimentary processes, defining the formation of either depositional or erosional environments the balance of which is in turn critical for the establishment and persistence of mangroves (Parkinson et al., 1994). Indeed, modern net losses of mangrove cover have been widely associated with sea-level rises along unprotected coasts (Suárez et al., 2015). Thus, the definition of the context that led to the development of modern mangrove forests would provide important clues for identifying the limits of environmental pressure that these ecosystems can endure.
Sedimentary deposits that accumulate in coastal lagoons provide a natural record of the evolution of coastal landscapes through time. Understanding the natural development of mangrove ecosystems and the main factors involved in the process would give insights into the threat level that coastal zones face given modern environmental change (Lopez-Portillo et al., 2011; Thom, 1967). Here we use the pollen record of a 13-m-long ~8,000-year-old sedimentary sequence retrieved from La Mancha Lagoon, State of Veracruz, Mexico, to reconstruct the history of the local vegetation through the Holocene. By analyzing the history of vegetation assemblages as reflected by fossil pollen spectra, we aim to answer the following questions: i) what has been the role of sea-level rise and precipitation variability through the Holocene in the establishment and persistence of mangrove forests in the west coastline of the Gulf of Mexico? ii) when did the barrier-lagoon systems of the region consolidate in the context of Holocene environmental variability?

2. Study Area

La Mancha lagoon is located in the State of Veracruz, Mexico, on the western coasts of the Gulf of Mexico (19.579 N°, 96.387 W°, Fig. 1). With a north-to-south length of 3 km, the lagoon has an area of ~1.35 km² distributed in two sub-basins separated by a strait located around near the center of the water body (Fig. 1). Whereas the southern sub-basin is exposed to permanent freshwater input from the Caño Grande River that drains water from a basin of almost 2,500 km², the northern sub-basin more exposed to tidal influence through an ephemeral mouth that communicates seasonally with the sea seasonally (Fig. 1) (Lankford, 1977; Moreno-Casasola, 2006). During the dry season, a sand bar accumulates closing the estuarine mouth and causing a damming of continental
freshwater. With the onset of the rainy season, freshwater starts to accumulate, eventually breaking the sandbar, opening the mouth, and creating a direct connection with the sea (Moreno-Casasola, 2006). Thus, lagoon dynamics are intimately linked to regional climate that is warm (temperatures from 22 to 26 °C), with an annual mean precipitation of 1222 mm, with 85% of the annual value falling between June and October (Fig. 1) (Servicio Meteorologico Nacional, 2018). The dry season is especially pronounced between December and April with mean monthly precipitations below 20 mm, whereas while November and May are characterized by a mean precipitation around 50 mm. By the end of the summer and early autumn, the area is exposed to tropical cyclones, although their incidence is relatively low compared with other areas of the Gulf of Mexico (Moreno-Casasola, 2006).

La Mancha lagoon belongs to a geomorphic unit known as the Low Cumulative Plain that formed during the Quaternary (Geissert Kientz, 1999), allowing deposition of clayey-silt sediments. The lagoon formed at the margin of a volcanic mountain range that interrupts the coastal plain of the Gulf of Mexico (Geissert Kientz, 1999; Fig. 1). The current morphology of the area has been mostly shaped by Quaternary dynamics, going from an empty deep basin during times of sea-level low stands to a depositional coastal plain during times of sea-level high stands (Geissert Kientz, 1999; Kjerfve, 1994). The mountain ridge that connects La Mancha Hill with the adjacent western mountains divides La Mancha lagoon into two contrasting sub-basins (Fig. 1). The lagoon formed at the margin of a volcanic mountain range that interrupts the coastal plain of the Gulf of Mexico (Geissert, 1999) (Fig. 1). Differences in freshwater input, marine influence, and energy of the sedimentary environments have created two clearly distinct environments for mangrove forests, which today occupy ~3.55 km² around the lagoon.
Regional tides are mixed, mostly diurnal and of low amplitude (highest and lowest tidal levels at 22 cm and -30 cm from average sea level, respectively), preventing the formation of tidal currents. This feature together with the permanent input of fresh water and the sheltering of the lagoon from the energy of the waves by La Mancha Hill (Fig. 1) have probably played a critical role in maintaining the morphology of the lagoon, avoiding the formation of tidal mudflats, marshes, and/or estuaries (Geissert, Kientz, 1999). Through the last decades, progressive loss of depth of the lagoon because of sediment accumulation suggests that sediment input surpasses local erosion (Matus-Moreno-Casasola et al., 1994, 2006), although this might not have been the case through the entire history of the area.

Figure 1. Study area. A. Location of La Mancha lagoon in the continental context. B. Locations sampled for modern and fossil sediments in the local context of La Mancha.
coastal lagoon; elevation contours are shown in increments of 20 m asl (solid black lines), whereas a basic bathymetry based on field observations is shown as blue contours. C.

Monthly precipitation (blue bars), evapotranspiration (gray bars), and monthly mean temperature (black line with dots) at La Mancha Meteorological Station (Servicio Meteorologico Nacional, 2018) D. Topographic profile through representation of La Mancha coastal lagoon.

Pollen assemblages contained in sediments reflect parental vegetation and are therefore useful for reconstructing environmental dynamics through time (e.g. Carrillo-Bastos et al., 2010; Urrego et al., 2009; Urrego et al., 2018). Given the regional geomorphology, the large size of the catchment basin of Caño Grande River, and the proximity to high mountain ranges, the pollen spectra of sediments from La Mancha lagoon might contain regional and local taxa (Moreno-Casasola, 2006; Travieso-Bello, 2000). Whereas the former are transported by water and wind currents, the latter are produced by in situ vegetation (Hooghiemstra et al., 2006). Regional elements come mostly from montane forests that dominate the regional highlands (Rzedowski, 2006; Garcia Franco et al., 2008; Williams-Linera, 2002) and are characterized by wind-pollinated anemophilous taxa with long-distance pollen dispersal (e.g. Alnus, Myrica, Ulmaceae, Quercus, and Pinus), which in turn result in being overrepresented in the pollen spectra. From within these allochthonous elements, Pinus is worth noticing because of the opportunist nature of most of the parental species (Richardson, 1998), which results in a high representation of this taxon in pollen spectra when environmental conditions are suboptimal for other arboreal elements (e.g. during droughts, Correa-Metrio et al., 2013). Local elements of the pollen spectra are in turn associated with two main vegetation types, namely lowland and
mangrove forests. The hills that surround the lagoon reach heights up to 300 m asl and are mostly occupied by species of *Desmodium, Inga, Machaerium, Psychotria, Protium, Bursera, Moraceae-Urticaceae* and *Acacia*. The salt marshes, coastal dunes, and beaches that characterize local cumulative flood plains are mainly dominated by species of Cyperaceae, Amaranthaceae, *Typha, Asteraceae, Chenopodiaceae, Mimosa* and *Croton*. These vegetation types can be associated with the distal part of a marine transgression or be related to the first stage of a progradational pattern indicative of a typical ecological succession on intertidal habitats (González and Dupont, 2009). The edges of the lagoon are occupied by species typical of mangrove forests, *Rhizophora mangle, Avicennia germinans, Conocarpus erectus* and *Laguncularia racemosa* (Travieso-Bello, 2000 and Moreno-Casasola, 2006). The interplay of these species is modulated by their differential adaptation to the changing environmental conditions along a salinity gradient, which in turn defines the structure and composition of the forest (Lugo and Snedaker, 1974; Travieso-Bello, 2000; Urrego et al., 2009). Thus, these forests are highly sensitive to changes in sea-level, coastal progradation and/or erosion at different time scales (Ellison, 2008). Mangrove forest species are adapted to specific environmental conditions, with *R. mangle* tolerating high inundation levels, strong wave energy and shorter distances to the sea, *A. germinans* thriving in more saline environments, hurricane-disturbed or experiencing severe droughts, *L. racemosa* being restricted to average minimum temperatures of more than over 15.5 ºC and successional processes triggered by anthropogenic disturbance, and *C. erectus* being tolerant to higher sediment pH typical of supra-tidal waters close to well drained forests (González et al., 2010; Hogarth, 2007; Urrego et al., 2009; Urrego et al., 2010).
Regional human occupation has been reported since at least ~4,600 BP, and the lagoon has apparently been an important source of resources for human populations (Moreno-Casasola, 2006). This factor has exerted direct pressure on the mangrove forest through deforestation for timber and fuel wood extraction, and more recently in the interruption of surface and subsurface flows in the by infrastructure of the oil industry. These local factors have been especially harsh on the northern sub-basin, where only sparse remnants of the mangrove forest survive today. Thus, whereas vigorous mangrove forests surround the southern sub-basin, the northern sub-basin is occupied by highly disturbed vegetation including sparse mangrove remnants. Regionally, growing human population and the parallel development of infrastructure apply further pressures to coastal ecosystems through pollution, accelerated erosion, increasing sea level, among other elements (Gilman et al., 2008).

3. Methods

3.1 Field work and laboratory analysis

In autumn 2015, a 13-meter-long core was recovered from the southern part of La Mancha coastal lagoon (core MAN15V, Fig. 1), under an A. germinans stand, using a modified Livingston piston corer (Colinvaux et al., 1999). The core was longitudinally sectioned, stratigraphically described, and stored at ~4°C to preserve the sedimentary evidence. The chronological control of the sedimentary sequence was based on eight accelerator-mass-spectrometer (AMS) radiocarbon dates of bulk sediment, homogeneously distributed along the core, given that no other material such as macrofossils or charcoal could be found. Radiocarbon dates were calibrated to years before present (hereafter cal BP) using the
IntCal13 curve (Reimer et al., 2013), and calibrated dates were used to build a Bayesian age-depth model using Bacon (Blaauw and Christen, 2011). The core was subsampled every ~ 12.5 cm for pollen analysis, aiming at a temporal resolution of ~75 years between contiguous samples. A total of 104 samples were processed for pollen analysis using standard pollen extraction techniques (Faegri and Iversen, 1989). Samples were analyzed under transmitted-light microscope at magnifications of x400 and x1000, aiming to reach a minimum pollen sum of 300 pollen grains. Grains of the family Cyperaceae and pteridophytes spores were excluded from the pollen sum, although they were counted and included in the interpretation. Pollen counts were transformed into percentages of the pollen sum and a stratigraphic pollen diagram was constructed.

Pollen taxa were classified into five groups according to their modern ecological affinities (ecological affinities after Lugo and Snedaker 1974, Ranwell 1972, Travieso-Bello 2000): i) mangroves represented by *Rhizophora mangle*, *Avicennia germinans*, and *Conocarpus erectus*; although *Laguncularia racemosa* is an important component of the local mangrove forests, it was not found in the pollen spectra; ii) salt marsh vegetation represented by Cyperaceae, Amaranthaceae, *Crotalaria, Typha, Asteraceae, Chenopodiaceae, Mimosa*,; iii) lowland forest represented by *Inga, Acacia, Machaerium, Protium, Bursera*, and *Moraceae-Urticaceae*; iv) montane regional forests represented by *Alnus, Myrica, Ulmaceae, Quercus, and Miconia*; and v) disturbance taxa represented by *Pinus* and *Poaceae*; these latter taxa were classified as representatives of disturbance because in Mexico they are distributed along environments unfavorable to vegetation development, usually associated with either natural or anthropogenic causes (Franco-Gaviria et al., 2018; Rzedowski, 2006). High abundances of *Pinus* pollen have been reported for areas submitted
subjected to dry conditions and/or regimes of high disturbance (Correa-Metrio et al., 2013; Metcalfe et al., 2000), mostly associated with early succession colonizers (Ramirez-Marcial et al., 2001). Meanwhile, although Poaceae pollen is characteristic of successional processes of supratidal plains (Bush, 2002; Urrego et al., 2013), it is also found in pollen assemblages from all Mexican vegetation types, usually associated with disturbance (Correa-Metrio et al., 2013; Franco-Gaviria et al., 2018).

The fossil pollen record was complemented by sampling 30 locations homogeneously for modern mud-water interface (15 samples from each sub-basin) distributed across the water body, using an Ekman dredge. This sampling was meant to cover the variability of the modern pollen spectra (Fig.1), especially the differences between depositional environments of the two sub-basins. Samples were treated and analyzed using the same techniques as the fossil samples. Total both C (%TC) and N (%TN) were measured in fossil samples every 5 cm along the core and in modern samples. For this purpose, samples were freeze dried and crushed, and subsequently analyzed using a Carlo Erba NA1500 CNS elemental analyzer. Additionally, coulometric titration was used to determine carbonate carbon (%TIC) in modern samples, allowing the estimation of organic carbon (%TOC). The discrimination of TC into TIC and TOC in modern samples was used to infer the relationship between these two carbon sources in the system of La Mancha lagoon.

3.2 Statistical Analysis
A non-metric multidimensional scaling ordination (NMDS) was applied on pollen relative abundances, including both modern and fossil samples. The ordination was performed to summarize the temporal variability of the pollen spectra, and to evaluate vegetation temporal dynamics in the context of the modern lagoon. This technique ordinates samples on a \(k \)-dimensional space defined \(a \ priori \) by the analyst, aiming to maintain the original topologic relationships among samples (Legendre and Legendre, 1998, 2012). Although two-dimensional ordinations are readily used, we selected three dimensions to produce a relaxed ordination where the affinity among pollen spectra can manifest more freely. We used the Bray-Curtis metric to estimate dissimilarity among samples, a metric that relies more on compositional data than \textit{in-op} the abundance of individual taxa and has been proven monotonic to ecological distance (Faith et al., 1987).

Modern samples were classified into southern and northern sub-basins as representative of dense and sparse mangrove forests, respectively. Whereas the northern sub-basin has direct contact with the sea through the ephemeral mouth, which creates a more energetic environment, and has been submitted to important human disturbances and modifications resulting in sparse mangrove cover, the southern sub-basin is more influenced by the entrance of the river and is occupied by a well-developed dense mangrove stand. Thus, pollen spectra from these two sub-basins should reflect contrasting mangrove-forest cover conditions, and their relative oceanic and fluvial influences. The statistical significance of the difference between NMDS sample scores of the two sub-basins were tested using a two-sample t-test (Zar, 1999). TIC, TOC, TC, and TN content in modern samples were compared using Pearson correlation coefficient, whereas comparisons of concentrations between the northern and southern sub-basins were also compared using two-sample t-test (Zar, 1999).
4. Results

4.1 Stratigraphy and chronology of the sedimentary record

Sediments from the La Mancha coastal lagoon were mostly brownish, shelly clays with low content of organic material, and some intermissions of brownish silt with shell fragments and organic material (Fig. 2A). From the base of the core up to 1200 cm below lagoon floor (blf hereafter), the sediments were brown shellish-shelly clay, while from 1200 to 663 cm blf the color turned into a light brown matrix (clay and silt) with shell fragments and carbonates. From 663 to 615 cm blf the clayish-clayey sediments were brown with light brown bands. From 615 to 372 cm blf, the sediment showed brownish tones, and were mostly composed of clay with a thin layer of silt, shellish-shelly and little organic material. The uppermost 327 cm were dark to very light brown, with a uniform shellish-shelly clay composition (Fig 2A).

All radiocarbon dates resulted in stratigraphic order (Table 1). Although bulk sediment dates could lead to an 14C age offset, we were not able to quantify ot because of the lack of other quantifiable materials. Nevertheless, the high correspondence between TC and TN along the sedimentary record (Fig. 2) suggests that inorganic carbon represents a relatively low proportion of the sedimentary material. According to the age-depth model, the core has a basal age of ~7840 cal BP, resulting in an average sedimentation rate of 1.96 mm/yr (Fig 2B). From the bottom of the sequence up to 5500 cal BP, sedimentation rates were high, with maximum values around 5500 cal BP (4.10 mm/yr). From c. 5500 cal BP to present, sedimentation rates showed a decreasing trend, reaching 0.89 mm/yr in the uppermost part of the core (Fig 2).
Table 1. Radiocarbon dates of core MAN15V from La Mancha coastal lagoon. Depths in cm below lagoon floor (blf). **Ages calibrated after the IntCal13 curve (Reimer et al., 2013).**

<table>
<thead>
<tr>
<th>Laboratory code</th>
<th>Depth (cm blf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UBA-34340</td>
<td>109</td>
</tr>
<tr>
<td>Beta-440367</td>
<td>175</td>
</tr>
<tr>
<td>UBA-34341</td>
<td>282</td>
</tr>
<tr>
<td>Beta-440368</td>
<td>373</td>
</tr>
<tr>
<td>UBA-34342</td>
<td>564</td>
</tr>
<tr>
<td>Beta-437078</td>
<td>649</td>
</tr>
<tr>
<td>UBA-34343</td>
<td>979</td>
</tr>
<tr>
<td>Beta-437079</td>
<td>1249</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14C Age</th>
<th>Error</th>
<th>Calibrated age (95% range; cal BP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1290</td>
<td>24</td>
<td>1181-1283</td>
</tr>
<tr>
<td>1880</td>
<td>30</td>
<td>1730-1883</td>
</tr>
<tr>
<td>3447</td>
<td>26</td>
<td>3637-3826</td>
</tr>
<tr>
<td>3970</td>
<td>30</td>
<td>4300-4523</td>
</tr>
<tr>
<td>4732</td>
<td>41</td>
<td>5326-5584</td>
</tr>
<tr>
<td>4770</td>
<td>30</td>
<td>5334-5588</td>
</tr>
<tr>
<td>5624</td>
<td>41</td>
<td>6312-6482</td>
</tr>
<tr>
<td>6700</td>
<td>30</td>
<td>7508-7616</td>
</tr>
</tbody>
</table>
Figure 2. Core MAN15V from La Mancha coastal lagoon. A. Stratigraphy of the sedimentary sequence—texture (left) and color (right), and organic and shell content. B. Age-depth model; calibrated ages (blue silhouettes), 95% confidence intervals in grey (darker colors indicate higher probability), and sedimentation rates (mm/yr). C and D. Percentage of total nitrogen and total carbon content (TN and TC, respectively).

4.2 Modern pollen spectra and C and N in modern samples

Modern samples were characterized by 49 taxa, 18 and 31 identified at family and genus levels, respectively. Pollen sums varied between 300 and 387, whereas pollen counts including Cyperaceae and pterodophytes were between 322 and 472 palynomorphs. *Rhizophora*, Cyperaceae, Moraceae-Urticaceae, *Quercus*, *Pinus*, and Poaceae dominated these samples (up to 45%), whereas taxa such as *Typha*, *Mimosa*, *Desmodium*, *Inga*, and Ulmaceae were poorly represented (less than 5%). One sample from the northern sub-basin resulted barren of pollen (sample 26, Fig. 1).

Avicennia and *Rhizophora* showed high percentages (up to 5 and 45%, respectively) towards the southern sub-basin of the lagoon (Figs. 1 and 3). Contrastingly, other taxa such as *Quercus*, *Myrica*, and *Pinus* decreased southwards. Compositional differences between the northern and southern sub-basins of the lagoon were also evidenced by taxa that occurred only at the latter, such as *Desmodium*, *Inga*, and *Protium* (Figs. 1 and 3). Samples from the middle area of the lagoon (samples 12,13,14,17 and 18) (Figs. 1 and 3) contained the highest percentages of Cyperaceae and Moraceae-Urticaceae (25% and 30%, respectively), and minima of *Typha*, Asteraceae, and *Psychotria*. In the northern sub-basin...
(Figs. 1 and 3), *Quercus*, *Pinus*, and Poaceae dominated the pollen spectra with abundances above 10%.

Figure 3. Pollen diagram of selected taxa from mud-water interface samples from La Mancha coastal lagoon. Ecological affinities after Lugo and Snedaker (1974), Ramwell (1972), and Travieso-Bello (2000). Samples are ordered from South to North with samples from the southern (northern) sub-basin highlighted in dark (light) grey.

TC content in modern samples varied between 3.1 and 12.3%, with mean and median of 4.9 and 4.4%, respectively. Although mean values for the northern and southern sub-basins were not statistically differentiable (t = 1.66, p-value = 0.11), the northern sub-basin consistently showed lower values (Fig. 3). Differently, individual fractions of C resulted...
statistically differentiable, with a higher concentration of TOC in the southern sub-basin (\(t = 3.56, \text{p-value} = 0.002\)) and a higher concentration of TIC in the northern sub-basin (\(t = -2.47, \text{p-value} = 0.023\)). TN range between 0.02 and 0.37% with mean and median of 0.23 and 0.24%, respectively (Fig. 3), with higher mean concentration in the southern sub-basin (\(t = 5.54, \text{p-value} < 0.001\)). TC resulted statistically associated with TN, TIC, and TOC, although the magnitude of the correlation was substantially higher with the latter (Fig. 3). Whereas TIC resulted moderately associated only with TN, TOC was strongly associated with both TC and TN (Fig. 3).

Figure 4. Content (%) of carbon and nitrogen in the modern samples of La Mancha coastal lagoon. Total C content (TC) discriminated into inorganic and organic fractions (TIC and TOC), and total N content (TN). Comparisons among sedimentary attributes are shown in the right side panels (biplots and correlation coefficients with their significance).
4.3 Fossil pollen: Fossil record

Fossil pollen types included 55 taxa classified into 24 families and 31 genera. Pollen sums varied between 300 and 349 grains per sample (average 306 grains), whereas pollen counts that included Cyperaceae and pterodophytes reached between 303 and 359 palynomorphs per sample (average 317). The highest abundances were shown by *Rhizophora*, Moraceae-Urticaceae, *Quercus* and *Pinus*, while the lowest abundances were shown by *Conocarpus*, *Inga*, *Bursera* and *Miconia*. From within the 55 identified taxa, only *Rhizophora*, *Cyperaceae*, *Typha*, Asteraceae, Chenopodiaceae, Moraceae-Urticaceae, *Alnus*, *Quercus*, *Pinus*, and Poaceae persisted throughout the entire record. The record was discretized into four main pollen zones (Fig. 4) to facilitate the description of the sedimentary sequence. Pollen zones were defined based on an inspection of the distribution of pollen percentages though time, aiming to identify time periods characterized by relatively stable pollen assemblages.

Pollen Zone I (from 1300 to 907 cm blf, c. 7840-6300 cal BP): The sediment showed TC concentrations between 1.84 and 4.78%, with mean of 2.54%, and TN concentrations between 0.06 and 0.20%, with mean 0.10% (Fig. 2). This zone showed high percentages of *Rhizophora* (up to 20%), Moraceae-Urticaceae (up to 50%), *Quercus* (up to 20%), *Pinus* (up to 50%), and Poaceae (up to 20%). Low percentages (less than 5%) were shown by *Avicennia*, Amaranthaceae, *Croton*, *Typha*, Asteraceae, Chenopodiaceae, *Mimosa*, *Inga*, *Acacia*, *Machaerium*, *Protium*, *Bursera*, Ulmaceae and *Miconia* (Fig 4).
Pollen Zone II (from 907 to 569 cm blf, c. 6300 - 5400 cal BP): The sediment showed highly variable concentrations of both TC and TN (Fig. 2). TC varied between 2.28 and 9.67% with mean of 4.6%, whereas TN varied between 0.09 and 0.43 with a mean of 0.19%. This zone was dominated by Cyperaceae (20%), *Croton* (10%), *Typha* (20%), Chenopodiaceae (15%), Moraceae-Urticaceae (50%), *Alnus* (~6%), Ulmaceae (10%), *Quercus* (20%), *Pinus* (50%) and Poaceae (20%). Percentages below 5% were shown by *Avicennia, Conocarpus, Amaranthaceae, Asteraceae, Mimosa, Inga, Machaerium, Protium, Bursera and Miconia* with less than 5%. The upper part of the zone was characterized by relatively low percentages of *Pinus* (~18%) and a substantial increase of Amaranthaceae, *Croton, Typha, Asteraceae, Chenopodiaceae, and Cyperaceae* (up to ~20%) (Fig. 4).

Pollen Zone III (from 569 to 280 cm blf, c. 5400 - 3700 cal BP): With lower variability, both TC and TN decreased substantially (Fig. 2). TC varied from 1.14 and 6.31% with mean of 2.45, and TN varied between 0.07 and 0.25% with mean of 0.12%. From 5400 BP *Rhizophora* abundances began to increase gradually, and *Avicennia* showed was less than 5%. *Pinus* reached the highest abundances throughout the record (up to 60%), while *Amaranthaceae, Croton, Mimosa, Inga, Machaerium, Bursera, Alnus, Ulmaceae, Moraceae-Urticaceae, and Miconia* showed their lowest percentages. Lastly, *Typha, Asteraceae, and Chenopodiaceae* showed abundances around 10% (Fig 4).

Pollen Zone IV (from 280 to 0 cm blf, c. 3700 cal BP - Present): TC and TN progressively reached high variable concentrations (Fig. 2). TC varied between 0.02 and 7.77% with mean of 4.45%, and TN varied between 0.01 and 0.36% with mean of 0.20%. Abundances of *Rhizophora and Avicennia* reached their highest values (up to 60% and 10%...
respectively), and displayed an increasing trend towards the present. Amaranthaceae, Croton, Typha, Chenopodiaceae, Myrica, Ulmaceae, Quercus, and Pinus abundances decrease up to the present. Meanwhile Acacia, Inga, Machaerium, and Protium presented their highest abundances (up to 10%) (Fig. 4).

Figure 45. Fossil pollen diagram of selected taxa of core MAN15V from La Mancha coastal lagoon. (ecological affinities after Lugo and Snedaker 1974, Ramwell 1972, and Travieso-Bello 2000, and Castillo-Campos 2006).

4.4 Statistical analyses

The three-dimensional ordination of the modern and fossil pollen samples showed a stress of 0.144. Negative scores along Axis 1 characterized modern samples, whereas fossil samples were clearly divided into positive (negative) scores for samples older (younger) than ~5400 cal BP (Fig. 5 and 6.B). Along Axis 2, both modern and fossil samples were mostly located between −0.31 and 0.2, although fossil samples showed positive and
negative excursions (Fig. 5). NMDS Axis 3 was characterized by widespread scores for fossil samples and almost exclusively negative scores for modern samples (Appendix 1).

The t-test for comparing NMDS scores of modern samples from the northern and southern sub-basins yielded significant differences in terms of Axis 1 and 2, but non-significant for Axis 3 (Table 2). Given the relatively flat behavior of Axis 2 and the lack of significance of Axis 3 (Appendix 1), only the first axis of the ordination will be considered for interpretations hereafter.

Table 2. Comparison of NMDS sample scores in the three axes for modern samples from the northern and southern sub-basins, i.e scores from dense (D) vs. sparse (S) mangrove areas. For the comparison of scores along each axis, t scores, degrees of freedom corrected for variance differences between samples (d.f.), and p-value are shown.

<table>
<thead>
<tr>
<th>Comparison</th>
<th>t</th>
<th>d.f.</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axis 1_D – Axis 1_S</td>
<td>-3.5184</td>
<td>18</td>
<td>0.0026</td>
</tr>
<tr>
<td>Axis 2_D – Axis 2_S</td>
<td>-2.7661</td>
<td>26</td>
<td>0.0103</td>
</tr>
<tr>
<td>Axis 3_D – Axis 3_S</td>
<td>1.3831</td>
<td>24</td>
<td>0.1796</td>
</tr>
</tbody>
</table>
5. Discussion

5.1 Modern pollen spectra of sediments of La Mancha coastal lagoon

Palynological composition of modern samples generally reflected the patterns of modern vegetation, incorporating vegetation elements from the surrounding mangroves and salt marshes (local vegetation), and nearby lowlands and highland forest (regional vegetation). Although the mangroves of La Mancha are dominated by *A. germinans* over *R. mangle* (Moreno-Casasola, 2006), modern pollen spectra were dominated by the latter (Fig. 3).
Given its pollination mechanism, *R. mangle* produces high amounts of pollen, dominating most of pollen spectra from mangrove forests. Contrastingly, *A. germinans* is an insect-pollinated species that produces low amounts of pollen (Hogarth, 2007), resulting in under-representation of the parental taxon in the pollen spectra where percentages as low as 5% implying an important share in the standing vegetation. However, the mean representation of *R. mangle* in modern samples from the densely mangrove-forested southern sub-basin (~25%) are low as compared to pollen spectra from stands dominated by this species which have been reported as high as 65% (e.g. Behling et al., 2001; Urrego et al., 2009). Although *C. erecta* and *L. racemosa* are components of the standing forest of La Mancha, they are not represented in the modern pollen spectra probably because of their low production, and also because of their distal position with respect to the sampled water body (Tovilla and De la Lanza, 1999; Moreno-Casasola, 2006).

At the southern sub-basin of La Mancha, the high percentages of *Rhizophora* reflect the relatively good conservation stage of the mangroves (Moreno-Casasola, 2006), with the exclusive presence of taxa such as *Desmodium*, *Inga* and *Protium* indicating a well preservation of lowland vegetation as well (Franco-Gaviria et al., 2018). Pollen spectra from the northern sub-basin contained lower percentages of *Rhizophora*, and a substantial representation of regional pollen, possibly coming from the highlands of the catchment basin. Through the last decades, the deleterious effects of human activities on mangrove cover have been more intense around the northern sub-basin of La Mancha lagoon (Lopez-Portillo et al., 2011; Moreno-Casasola, 2006), reflecting on pollen assemblages where the regional and disturbance elements are better represented (mainly Moraceae-Urticaceae, *Myrica*, *Pinus*, Poaceae, and *Quercus*) (Correa-Metrio et al., 2011;
Franco-Gaviria et al., 2018). Although *Rhizophora*, Moraceae-Urticaceae, *Pinus*, and *Quercus* do not dominate the shore vegetation of the most disturbed northern areas, they are represented by pollen percentages above 10% each (Fig. 3), reflecting the sparse nature of mangrove forests over this area. This finding reflects the widely reported overrepresentation of these taxa in pollen spectra, derived from their high production of pollen and their long-distance pollen dispersal capacity, as reported for species of anemophyllous pollination (e.g. Correa-Metrio et al., 2013; Ellison, 2008; Hooghiemstra et al., 2006; Marchant et al., 2002).

Modern samples resulted were clustered in the NMDS (Fig. 5), implying more consistency among the modern pollen spectra than between modern and fossil samples. This finding demonstrates that the modern heterogeneity of the lagoon does not represent the ecological and environmental variability of the area over the last ~7800 years. Statistically significant differences between the NMDS Axis 1 scores of pollen assemblages from the two sub-basins demonstrate that density of mangrove forest cover can be identified through their pollen spectra. Overall, these findings imply that i) pollen assemblages of La Mancha lagoon are systematically associated with physical and biological attributes of the region at a broad scale (regional vegetation), and ii) pollen spectra are highly sensitive to the modern environmental variability that expresses throughout La Mancha lagoon (local vegetation). Thus, as reported for other areas (e.g. Franco-Gaviria et al., 2018; Urrego et al., 2009; Urrego et al., 2010), modern pollen assemblages of our studied lagoon provide a robust framework for interpreting our fossil pollen sequence. Higher concentrations of TOC and TN in the southern sub-basin were probably a result of differences in surrounding vegetation and energy of the depositional environment.
More vigorous vegetation in the southern sub-basin would produce higher amounts of organic matter rich in TOC and TN, whereas the lower energy of the depositional environment would prevent resuspension and, therefore, further oxidation of the sediments (Meyers, 1997). Differently, TIC resulted higher in the northern sub-basin, probably reflecting both higher contribution of marine particulate suspended matter and more oxidation of organic components (Bouillon et al., 2003). Overall, C and N analyses are consistent with higher organic matter storage in the sediments of the lagoon where mangrove forests are well preserved. The relationships that were found between the different components of C and N demonstrate that in the modern setting of La Mancha, TOC is the main component of TC. Although these relationships cannot be extrapolated to the fossil record, they demonstrate that TN is a good proxy for organic matter, and therefore it is used to offer further support to our pollen-based reconstruction of past environmental dynamics.

5.2 Vegetation history of La Mancha Lagoon

The pollen record of La Mancha lagoon reflects the complexities associated with the multiple factors that have intervened in the development toward the modern biotic and abiotic systems. Whereas highly variable abundances of regional vegetation suggest variability in freshwater input by precipitation and tributaries to the lagoon system, pollen from mangroves together with herbaceous vegetation offer insights into the successional patterns and development of the local vegetation (Urrego et al., 2013; Urrego et al., 2018). Additionally, the constant presence of marine shells through the sedimentary record (Fig. 2) demonstrates a permanent marine influence through the last ~7,800 year. Together, these
indicators illustrate the intimate interaction between sea levels and regional fresh water inputs (precipitation, sediments) that ultimately regulates the colonization, establishment, and development of mangrove ecosystems in the area. According to our pollen and geochemical data, the history of the vegetation that surrounds the lagoon and therefore the regional environmental history could be summarized in four main stages that will be discussed below.

From c.7800 to 6300 cal BP: sea-water flooding of valleys

Through this time period, the mud-water interface was between 13 and 9 m below the modern surface, which today is at sea level. At the same time, average sea level was between 9 and 5 m below modern. The difference between mud-water interface depth and sea level can only be accounted by lagoon water depth, which The comparison of our age-depth model with the reported increase of regional sea levels suggests that throughout this time period the mud-water interface was around 6–4 m below sea level (Fig. 6A). La Mancha Hill, an andesitic rock of Neogene origin (García-Gil Moreno-Casasola, 2006; Geissert Kientz, 1999) (Fig. 1), probably acted as a barrier that protected the depositional environment from the erosive energy of the waves and winds. Through this period, even though sedimentation rates at La Mancha (~3.04 mm/year) were lower than the inferred rate of sea-level increase, they are among the highest through the record. High rates of both regional sea-level rise and sedimentation at La Mancha are likely a result of the regional geologic instability that characterized the conformation processes of the modern Gulf of Mexico in its final stages, up to 5000 cal BP (Davis, 2011; Pirazzoli, 1990). As sea level increased through the deglaciation and the early Holocene, sea-water flooded coastal plains and valleys at a speed that surpassed the accumulation of continental sediments. Thus, the
lacustrine basin of La Mancha was probably deeper than modern and bucket-shaped, impeding the establishment of mangrove forests (Fig. 6C). A peak of *Rhizophora* from the bottom of the record to ~7500 cal BP (Fig. 4) probably shows the colonization of mangroves during the initial stages of the lagoon and the sea-water flooding, which were subsequently displaced by the formation of a deep-water body.

In México, *Pinus* populations thrive under early post-disturbance successional stages, or under conditions that are not optimal for other taxa (Metcalfe et al., 2000; Ramirez-Marcial et al., 2001). Thus, the persistence of *Pinus* in high percentages from the bottom of the record to ~6500 cal BP (Fig. 5) indicates that regional conditions were likely dry, an interpretation that is further supported by the lowest concentrations of TN (Fig. 7) and therefore of organic matter. These dry conditions probably played a central role at maintaining sedimentation rates that did not offset sea-level rise, impeding the establishment of mangrove forests, as demonstrated by the NMDS Axis 1 scores that were outside the envelope defined by modern samples (Fig. 6B7C).
Figure 67. Environmental history of La Mancha Lagoon through the last 7,800 years. A. Age-depth model of core MAN15V from La Mancha Lagoon (dashed lines show 95% confidence interval), compared with sea level rise curves for the Caribbean (red line, Toscano and Macintyre, 2003) and the northern Gulf of Mexico (black solid line, Milliken and Anderson, 2008). B. Sedimentary total nitrogen content (%); boxplots illustrate total nitrogen in modern samples form the northern (up) and southern (down) sub-basins of the lagoon (whiskers show minimum and maximum scores). C. NMDS Axis 1 scores through time; boxplots illustrate scores of modern samples form the northern (up) and southern (down) sub-basins of the lagoon (whiskers show minimum and maximum scores); scores of the modern environmental envelope represented by modern samples are highlighted in grey; scores of the interquartile range of samples from the well preserved southern sub-
basin are in dark grey. Schematic development of La Mancha Lagoon, illustrated at ~7,000, 6000, 4,500 cal BP, and Modern.

From c. 6300 to 5400 cal BP: development of lagoon shores

Whereas the rate of sea-level rise started to decline through this period, sedimentation rates at La Mancha remained high (3.86 mm/yr, Fig. 6). This phenomenon could be explained by two critical factors: i) following the reported deceleration of sea-level rise at ~7000 cal BP (Toscano and Macintyre, 2003), sand bars started accumulating at the mouth of coastal lagoons (Davis, 2011), providing a more stable plain for sediment accumulation at La Mancha; and ii) a substantial decrease in the percentages of Pinus, and an increase of montane forest taxa (e.g. Alnus, Quercus, and Ulmaceae) indicate wetter conditions that would be in turn associated with higher river sediment discharge. These regional wetter conditions could be related to the final stages of the Holocene Thermal Maximum, which was in general characterized by higher than present precipitation and temperature in the Northern Hemisphere (Renssen et al., 2009).

The lagoon became shallower, and the development of muddy shores is evidenced by high percentages of salt marsh vegetation (Fig. 5), and high accumulation of organic matter revealed by the increasing TN (Fig. 7B). This state of local vegetation and the high accumulation of organic matter suggest a process also favored by the slowing rates of sea level rise (Fig. 6A), with dominance of pollen spectra by salt marsh taxa indicating also more tidal influence (González et al., 2010; Ranwell, 1972). The closing of the ephemeral
mouth, was probably caused by lower energy associated with the shallowing of the lagoon, together with the intensification of the wind currents, and sea level changes reported for the Gulf of Mexico and the Caribbean (Balsille and Donoghue, 2004; González and Dupont, 2009; Urrego et al., 2013; Wooller et al., 2007). Pollen spectra suggest the early stages of a successional pattern of mangrove vegetation associated with the marine transgression, although NMDS Axis 1 sample scores demonstrate that mangrove forests were not established yet near the location where the core was retrieved.

From c. 5400 to 3700 BP: A regional drought

Whereas the rate of sea-level rise continued to decrease, relatively high sedimentation rates were evident in La Mancha sequence up to ~5000 cal BP, when apparently the rates of sediment deposition in the lagoon and those of sea level rise became similar (Fig. 6A). Such equilibrium between sediment deposition and sea-level rise implies the definition of a coastal erosive baseline that allowed the deposition of sand in the coast by the northerly currents during the dry season, creating the sandbar that dams the lagoon. Differently, during the wet season, the fluvial input would have the capacity to erode the sandbar, opening the direct contact between the lagoon and the sea and, thus, resulting in the modern seasonal flood cycle of the lagoon. During the dry season, the coastal bar would be closed by the action of the waves and the prevailing winds, whereas during the rainy season the bar would be opened by the energy of the fresh water discharge. The lagoon thus became a shallow water body \((z_{\text{max}} \sim 1 \text{ m})\) mostly protected from the energy of the waves by La Mancha hill (Fig. 1), and subjected to seasonal tidal and climatic fluctuations.

From c. 5400 to 3700 cal BP, the recurrent drainage of fresh water into the sea probably created a series of canals/channels giving the lagoon a physiography very similar
to modern. However, according to the NMDS scores, vegetation at that time resembled the northern sub-basin today (Fig. 6B), an area characterized by poorly developed sparse mangrove stands. Thus, vegetation assemblages from this period were a result of suboptimal environmental conditions for mangrove forest development. High percentages of Pinus (up to 60%) through this period suggest that there was a regional drought in place, which likely maintained high substrate salinity by reducing freshwater river discharge to the lagoon. Thus, local vegetation consisted of a mixture of sparse mangrove trees with some salt marshes species, and a slow increase of mangrove pollen because of the prevailing dry conditions (Fig. 4). Although anthropogenic influence cannot be discarded as a plausible explanation for the sparse mangrove vegetation, the inference of a regional drought is supported by similar reports from Lake Petén Itzá between ~4500 up to ~3000 cal BP, Lake Tzib (Quintana Roo) at ~3500 cal BP (Carrillo-Bastos et al., 2010; Mueller et al., 2010), and also in the Cariaco Basin record, with a trend from ~5400 up to the present (Haug et al., 2001). Furthermore, the abrupt decrease of TN and its linear trend towards even lower concentrations (Fig. 7B) evidence rather oxidizing conditions, an environmental process that is difficult to explain from the perspective of human occupation.

From c. 3700 cal BP to Present: the establishment of modern mangrove forests

Mangrove pollen taxa showed the highest percentages (Fig. 5), reflecting an environment of relative stability where the exchange of saline and fresh water, and the input of sediments were balanced, producing an increase of mangrove forest biomass (Krauss et al., 2008). These conditions provided consolidated clay sediments, where as indicated by the NMDS scores, mangrove forests developed into mature forest stands of Rhizophora and Avicennia. Increasing concentrations of TN (Fig. 7B) indicate high
accumulation of organic matter probably associated with the establishment of the mangrove forest (Bouillon et al., 2003). Sea level continued to increase at slower rates (Balsille and Donoghue, 2004) that were matched by the rate of sediment accumulation in La Mancha (~0.92 mm/yr on average). These more stable conditions for coastal ecosystems have been reported for other localities in the Caribbean coinciding with other records (Urrego et al., 2013), where mangrove forests developed under a relatively stable sedimentation rate (1.09 to 0.89 mm/yr).

Pinus and salt marsh pollen in La Mancha showed substantial decreases caused by wetter conditions and higher representation of local mangrove pollen, implying a lower regional influence on pollen spectra, and the continuation of the successional processes that led to the establishment of the mangrove forest (González and Dupont, 2009). At this stage, the lagoon seems to have reached its modern configuration, with influences from local processes like the annual opening of the ephemeral mouth, fluctuating floods of salt water, input of fresh water from the streams, and anthropogenic activities (Moreno-Casasola, 2006). Indeed, the sharp decrease of _Rhizophora_ is likely reflecting the terrestrialization of the cored site, which today is occupied by an _Avicennia germinans_ forest that floods only when the ephemeral mouth is closed and the lagoon reaches its maximum water level through the year. This latter observation is further supported by the high variability of TN concentrations towards the top of the record.

6. Conclusion

The sedimentary record of La Mancha lagoon encompasses the history of the local and regional environmental conditions through the last ~8,000 years, including the
establishment of modern mangrove forest along the coast of Veracruz. The record shows the regional context under which the coastal lagoon formed, showing the transformation of the lagoon from a water body with permanent communication with the sea to the modern seasonally closed system. When sea level rise rates were higher than the rates of sediment infill of the lagoon’s basin, the depositional environment was under sea level and pollen assemblages were dominated by regional taxa. The ecological succession towards the establishment of mangrove forest started at ~6,300 cal BP, but mangrove forests were sparse, resembling those of the modern northern sub-basin because of two main reasons: i) the water column was relatively deep and sedimentary plains for mangrove establishment were likely narrow, and ii) a regional drought lasting from ~5400 to 3700 BP probably caused extremely high substrate salinity that impeded mangrove forests expansion. Dense mangrove forests alike those that occupy the southern sub-basin today established around ~3500 BP, and have dominated the area ever since.

The pairing of lagoon sediment and sea levels at ~4000 cal BP was likely associated with the development of the seasonally open mouth. This pairing of lagoon sedimentary accumulation and sea levels defined the latter as the base level for erosion, allowing the accumulation of material during the dry season, and therefore the formation of a damming bar, which would eventually open during the rainy season owing to the increased freshwater discharge. Concomitant to this process would be the linear erosion of canal channels through the sedimentary deposit, conforming the modern geomorphology of the area. The establishment of the mangrove forest implied a substantial increase of sedimentary organic matter, highlighting the role of these ecosystems at storing carbon. Overall, our record demonstrates the complexity of the interactions between local
and regional factors in the development and evolution of both coastal geomorphology and ecosystems.

Acknowledgements

This research was funded by Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica PAPIIT-UNAM [grant number IN107716], and Consejo Nacional de Ciencia y Tecnología [grant number 256406]. Alex Correa-Metrio was supported by Programa de Apoyos para la Superación del Personal Académico de la UNAM (PASPA).

Dayenari Caballero-Rodríguez, Esmeralda Cruz Silva, Roberto Maya Hernández, and Yosahandy Vázquez Molina are thanked for their assistance in the field.

7. References

Moreno-Casasola, P., 2006. Entornos veracruenzanos: la costa de La Mancha, Instituto de Ecología, A.C., Xalapa, Veracruz, Mexico.

Reimer, P.J. et al., 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon, 55, 1869-1887.

Holocene establishment of mangrove forests in the western coast of the Gulf of Mexico

Cordero-Oviedo, Ca, A. Correa-Metriob,*, L.E. Urregoc, G. Vázquez-Hurtadod, M. Blaauwe, J. Escobarf,g, J.H. Curtish

a Posgrado en Ciencias de la Tierra, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México 04510, cecilia.corderoviedo@gmail.com, b Instituto de Geología, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México 04510, acorrea@geologia.unam.mx, c Departamento de Ciencias Forestales, Universidad Nacional de Colombia, Sede Medellín A.A. 568 Medellín, Colombia, leurrego@unal.edu.co, d Instituto de Ecología, A.C. Carretera antigua a Coatepec 351, El Haya, Xalapa 91070, Veracruz, México, gabriela.vazquez@inecol.mx, e School of Natural and Built Environment, Queen’s University Belfast, Belfast, United Kingdom, maarten.blaauw@qub.ac.edu, f Departamento de Ingeniería Civil y Ambiental, Universidad del Norte, Km 5 Via Puerto Colombia, Colombia, jhescobar@uninorte.edu.co, g Center for Tropical Paleoecology and Archaeology, Smithsonian Tropical Research Institute, Box 0843-03092, Balboa, Panama, h Department of Geological Sciences, University of Florida, Gainesville, FL, 32611, USA, curtisj@ufl.edu

*Corresponding author: Alexander Correa-Metrio, acorrea@geologia.unam.mx

Abstract

The successful establishment of mangrove ecosystems depends on an intricate network of interactions among physical and biological factors that are highly dynamic through time. At millennial to centennial time scales, regional climates, sea levels, and local geomorphology
play critical roles in the establishment of mangroves. Whereas fluvio-marine dynamics define coastal sedimentary settings, regional precipitation and freshwater input modulate salinity and seasonal flooding patterns. We analyzed a ~7800-year-old, continuous sedimentary record from the western coast of the Gulf of Mexico to shed light on regional biophysical coastal processes and the history of the mangroves that occupy the region today. We used a systematic sampling of mud-water interface sediments to generate a modern reference frame for interpreting fossil pollen assemblages. Our results indicate that the cored location that is currently approximately at sea level, was below sea level from ~7800 to 4000 calibrated years before present (cal BP). The establishment of dense mangrove stands took place around 3700 cal BP, when regional sea levels stabilized, resulting in a substantial increase of organic matter and therefore carbon stored in the sediments. However, the mangrove ecological succession that started at ~6000 cal BP was interrupted by a regional drought that extended from ~5400 to 3700 cal BP. From 3700 cal BP to Present, the lagoon has been characterized by relatively stable both substratum and sea level, that together have facilitated the establishment of mangrove forests. Overall, our record demonstrates the complexity of the interactions between local and regional factors in the development and evolution of both coastal geomorphology and ecosystems.

Keywords: coastal environment; Gulf of Mexico; Holocene; mangroves; sea-level changes; pollen analysis

1. Introduction
Mangrove ecosystems are a large component of tropical and sub-tropical coastal landscapes. Occupying intertidal zones (Lugo and Snedaker, 1974), they regulate the relationship between continental discharge of sediments and water and sea level (Ellison, 1989). The main engineers of these ecosystems are a reduced group of plant species physiologically adapted to brackish-to-saline substrates (Ball, 2002; Vovides et al., 2014). The establishment of mangrove forests creates the conditions for complex food webs that incorporate marine and continental components. The entire mangrove ecosystem is fundamental for providing products and ecological services, resulting in direct and indirect uses by human populations, mainly fuelwood, fisheries, sediment trapping, and carbon storage (Bouillon et al., 2008; Feller et al., 2017; Méndez et al., 2007; Ward et al., 2016).

Although they represent one of the most important carbon sinks worldwide (Bouillon et al., 2008), together with coral reefs and tropical forests, mangroves are among the most endangered modern ecosystems (Valiela et al., 2001). It has been estimated that through the last two decades of the 20th Century, 35% of the global mangrove area had been lost mostly because of direct and/or indirect anthropogenic causes (FAO, 2007). The main human-related causes of mangroves loss are the conversion to aquaculture and agriculture, urbanization, and pollution (Feller et al., 2017; Gilman et al., 2008; Thorhauga et al., 2017), which in Mexico have translated in a net loss ~240 ha/year through the last decades (Hamilton and Cassey, 2016). The rapid rate at which these threats to mangrove ecosystems are growing highlights the need to understand them in the context of their natural history and the intricate network of factors that interact to facilitate or impede their colonization and establishment.
A wide variety of factors interact to create the specific conditions under which mangrove communities thrive and persist through time (Gilman et al., 2008). Healthy vigorous mangrove forests, and therefore ecosystems, depend on a delicate balance between marine influences and freshwater and sediment input from continental areas acting upon specific geomorphologic settings (Lugo and Snedaker, 1974; Soares, 2009). Whereas marine influences on mangrove ecosystems materialize through tidal regimes and sea level changes that define baseline for erosion and accumulation of sediments, regional climates and vegetation cover over the mainland control continental discharge of freshwater and sediments along the coast. Thus, through the Holocene, changes in precipitation, vegetation cover, geomorphologic dynamics, and sea levels have probably led to high environmental variability over the intertidal areas (Geissert Kientz, 1999). In the Gulf of Mexico and the Caribbean, regional sea levels have progressively risen since the deglaciation (Milliken and Anderson, 2008; Toscano and Macintyre, 2003), whereas annual precipitation has shown a wide variability associated with extraterrestrial forcings (e.g. solar activity and orbital cycles, Haug et al. 2001, Hodell et al. 2001) and higher frequency processes associated with complex internal systems (e.g. El Niño-Southern Oscillation, Moy et al. 2002). The balance between fluvial loads and sea-level rise modulates local geomorphologic and sedimentary processes, defining the formation of either depositional or erosional environments the balance of which is in turn critical for the establishment and persistence of mangroves (Parkinson et al., 1994). Indeed, modern net losses of mangrove cover have been widely associated with sea-level rises along unprotected coasts (Suárez et al., 2015). Thus, the definition of the context that led to the development of modern mangrove forests would provide important clues for identifying the limits of environmental pressure that these ecosystems can endure.
Sedimentary deposits that accumulate in coastal lagoons provide a natural record of the evolution of coastal landscapes through time. Understanding the natural development of mangrove ecosystems and the main factors involved in the process would give insights into the threat level that coastal zones face given modern environmental change (Lopez-Portillo et al., 2011; Thom, 1967). Here we use the pollen record of a 13-m-long ~8,000-year-old sedimentary sequence retrieved from La Mancha Lagoon, State of Veracruz, Mexico, to reconstruct the history of the local vegetation through the Holocene. By analyzing the history of vegetation assemblages as reflected by fossil pollen spectra, we aim to answer the following questions: i) what has been the role of sea-level rise and precipitation variability through the Holocene in the establishment and persistence of mangrove forests in the west coastline of the Gulf of Mexico? ii) when did the barrier-lagoon systems of the region consolidate in the context of Holocene environmental variability?

2. Study Area

La Mancha lagoon is located in the State of Veracruz, Mexico, on the western coasts of the Gulf of Mexico (19.579 N°, 96.387 W°, Fig. 1). With a north-to-south length of 3 km, the lagoon has an area of ~1.35 km² distributed in two sub-basins separated by a strait located near the center of the water body (Fig. 1). Whereas the southern sub-basin is exposed to permanent freshwater input from the Caño Grande River that drains water from a basin of almost 2,500 km², the northern sub-basin more exposed to tidal influence through an ephemeral mouth that communicates seasonally with the sea (Fig.1) (Lankford, 1977; Moreno-Casasola, 2006). During the dry season, a sand bar accumulates closing the estuarine mouth and causing a damming of continental freshwater. With the onset of the
rainy season, freshwater starts to accumulate, eventually breaking the sandbar, opening the mouth, and creating a direct connection with the sea (Moreno-Casasola, 2006). Thus, lagoon dynamics are intimately linked to regional climate that is warm (temperatures from 22 to 26 °C), with an annual mean precipitation of 1222 mm, with 85% of the annual value falling between June and October (Fig. 1) (Servicio Meteorologico Nacional, 2018). The dry season is especially pronounced between December and April with mean monthly precipitation below 20 mm, while November and May are characterized by a mean precipitation around 50 mm. By the end of the summer and early autumn, the area is exposed to tropical cyclones, although their incidence is relatively low compared with other areas of the Gulf of Mexico (Moreno-Casasola, 2006).

La Mancha lagoon belongs to a geomorphic unit known as the Low Cumulative Plain that formed during the Quaternary (Geissert Kientz, 1999), allowing deposition of clayey-silt sediments. The lagoon formed at the margin of a volcanic mountain range that interrupts the coastal plain of the Gulf of Mexico (Geissert Kientz, 1999; Fig. 1). The current morphology of the area has been mostly shaped by Quaternary dynamics, going from an empty deep basin during times of sea-level low stands to a depositional coastal plain during times of sea-level high stands (Geissert Kientz, 1999; Kjerfve, 1994). The mountain ridge that connects La Mancha Hill with the adjacent western mountains divides La Mancha lagoon into two contrasting sub-basins (Fig. 1). Differences in freshwater input, marine influence, and energy of the sedimentary environments have created two clearly distinct environments for mangrove forests, which today occupy ~3.55 km² around the lagoon.

Regional tides are mixed, mostly diurnal and of low amplitude (highest and lowest tidal levels at 22 cm and -30 cm from average sea level, respectively), preventing the
formation of tidal currents. This feature together with the permanent input of fresh water and the sheltering of the lagoon from the energy of the waves by La Mancha Hill (Fig. 1) have probably played a critical role in maintaining the morphology of the lagoon, avoiding the formation of tidal mudflats, marshes, and/or estuaries (Geissert Kientz, 1999). Over recent decades, progressive loss of depth of the lagoon because of sediment accumulation suggests that sediment input surpasses local erosion (Moreno-Casasola, 2006), although this might not have been the case through the entire history of the area.

Figure 1. Study area. A. Location of La Mancha lagoon in the continental context. B. Locations sampled for modern and fossil sediments in the local context of La Mancha coastal lagoon; elevation contours are shown in increments of 20 m asl (solid black lines), whereas a basic bathymetry based on field observations is shown as blue contours. C. Monthly precipitation (blue bars), evapotranspiration (gray bars), and monthly mean
temperature (black line with dots) at La Mancha Meteorological Station (Servicio Meteorologico Nacional, 2018) D. Topographic representation of La Mancha coastal lagoon.

Pollen assemblages contained in sediments reflect parental vegetation and are therefore useful for reconstructing environmental dynamics through time (e.g. Carrillo-Bastos et al., 2010; Urrego et al., 2009; Urrego et al., 2018). Given the regional geomorphology, the large size of the catchment basin of Caño Grande River, and the proximity to high mountain ranges, the pollen spectra of sediments from La Mancha lagoon contains regional and local taxa (Moreno-Casasola, 2006; Travieso-Bello, 2000). Whereas the former are transported by water and wind currents, the latter are produced by in situ vegetation (Hooghiemstra et al., 2006). Regional elements come mostly from montane forests that dominate the regional highlands (Rzedowski, 2006; Williams-Linera, 2002) and are characterized by wind-pollinated taxa with long-distance pollen dispersal (e.g. Alnus, Myrica, Ulmaceae, Quercus, and Pinus), which tend to be overrepresented in the pollen spectra. From within these allochthonous elements, Pinus is worth noticing because of the opportunist nature of most of the parental species (Richardson, 1998), which results in a high representation of this taxon in pollen spectra when environmental conditions are suboptimal for other arboreal elements (e.g. during droughts, Correa-Metrio et al., 2013). Local elements of the pollen spectra are in turn associated with two main vegetation types, namely lowland and mangrove forests. The hills that surround the lagoon reach heights up to 300 m asl and are mostly occupied by species of Desmodium, Inga, Machaerium, Psychotria, Protium, Bursera, Moraceae-Urticaceae and Acacia. The salt marshes, coastal dunes, and beaches that characterize flood plains are mainly dominated by species of

These vegetation types can be associated with the distal part of a marine transgression plain, or be related to the first stage of a progradational pattern indicative of a typical ecological succession on intertidal habitats (González and Dupont, 2009).

The edges of the lagoon are occupied by species typical of mangrove forests, *Rhizophora mangle*, *Avicennia germinans*, *Conocarpus erectus* and *Laguncularia racemosa* (Travieso-Bello, 2000). The interplay of these species is modulated by their differential adaptation to the changing environmental conditions along a salinity gradient, which in turn defines the structure and composition of the forest (Lugo and Snedaker, 1974; Travieso-Bello, 2000; Urrego et al., 2009). Thus, these forests are highly sensitive to changes in sea-level, coastal progradation and/or erosion at different time scales (Ellison, 2008). Mangrove forest species are adapted to specific environmental conditions, with *R. mangle* tolerating high inundation levels, strong wave energy and shorter distances to the sea, *A. germinans* thriving in more saline environments, hurricane-disturbed or experiencing severe droughts, *L. racemosa* being restricted to average minimum temperatures over 15.5 °C and successional processes triggered by anthropogenic disturbance, and *C. erectus* being tolerant to higher sediment pH typical of supra-tidal waters close to well drained forests (González et al., 2010; Hogarth, 2007; Urrego et al., 2009; Urrego et al., 2010).

Regional human occupation has been reported since at least ~4,600 BP, and the lagoon has apparently been an important source of resources for human populations (Moreno-Casasola, 2006). This factor has exerted direct pressure on the mangrove forest through deforestation for timber and fuel wood extraction, and more recently in the interruption of surface and subsurface flows in the by infrastructure of the oil industry.
These local factors have been especially harsh on the northern sub-basin, where only sparse remnants of the mangrove forest survive today. Thus, whereas vigorous mangrove forests surround the southern sub-basin, the northern sub-basin is occupied by highly disturbed vegetation including sparse mangrove remnants. Regionally, growing human population and the parallel development of infrastructure apply further pressures to coastal ecosystems through pollution, accelerated erosion, increasing sea level, among other elements (Gilman et al., 2008).

3. Methods

3.1 Field work and laboratory analysis

In autumn 2015, a 13-meter-long core was recovered from the southern part of La Mancha coastal lagoon (core MAN15V, Fig. 1), under an A. germinans stand, using a modified Livingston piston corer (Colinvaux et al., 1999). The core was longitudinally sectioned, stratigraphically described, and stored at ~ 4°C to preserve the sedimentary evidence. The chronological control of the sedimentary sequence was based on eight accelerator-mass-spectrometer (AMS) radiocarbon dates of bulk sediment, given that no other material such as macrofossils or charcoal could be found. Radiocarbon dates were calibrated to years before present (hereafter cal BP) using the IntCal13 curve (Reimer et al., 2013), and calibrated dates were used to build a Bayesian age-depth model using Bacon (Blaauw and Christen, 2011). The core was subsampled every ~ 12.5 cm for pollen analysis, aiming at a temporal resolution of ~75 years between contiguous samples. A total of 104 samples were processed for pollen analysis using standard pollen extraction techniques (Faegri and Iversen, 1989). Samples were analyzed under transmitted-light microscope at
magnifications of x400 and x1000, aiming to reach a minimum pollen sum of 300 pollen grains. Grains of the family Cyperaceae and pteridophytes spores were excluded from the pollen sum, although they were counted and included in the interpretation. Pollen counts were transformed into percentages of the pollen sum and a stratigraphic pollen diagram was constructed.

Pollen taxa were classified into five groups according to their modern ecological affinities (ecological affinities after Lugo and Snedaker 1974, Ranwell 1972, Travieso-Bello 2000): i) mangroves represented by Rhizophora mangle, Avicennia germinans, and Conocarpus erectus; although Laguncularia racemosa is an important component of the local mangrove forests, it was not found in the pollen spectra; ii) salt marsh vegetation represented by Cyperaceae, Amaranthaceae, Croton, Typha, Asteraceae, Chenopodiaceae, and Mimosa; iii) lowland forest represented by Inga, Acacia, Machaerium, Protium, Bursera, and Moraceae-Urticaceae; iv) montane regional forests represented by Alnus, Myrica, Ulmaceae, Quercus, and Miconia; and v) disturbance taxa represented by Pinus and Poaceae; these latter taxa were classified as representatives of disturbance because in Mexico they are distributed along environments unfavorable to vegetation development, usually associated with either natural or anthropogenic causes (Franco-Gaviria et al., 2018; Rzedowski, 2006). High abundances of Pinus pollen have been reported for areas subjected to dry conditions and/or regimes of high disturbance (Correa-Metrio et al., 2013; Metcalfe et al., 2000), mostly associated with early succession colonizers (Ramirez-Marcial et al., 2001). Meanwhile, although Poaceae pollen is characteristic of successional processes of supratidal plains (Bush, 2002; Urrego et al., 2013), it is also found in pollen assemblages
from all Mexican vegetation types, usually associated with disturbance (Correa-Metrio et al., 2013; Franco-Gaviria et al., 2018).

The fossil pollen record was complemented by sampling 30 locations homogeneously for modern mud-water interface (15 samples from each sub-basin) distributed across the water body, using an Ekman dredge. This sampling was meant to cover the variability of the modern pollen spectra (Fig.1), especially the differences between depositional environments of the two sub-basins. Samples were treated and analyzed using the same techniques as the fossil samples.

Total both C (%TC) and N (%TN) were measured in fossil samples every 5 cm along the core and in modern samples. For this purpose, samples were freeze dried and crushed, and subsequently analyzed using a Carlo Erba NA1500 CNS elemental analyzer. Additionally, coulometric titration was used to determine carbonate carbon (%TIC) in modern samples, allowing the estimation of organic carbon (%TOC). The discrimination of TC into TIC and TOC in modern samples was used to infer the relationship between these two carbon sources in the system of La Mancha lagoon.

3.2 Statistical Analysis

A non-metric multidimensional scaling ordination (NMDS) was applied on pollen relative abundances, including both modern and fossil samples. The ordination was performed to summarize the temporal variability of the pollen spectra, and to evaluate vegetation temporal dynamics in the context of the modern lagoon. This technique ordinates samples on a k-dimensional space defined a $priori$ by the analyst, aiming to maintain the original
topologic relationships among samples (Legendre and Legendre, 2012). Although two-dimensional ordinations are readily used, we selected three dimensions to produce a relaxed ordination where the affinity among pollen spectra can manifest more freely. We used the Bray-Curtis metric to estimate dissimilarity among samples, a metric that relies more on compositional data than on the abundance of individual taxa and has been proven monotonic to ecological distance (Faith et al., 1987).

Modern samples were classified into southern and northern sub-basins as representative of dense and sparse mangrove forests, respectively. Whereas the northern sub-basin has direct contact with the sea through the ephemeral mouth, which creates a more energetic environment, and has been subjected to important human disturbances and modifications resulting in sparse mangrove cover, the southern sub-basin is more influenced by the entrance of the river and is occupied by a well-developed dense mangrove stand. Thus, pollen spectra from these two sub-basins should reflect contrasting mangrove-forest cover conditions, and their relative oceanic and fluvial influences. The statistical significance of the difference between NMDS sample scores of the two sub-basins were tested using a two-sample t-test (Zar, 1999). TIC, TOC, TC, and TN content in modern samples were compared using Pearson correlation coefficient, whereas comparisons of concentrations between the northern and southern sub-basins were also compared using two-sample t-test (Zar, 1999).

4. Results

4.1 Stratigraphy and chronology of the sedimentary record
Sediments from the La Mancha coastal lagoon were mostly brownish, shelly clays with low content of organic material, and some intermissions of brownish silt with shell fragments and organic material (Fig. 2A). From the base of the core up to 1200 cm below lagoon floor (blf hereafter), the sediments were brown shelly clay, while from 1200 to 663 cm blf the color turned into a light brown matrix (clay and silt) with shell fragments and carbonates. From 663 to 615 cm blf the clayey sediment was brown with light brown bands. From 615 to 372 cm blf, the sediment showed brownish tones, and were mostly composed of clay with a thin layer of silt, shelly and little organic material. The uppermost 327 cm were dark to very light brown, with a uniform shelly clay composition (Fig 2A).

All radiocarbon dates resulted in stratigraphic order (Table 1). Although bulk sediment dates could lead to an 14C age offset, we were not able to quantify it because of the lack of other quantifiable materials. Nevertheless, the high correspondence between TC and TN along the sedimentary record (Fig. 2) suggests that inorganic carbon represents a relatively low proportion of the sedimentary material. According to the age-depth model, the core has a basal age of ~7840 cal BP, resulting in an average sedimentation rate of 1.96 mm/yr (Fig 2B). From the bottom of the sequence up to 5500 cal BP, sedimentation rates were high, with maximum values around 5500 cal BP (4.10 mm/yr). From c. 5500 cal BP to present, sedimentation rates showed a decreasing trend, reaching 0.89 mm/yr in the uppermost part of the core (Fig 2).

Table 1. Radiocarbon dates of core MAN15V from La Mancha coastal lagoon. Depths in cm below lagoon floor (blf). Ages calibrated after the IntCal13 curve (Reimer et al., 2013).
<table>
<thead>
<tr>
<th>Laboratory code</th>
<th>Depth (cm blf)</th>
<th>14C Age</th>
<th>Error</th>
<th>Calibrated age (95% range; cal BP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UBA-34340</td>
<td>109</td>
<td>1290</td>
<td>24</td>
<td>1181-1283</td>
</tr>
<tr>
<td>Beta-440367</td>
<td>175</td>
<td>1880</td>
<td>30</td>
<td>1730-1883</td>
</tr>
<tr>
<td>UBA-34341</td>
<td>282</td>
<td>3447</td>
<td>26</td>
<td>3637-3826</td>
</tr>
<tr>
<td>Beta-440368</td>
<td>373</td>
<td>3970</td>
<td>30</td>
<td>4300-4523</td>
</tr>
<tr>
<td>UBA-34342</td>
<td>564</td>
<td>4732</td>
<td>41</td>
<td>5326-5584</td>
</tr>
<tr>
<td>Beta-437078</td>
<td>649</td>
<td>4770</td>
<td>30</td>
<td>5334-5588</td>
</tr>
<tr>
<td>UBA-34343</td>
<td>979</td>
<td>5624</td>
<td>41</td>
<td>6312-6482</td>
</tr>
<tr>
<td>Beta-437079</td>
<td>1249</td>
<td>6700</td>
<td>30</td>
<td>7508-7616</td>
</tr>
</tbody>
</table>

Figure 2. Core MAN15V from La Mancha coastal lagoon. A. Stratigraphy of the sedimentary sequence: texture (left), color (right), and organic and shell content. B. Age-depth model; calibrated ages (blue silhouettes), 95% confidence intervals in grey (darker colors indicate higher probability), and sedimentation rates (mm/yr). C and D. Percentage of total nitrogen and total carbon content (TN and TC, respectively).
4.2 Pollen spectra and C and N in modern samples

Modern samples were characterized by 49 taxa, 18 and 31 identified at family and genus levels, respectively. Pollen sums varied between 300 and 387, whereas pollen counts including Cyperaceae and pterodophytes were between 322 and 472 palynomorphs. *Rhizophora*, Cyperaceae, Moraceae-Urticaceae, *Quercus, Pinus*, and Poaceae dominated these samples (up to 45%), whereas taxa such as *Typha, Mimosa, Desmodium, Inga*, and *Ulmaceae* were poorly represented (less than 5%). One sample from the northern sub-basin was barren of pollen (sample 26, Fig. 1).

Avicennia and *Rhizophora* showed high percentages (up to 5 and 45%, respectively) towards the southern sub-basin of the lagoon (Figs. 1 and 3). Contrastingly, other taxa such as *Quercus, Myrica*, and *Pinus* decreased southwards. Compositional differences between the northern and southern sub-basins of the lagoon were also indicated by taxa that occurred only at the latter, such as *Desmodium, Inga*, and *Protium* (Figs. 1 and 3). Samples from the middle area of the lagoon (samples 12,13,14,17 and 18) (Figs. 1 and 3) contained the highest percentages of Cyperaceae and Moraceae-Urticaceae (25% and 30%, respectively), and minima of *Typha, Asteraceae*, and *Psychotria*. In the northern sub-basin (Figs. 1 and 3), *Quercus, Pinus*, and Poaceae dominated the pollen spectra with abundances above 10%.
Figure 3. Pollen diagram of selected taxa from mud-water interface samples from La Mancha coastal lagoon. Ecological affinities after Lugo and Snedaker (1974), Ramwell (1972), and Travieso-Bello (2000). Samples are ordered from South to North with samples from the southern (northern) sub-basin highlighted in dark (light) grey.

TC content in modern samples varied between 3.1 and 12.3%, with mean and median of 4.9 and 4.4%, respectively. Although mean values for the northern and southern sub-basins were not statistically differentiable (t = 1.66, p-value = 0.11), the northern sub-basin consistently showed lower values (Fig. 3). Differently, individual fractions of C resulted statistically differentiable, with a higher concentration of TOC in the southern sub-basin (3.56, p-value = 0.002) and a higher concentration of TIC in the northern sub-basin (t = -2.47, p-value = 0.023). TN range between 0.02 and 0.37% with mean and median of 0.23
and 0.24%, respectively (Fig. 3), with higher mean concentration in the southern subbasin (t = 5.54, p-value < 0.001). TC resulted statistically associated with TN, TIC, and TOC, although the magnitude of the correlation was substantially higher with the latter (Fig. 3). Whereas TIC resulted moderately associated only with TN, TOC was strongly associated with both TC and TN (Fig. 3).

Figure 4. Content (%) of carbon and nitrogen in the modern samples of La Mancha coastal lagoon. Total C content (TC) discriminated into inorganic and organic fractions (TIC and TOC), and total N content (TN). Comparisons among sedimentary attributes are shown in the right side panels (biplots and correlation coefficients with their significance).

4.3 Fossil record

Fossil pollen types included 55 taxa classified into 24 families and 31 genera. Pollen sums varied between 300 and 349 grains per sample (average 306 grains), whereas pollen counts that included Cyperaceae and pterodophytes reached between 303 and 359 palynomorphs.
per sample (average 317). The highest abundances were shown by *Rhizophora*, Moraceae-Urticaceae, *Quercus* and *Pinus*, while the lowest abundances were shown by *Conocarpus*, *Inga*, *Bursera* and *Miconia*. From within the 55 identified taxa, only *Rhizophora*, Cyperaceae, *Typha*, Asteraceae, Chenopodiaceae, Moraceae-Urticaceae, *Alnus*, *Quercus*, *Pinus*, and Poaceae persisted throughout the entire record. The record was discretized into four main pollen zones (Fig. 4) to facilitate the description of the sedimentary sequence.

Pollen zones were defined based on an inspection of the distribution of pollen percentages through time, aiming to identify time periods characterized by relatively stable pollen assemblages.

Pollen Zone I (from 1300 to 907 cm blf, c. 7840-6300 cal BP): The sediment showed TC concentrations between 1.84 and 4.78%, with mean of 2.54%, and TN concentrations between 0.06 and 0.20%, with mean 0.10% (Fig. 2). This zone showed high percentages of *Rhizophora* (up to 20%), Moraceae-Urticaceae (up to 50%), *Quercus* (up to 20%), *Pinus* (up to 50%), and Poaceae (up to 20%). Low percentages (less than 5%) were shown by *Avicennia*, Amaranthaceae, *Croton*, *Typha*, Asteraceae, Chenopodiaceae, *Mimosa*, *Inga*, *Acacia*, *Machaerium*, *Protium*, *Bursera*, Ulmaceae and *Miconia* (Fig. 4).

Pollen Zone II (from 907 to 569 cm blf, c. 6300 - 5400 cal BP): The sediment showed highly variable concentrations of both TC and TN (Fig. 2). TC varied between 2.28 and 9.67% with mean of 4.6%, whereas TN varied between 0.09 and 0.43 with a mean of 0.19%. This zone was dominated by Cyperaceae (20%), *Croton* (10%), *Typha* (20%), Chenopodiaceae (15%), Moraceae-Urticaceae (50%), *Alnus* (~6%), Ulmaceae (10%), *Quercus* (20%), *Pinus* (50%) and Poaceae (20%). Percentages below 5% were shown by
Avicennia, Conocarpus, Amaranthaceae, Asteraceae, Mimosa, Inga, Machaerium, Protium, Bursera and Miconia with less than 5%. The upper part of the zone was characterized by relatively low percentages of Pinus (~18%) and a substantial increase of Amaranthaceae, Croton, Typha, Asteraceae, Chenopodiaceae, and Cyperaceae (up to ~20%) (Fig. 4).

Pollen Zone III (from 569 to 280 cm blf, c. 5400 - 3700 cal BP): With lower variability, both TC and TN decreased substantially (Fig. 2). TC varied from 1.14 and 6.31% with mean of 2.45, and TN varied between 0.07 and 0.25% with mean of 0.12%. From 5400 BP Rhizophora abundances began to increase gradually, and Avicennia was less than 5%. Pinus reached the highest abundances throughout the record (up to 60%), while Amaranthaceae, Croton, Mimosa, Inga, Machaerium, Bursera, Alnus, Ulmaceae, Moraceae-Urticaceae, and Miconia showed their lowest percentages. Lastly, Typha, Asteraceae, and Chenopodiaceae showed abundances around 10% (Fig 4).

Pollen Zone IV (from 280 to 0 cm blf, c. 3700 cal BP - Present): TC and TN progressively reached high variable concentrations (Fig. 2). TC varied between 0.02 and 7.77% with mean of 4.45%, and TN varied between 0.01 and 0.36% with mean of 0.20%. Abundances of Rhizophora and Avicennia reached their highest values (up to 60% and 10% respectively), and displayed an increasing trend towards the present. Amaranthaceae, Croton, Typha, Chenopodiaceae, Myrica, Ulmaceae, Quercus, and Pinus abundances decrease up to the present. Meanwhile Acacia, Inga, Machaerium, and Protium presented their highest abundances (up to 10%) (Fig. 4).
415
416 Figure 5. Fossil pollen diagram of selected taxa of core MAN15V from La Mancha coastal
417 lagoon. (ecological affinities after Lugo and Snedaker 1974, Ramwell 1972, and Travieso-
418 Bello 2000).
419
420 4.4 Statistical analyses
421
422 The three-dimensional ordination of the modern and fossil pollen samples showed a stress
423 of 0.144. Negative scores along Axis 1 characterized modern samples, whereas fossil
424 samples were clearly divided into positive (negative) scores for samples older (younger)
425 than ~ 5400 cal BP (Fig. 5 and 6.B). Along Axis 2, both modern and fossil samples were
426 mostly located between −0.31 and 0.2, although fossil samples showed positive and
427 negative excursions (Fig. 5). NMDS Axis 3 was characterized by widespread scores for
428 fossil samples and almost exclusively negative scores for modern samples (Appendix 1).
429
430 The t-test for comparing NMDS scores of modern samples from the northern and
431 southern sub-basins yielded significant differences in terms of Axis 1 and 2, but non-
432 significant for Axis 3 (Table 2). Given the relatively flat behavior of Axis 2 and the lack of
significance of Axis 3 (Appendix 1), only the first axis of the ordination will be considered for interpretations hereafter.

Table 2. Comparison of NMDS sample scores in the three axes for modern samples from the northern and southern sub-basins, i.e scores from dense (D) vs. sparse (S) mangrove areas. For the comparison of scores along each axis, t scores, degrees of freedom corrected for variance differences between samples (d.f.), and p-value are shown.

<table>
<thead>
<tr>
<th>Comparison</th>
<th>t</th>
<th>d.f.</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axis 1D – Axis 1S</td>
<td>-3.5184</td>
<td>18</td>
<td>0.0026</td>
</tr>
<tr>
<td>Axis 2D – Axis 2S</td>
<td>-2.7661</td>
<td>26</td>
<td>0.0103</td>
</tr>
<tr>
<td>Axis 3D – Axis 3S</td>
<td>1.3831</td>
<td>24</td>
<td>0.1796</td>
</tr>
</tbody>
</table>
Figure 6. Non-metric multidimensional scaling for modern and fossil pollen assemblages from La Mancha lagoon. Modern samples in black diamonds showing sample number, whereas fossil samples were symbol coded according to the declared legend.

5. Discussion

5.1 Modern sediments of La Mancha coastal lagoon

Palynological composition of modern samples generally reflected the patterns of modern vegetation, incorporating vegetation elements from the surrounding mangroves and salt marshes (local vegetation), and nearby lowlands and highland forest (regional vegetation). Although the mangroves of La Mancha are dominated by *A. germinans* over *R. mangle* (Moreno-Casasola, 2006), modern pollen spectra were dominated by the latter (Fig. 3).
Given its pollination mechanism, *R. mangle* produces high amounts of pollen, dominating most of pollen spectra from mangrove forests. Contrastingly, *A. germinans* is an insect-pollinated species that produces low amounts of pollen (Hogarth, 2007), resulting in under-representation of the parental taxon in the pollen spectra where percentages as low as 5% implying an important share in the standing vegetation. However, the mean representation of *R. mangle* in modern samples from the densely mangrove-forested southern sub-basin (~25%) are low as compared to pollen spectra from stands dominated by this species which have been reported as high as 65% (e.g. Behling et al., 2001; Urrego et al., 2009). Although *C. erecta* and *L. racemosa* are components of the standing forest of La Mancha, they are not represented in the modern pollen spectra probably because of their low production, and also because of their distal position with respect to the sampled water body (Moreno-Casasola, 2006).

In the southern sub-basin of La Mancha, the high percentages of *Rhizophora* reflect the relatively good conservation state of the mangroves (Moreno-Casasola, 2006), with the exclusive presence of taxa such as *Desmodium, Inga* and *Protium* indicating a well preserved lowland vegetation as well (Franco-Gaviria et al., 2018). Pollen spectra from the northern sub-basin contained lower percentages of *Rhizophora*, and a substantial representation of regional pollen, possibly coming from the highlands of the catchment basin. Over recent decades, the deleterious effects of human activities on mangrove cover have been more intense around the northern sub-basin of La Mancha lagoon (Lopez-Portillo et al., 2011; Moreno-Casasola, 2006), reflecting on pollen assemblages where the regional and disturbance elements are better represented (mainly Moraceae-Urticaceae, *Myrica, Pinus*, Poaceae, and *Quercus*) (Correa-Metrio et al., 2011; Franco-Gaviria et al.,
Although *Rhizophora*, Moraceae-Urticaceae, *Pinus*, and *Quercus* do not dominate the shore vegetation of the most disturbed northern areas, they are represented by pollen percentages above 10% each (Fig. 3), reflecting the sparse nature of mangrove forests over this area. This finding reflects the widely reported overrepresentation of these taxa in pollen spectra, derived from their high production of pollen and their long-distance pollen dispersal capacity, as reported for species of anemophyllous pollination (e.g. Correa-Metrio et al., 2013; Ellison, 2008; Hooghiemstra et al., 2006; Marchant et al., 2002).

Modern samples were clustered in the NMDS (Fig. 5), implying more consistency among the modern pollen spectra than between modern and fossil samples. This finding demonstrates that the modern heterogeneity of the lagoon does not represent the ecological and environmental variability of the area over the last ~7800 years. Statistically significant differences between the NMDS Axis 1 scores of pollen assemblages from the two sub-basins demonstrate that density of mangrove forest cover can be identified through their pollen spectra. Overall, these findings indicate that i) pollen assemblages of La Mancha lagoon are systematically associated with physical and biological attributes of the region at a broad scale (regional vegetation), and ii) pollen spectra are highly sensitive to the modern environmental variability throughout La Mancha lagoon (local vegetation). Thus, as reported for other areas (e.g. Franco-Gaviria et al., 2018; Urrego et al., 2009; Urrego et al., 2010), modern pollen assemblages of our studied lagoon provide a robust framework for interpreting our fossil pollen sequence.

Higher concentrations of TOC and TN in the southern sub-basin were probably a result of differences in surrounding vegetation and energy of the depositional environment. More vigorous vegetation in the southern sub-basin would produce higher amounts
organic matter rich in TOC and TN, whereas the lower energy of the depositional
environment would prevent resuspension and, therefore, further oxidation of the sediments
(Meyers, 1997). Differently, TIC resulted higher in the northern sub-basin, probably
reflecting both higher contribution of marine particulate suspended matter and more
oxidation of organic components (Bouillon et al., 2003). Overall, C and N analyses are
consistent with higher organic matter storage in the sediments of the lagoon where
mangrove forests are well preserved. The relationships that were found between the
different components of C and N demonstrate that in the modern setting of La Mancha,
TOC is the main component of TC. Although these relationships cannot be extrapolated to
the fossil record, they demonstrate that TN is a good proxy for organic matter, and
therefore it is used to offer further support to our pollen-based reconstruction of past
environmental dynamics.

5.2 Vegetation history of La Mancha Lagoon

The pollen record of La Mancha lagoon reflects the complexities associated with the
multiple factors that have intervened in the development toward the modern biotic and
abiotic systems. Whereas highly variable abundances of regional vegetation suggest
variability in freshwater input by precipitation and tributaries to the lagoon system, pollen
from mangroves together with herbaceous vegetation offer insights into the successional
patterns and development of the local vegetation (Urrego et al., 2013; Urrego et al., 2018).
Additionally, the constant presence of marine shells through the sedimentary record (Fig. 2)
demonstrates a permanent marine influence through the last ~7,800 year. Together, these
indicators illustrate the intimate interaction between sea levels and regional fresh water
inputs (precipitation, sediments) that ultimately regulates the colonization, establishment, and development of mangrove ecosystems in the area. According to our pollen and geochemical data, the history of the vegetation that surrounds the lagoon and therefore the regional environmental history could be summarized in four main stages that will be discussed below.

From c.7800 to 6300 cal BP: sea-water flooding of valleys

Through this time period, the mud-water interface was between 13 and 9 m below the modern surface, which today is at sea level. At the same time, average sea level was between 9 and 5 m below modern. The difference between mud-water interface depth and sea level can only be accounted by lagoon water depth, which was ~ 4 m below sea level (Fig. 6A). La Mancha Hill, an andesitic rock of Neogene origin (Moreno-Casasola, 2006; Geissert Kientz, 1999) (Fig. 1), probably acted as a barrier that protected the depositional environment from the erosive energy of the waves and winds. Through this period, even though sedimentation rates at La Mancha (~3.04 mm/year) were lower than the inferred rate of sea-level increase, they are among the highest through the record. High rates of both regional sea-level rise and sedimentation at La Mancha are likely a result of the regional geologic instability that characterized the conformation of the modern Gulf of Mexico in its final stages, up to 5000 cal BP (Davis, 2011). As sea level increased through the deglaciation and the early Holocene, sea-water flooded coastal plains and valleys at a speed that surpassed the accumulation of continental sediments. Thus, the lacustrine basin of La Mancha was probably deeper than modern, impeding the establishment of mangrove forests (Fig. 6C). A peak of *Rhizophora* from the bottom of the record to ~7500 cal BP (Fig. 4) probably shows the colonization of mangroves during the initial stages of the lagoon and
the sea-water flooding, which were subsequently displaced by the formation of a deep-water body.

In México, *Pinus* populations thrive under early post-disturbance successional stages, or under conditions that are not optimal for other taxa (Metcalfe et al., 2000; Ramirez-Marcial et al., 2001). Thus, the persistence of *Pinus* in high percentages from the bottom of the record to ~6500 cal BP (Fig. 5) indicates that regional conditions were likely dry, an interpretation that is further supported by the lowest concentrations of TN (Fig. 7) and therefore of organic matter. These dry conditions probably played a central role at maintaining sedimentation rates that did not offset sea-level rise, impeding the establishment of mangrove forests, as demonstrated by the NMDS Axis 1 scores that were outside the envelope defined by modern samples (Fig. 7C).
Figure 7. Environmental history of La Mancha Lagoon through the last 7,800 years.

A. Age-depth model of core MAN15V from La Mancha Lagoon (dashed lines show 95% confidence interval), compared with sea level rise curves for the Caribbean (red line, Toscano and Macintyre, 2003) and the northern Gulf of Mexico (black solid line, Milliken and Anderson, 2008).

B. Sedimentary total nitrogen content (%); boxplots illustrate total nitrogen in modern samples form the northern (up) and southern (down) sub-basins of the lagoon (whiskers show minimum and maximum scores).

C. NMDS Axis 1 scores through time; boxplots illustrate scores of modern samples; scores of the modern environmental envelope represented by modern samples are highlighted in grey; scores of the interquartile range of samples from the well preserved southern sub-basin are in dark grey.

D. Schematic development of La Mancha Lagoon, illustrated at ~7,000, 6000, 4,500 cal BP, and Modern.
From c. 6300 to 5400 cal BP: development of lagoon shores

Whereas the rate of sea-level rise started to decline through this period, sedimentation rates at La Mancha remained high (3.86 mm/yr, Fig. 6). This phenomenon could be explained by two critical factors: i) following the reported deceleration of sea-level rise at ~7000 cal BP (Toscano and Macintyre, 2003), sand bars started accumulating at the mouth of coastal lagoons (Davis, 2011), providing a more stable plain for sediment accumulation at La Mancha; and ii) a substantial decrease in the percentages of Pinus, and an increase of montane forest taxa (e.g. Alnus, Quercus, and Ulmaceae) indicate wetter conditions that would be in turn associated with higher river sediment discharge. These regional wetter conditions could be related to the final stages of the Holocene Thermal Maximum, which was in general characterized by higher than present precipitation and temperature in the Northern Hemisphere (Renssen et al., 2009).

The lagoon became shallower, and the development of muddy shores is evidenced by high percentages of salt marsh vegetation (Fig. 5), and high accumulation of organic matter revealed by the increasing TN (Fig. 7B). This state of local vegetation and the high accumulation of organic matter suggest the closing of the ephemeral mouth, probably caused by lower energy associated with the shallowing of the lagoon, together with the intensification of the wind currents, and sea level changes reported for the Gulf of Mexico and the Caribbean (Balsille and Donoghue, 2004; González and Dupont, 2009; Urrego et al., 2013; Wooller et al., 2007). Pollen spectra suggest the early stages of a successional pattern of mangrove vegetation associated with the marine transgression, although NMDS
Axis 1 sample scores demonstrate that mangrove forests were not established yet near the location where the core was retrieved.

From c. 5400 to 3700 BP: A regional drought

Whereas the rate of sea-level rise continued to decrease, relatively high sedimentation rates were evident in La Mancha sequence up to ~5000 cal BP, when apparently the rates of sediment deposition in the lagoon and those of sea level rise became similar (Fig. 6A).

Such equilibrium between sediment deposition and sea-level rise implies the definition of a coastal erosive baseline that allowed the deposition of sand in the coast by the northerly currents during the dry season, creating the sandbar that dams the lagoon. Differently, during the wet season, the fluvial input would have the capacity to erode the sandbar, opening the direct contact between the lagoon and the sea and, thus, resulting in the modern seasonal flood cycle. During the dry season, the coastal bar would be closed by the action of the waves and the prevailing winds, whereas during the rainy season the bar would be opened by the energy of the fresh water discharge. The lagoon thus became a shallow water body ($z_{\text{max}} \sim 1$ m) mostly protected from the energy of the waves by La Mancha hill (Fig. 1), and subjected to seasonal tidal and climatic fluctuations.

From c. 5400 to 3700 cal BP, the recurrent drainage of fresh water into the sea probably created a series of channels giving the lagoon a physiography very similar to modern. However, according to the NMDS scores, vegetation at that time resembled the northern sub-basin today (Fig. 6B), an area characterized by poorly developed sparse mangrove stands. Thus, vegetation assemblages from this period were a result of suboptimal environmental conditions for mangrove forest development. High percentages of Pinus (up to 60%) through this period suggest that there was a regional drought in place,
which likely maintained high substrate salinity by reducing freshwater river discharge to
the lagoon. Thus, local vegetation consisted of a mixture of sparse mangrove trees with
some salt marshes species, and a slow increase of mangrove pollen because of the
prevailing dry conditions (Fig. 4). Although anthropogenic influence cannot be discarded as
a plausible explanation for the sparse mangrove vegetation, the inference of a regional
drought is supported by similar reports from Lake Petén Itzá between ~4500 up to ~3000
cal BP, Lake Tzib (Quintana Roo) at ~3500 cal BP (Carrillo-Bastos et al., 2010; Mueller et
al., 2010), and also in the Cariaco Basin record, with a trend from ~5400 up to the present
(Haug et al., 2001). Furthermore, the abrupt decrease of TN and its linear trend towards
even lower concentrations (Fig. 7B) evidence rather oxidizing conditions, an environmental
process that is difficult to explain from the perspective of human occupation.

From c. 3700 cal BP to Present: the establishment of modern mangrove forests
Mangrove pollen taxa showed the highest percentages (Fig. 5), reflecting an environment of
relative stability where the exchange of saline and fresh water, and the input of sediments
were balanced, producing an increase of mangrove forest biomass (Krauss et al., 2008).
These conditions provided consolidated clay sediments, where as indicated by the NMDS
scores, mangrove forests developed into mature forest stands of *Rhizophora* and *Avicennia*. Increasing concentrations of TN (Fig. 7B) indicate high accumulation of organic matter
probably associated with the establishment of the mangrove forest (Bouillon et al. 2003).
Sea level continued to increase at slower rates (Balsille and Donoghue, 2004) that were
matched by the rate of sediment accumulation in La Mancha (~0.92 mm/yr on average).
These more stable conditions for coastal ecosystems have been reported for other localities
in the Caribbean coinciding with other records (Urrego et al., 2013), where mangrove forests developed under a relatively stable sedimentation rate (1.09 to 0.89 mm/yr).

Pinus and salt marsh pollen in La Mancha showed substantial decreases caused by wetter conditions and higher representation of local mangrove pollen, implying a lower regional influence on pollen spectra, and the continuation of the successional processes that led to the establishment of the mangrove forest (González and Dupont, 2009). At this stage, the lagoon seems to have reached its modern configuration, with influences from local processes like the annual opening of the ephemeral mouth, fluctuating floods of salt water, input of fresh water from the streams, and anthropogenic activities (Moreno-Casasola, 2006). Indeed, the sharp decrease of Rhizophora is likely reflecting the terrestrialization of the cored site, which today is occupied by an Avicennia germinans forest that floods only when the ephemeral mouth is closed and the lagoon reaches its maximum water level through the year. This latter observation is further supported by the high variability of TN concentrations towards the top of the record.

6. Conclusion

The sedimentary record of La Mancha lagoon encompasses the history of local and regional environmental conditions through the last ~8,000 years, including the establishment of modern mangrove forest along the coast of Veracruz. The record shows the regional context under which the coastal lagoon formed, showing the transformation of the lagoon from a water body with permanent communication with the sea to the modern seasonally closed system. When sea level rise rates were higher than the rates of sediment infill of the lagoon’s basin, the depositional environment was under sea level and pollen assemblages
were dominated by regional taxa. The ecological succession towards the establishment of mangrove forest started at ~6,300 cal BP, but mangrove forests were sparse, resembling those of the modern northern sub-basin because of two main reasons: i) the water column was relatively deep and sedimentary plains for mangrove establishment were likely narrow, and ii) a regional drought lasting from ~5400 to 3700 BP probably caused extremely high substrate salinity that impeded mangrove forests expansion. Dense mangrove forests like those that occupy the southern sub-basin today established around ~3500 BP, and have dominated the area ever since.

The matching of lagoon sediment and sea levels at ~4000 cal BP was likely associated with the development of the seasonally open mouth. This pairing of lagoon sedimentary accumulation and sea levels defined the latter as the base level for erosion, allowing the accumulation of material during the dry season, and therefore the formation of a damming bar, which would eventually be open during the rainy season owing to the increased freshwater discharge. Concomitant to this process would be the linear erosion of channels through the sedimentary deposit, conforming the modern geomorphology of the area. The establishment of the mangrove forest implied a substantial increase of sedimentary organic matter, highlighting the role of these ecosystems at storing carbon. Overall, our record demonstrates the complexity of the interactions between local and regional factors in the development and evolution of both coastal geomorphology and ecosystems.

Acknowledgements
This research was funded by Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica PAPIIT-UNAM [grant number IN107716], and Consejo Nacional de Ciencia y Tecnología [grant number 256406]. Alex Correa-Metrio was supported by Programa de Apoyos para la Superación del Personal Académico de la UNAM (PASPA). Dayenari Caballero-Rodríguez, Esmeralda Cruz Silva, Roberto Maya Hernández, and Yosahandy Vázquez Molina are thanked for their assistance in the field.

7. References

Moreno-Casasola, P., 2006. Entornos veracruzanos: la costa de La Mancha, Instituto de Ecología, A.C., Xalapa, Veracruz, Mexico.

Reimer, P.J. et al., 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon, 55, 1869-1887.

dynamics: anthropogenic and environmental drivers. Boletín de la Sociedad Geológica
Mexicana, 70, 133-145.
Andres Island, Colombian Caribbean. Review of Palaeobotany and Palynology, 162, 168-
182.
Tropical Environments. Bioscience, 51, 807-815.
Vovides, A.G. et al., 2014. Morphological plasticity in mangrove trees: salinity-related changes in
the allometry of Avicennia germinans. Trees, 28, 1413-1425.
ecosystems: a region by region overview. Ecosystem Health Sustainability, 2, e01211.
Williams-Linera, G., 2002. Tree species richness complementarity, disturbance and fragmentation
in a Mexican tropical montane cloud forest. Biodiversity & Conservation, 11, 1825-1843.
Holocene mangrove palaeoecology from Twin Cays, Belize. The Holocene, 17, 1129-1139.
During the mid Holocene, sedimentation rates were lower than sea level rise rates.

Modern barrier-lagoon systems of the Gulf of Mexico appeared ~5000 years ago.

A drought between 5400 and 3700 years ago impeded mangrove forest establishment.

Modern coastal lagoons of the western Gulf of Mexico established ~3700 years ago.

The establishment of mangroves caused an increase of sedimentary organic matter.
Table 1. Radiocarbon dates of core MAN15V from La Mancha coastal lagoon. Depths in cm below lagoon floor (blf). Ages calibrated after the IntCal13 curve (Reimer et al., 2013).

<table>
<thead>
<tr>
<th>Laboratory code</th>
<th>Depth (cm blf)</th>
<th>(^{14}\text{C}) Age</th>
<th>Error</th>
<th>Calibrated age (95% range; cal BP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UBA-34340</td>
<td>109</td>
<td>1290</td>
<td>24</td>
<td>1181-1283</td>
</tr>
<tr>
<td>Beta-440367</td>
<td>175</td>
<td>1880</td>
<td>30</td>
<td>1730-1883</td>
</tr>
<tr>
<td>UBA-34341</td>
<td>282</td>
<td>3447</td>
<td>26</td>
<td>3637-3826</td>
</tr>
<tr>
<td>Beta-440368</td>
<td>373</td>
<td>3970</td>
<td>30</td>
<td>4300-4523</td>
</tr>
<tr>
<td>UBA-34342</td>
<td>564</td>
<td>4732</td>
<td>41</td>
<td>5326-5584</td>
</tr>
<tr>
<td>Beta-437078</td>
<td>649</td>
<td>4770</td>
<td>30</td>
<td>5334-5588</td>
</tr>
<tr>
<td>UBA-34343</td>
<td>979</td>
<td>5624</td>
<td>41</td>
<td>6312-6482</td>
</tr>
<tr>
<td>Beta-437079</td>
<td>1249</td>
<td>6700</td>
<td>30</td>
<td>7508-7616</td>
</tr>
</tbody>
</table>
Figure 1
Figure 2

Texture Color

Stratigraphy

Depth (cm)

Age (cal year BP)

Total N (%) Total C (%)

0.89 mm/yr
1.09 mm/yr
0.78 mm/yr
0.75 mm/yr
2.01 mm/yr
4.10 mm/yr
3.63 mm/yr
2.45 mm/yr

Calibrated 14C dates
Clay
Silt
Shells
Organic Material
Figure 3

Mangrove | Salt Marsh | Lowland forest | Montane forest | Disturbance taxa

Avicenni | Cyperaceae | Typha | Asteraceae | Chenopodiaceae | Mimosa | Desmodium | Protium | Psychotria | Machaerium | Moraceae | Bursera | Alnus | Microm | Ulmaceae | Quercus | Myrica | Pinus | Poaceae

Sample Number

Percentage (%)

N

S

Southern Basin (Dense mangrove forest)

Northern Basin (Sparse mangrove forest)

Lowland forest

Montane forest

Disturbance taxa
Figure 4

- Southern sub-basin
- Northern sub-basin
- NS Non significant

<table>
<thead>
<tr>
<th></th>
<th>TC (%)</th>
<th>TN (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern sub-basin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Southern sub-basin</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- TN (%) TC (%)
- TIC TOC
- Northern sub-basin
- Southern sub-basin

<table>
<thead>
<tr>
<th></th>
<th>r = 0.52 (p-val < 0.01)</th>
<th>r = 0.50 (p-val < 0.01)</th>
<th>r = 0.92 (p-val < 0.01)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNC (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNC (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- r = -0.30 NS (p-val = 0.12)
- r = 0.72 (p-val < 0.01)
- r = 0.12 NS (p-val = 0.52)
Figure 5

Mangrove | Salt Marsh | Lowland Forest | Montane Forest | Disturbance taxa

Rizophora | Avicennia | Conocarpus | Cyperaceae | Croton | Typha | Asteraceae | Chenopodiaceae | Miconia | Inga | Acacia | Machaerium | Proctorium | Bursera | Moraceae | Alnus | Myrica | Ulmaceae | Quercus | Micinoa | Pinus | Poaceae

Pollen Zones

I | II | III | IV
Figure 6

- Modern samples
- Fossil samples
- Pollen Zone 4
- Pollen Zone 3
- Pollen Zone 2
- Pollen Zone 1
Figure 1. Study area. A. Location of La Mancha lagoon in the continental context. B. Locations sampled for modern and fossil sediments in the local context of La Mancha coastal lagoon; elevation contours are shown in increments of 20 m asl (solid black lines), whereas a basic bathymetry based on field observations is shown as blue contours. C. Monthly precipitation (blue bars), evapotranspiration (gray bars), and monthly mean temperature (black line with dots) at La Mancha Meteorological Station (Servicio Meteorologico Nacional, 2018) D. Topographic representation of La Mancha coastal lagoon.

Figure 2. Core MAN15V from La Mancha coastal lagoon. A. Stratigraphy of the sedimentary sequence: texture (left), color (right), and organic and shell content. B. Age-depth model; calibrated ages (blue silhouettes), 95% confidence intervals in grey (darker colors indicate higher probability), and sedimentation rates (mm/yr). C and D. Percentage of total nitrogen and total carbon content (TN and TC, respectively).

Figure 3. Pollen diagram of selected taxa from mud-water interface samples from La Mancha coastal lagoon. Ecological affinities after Lugo and Snedaker (1974), Ramwell (1972), and Travieso-Bello (2000). Samples are ordered from South to North with samples from the southern (northern) sub-basin highlighted in dark (light) grey.

Figure 4. Content (%) of carbon and nitrogen in the modern samples of La Mancha coastal lagoon. Total C content (TC) discriminated into inorganic and organic fractions (TIC and
TOC), and total N content (TN). Comparisons among sedimentary attributes are shown in the right side panels (biplots and correlation coefficients with their significance).

Figure 5. Fossil pollen diagram of selected taxa of core MAN15V from La Mancha coastal lagoon. (ecological affinities after Lugo and Snedaker 1974, Ramwell 1972, and Travieso-Bello 2000).

Figure 6. Non-metric multidimensional scaling for modern and fossil pollen assemblages from La Mancha lagoon. Modern samples in black diamonds showing sample number, whereas fossil samples were symbol coded according to the declared legend.

Figure 7. Environmental history of La Mancha Lagoon through the last 7,800 years. A. Age-depth model of core MAN15V from La Mancha Lagoon (dashed lines show 95% confidence interval), compared with sea level rise curves for the Caribbean (red line, Toscano and Macintyre, 2003) and the northern Gulf of Mexico (black solid line, Milliken and Anderson, 2008). B. Sedimentary total nitrogen content (%); boxplots illustrate total nitrogen in modern samples form the northern (up) and southern (down) sub-basins of the lagoon (whiskers show minimum and maximum scores). C. NMDS Axis 1 scores through time; boxplots illustrate scores of modern samples; scores of the modern environmental envelope represented by modern samples are highlighted in grey; scores of the interquartile range of samples from the well preserved southern sub-basin are in dark grey. D. Schematic development of La Mancha Lagoon, illustrated at ~7,000, 6000, 4,500 cal BP, and Modern.