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NOMA Throughput and Energy Efficiency in
Energy Harvesting Enabled Networks

Ali A. Nasir, Hoang D. Tuan, Trung Q. Duong, and Merouane Debbah

Abstract—An energy harvesting (EH) enabled network is
capable of delivering energy to users, who are located suffi-
ciently close to the base stations. However, the wireless energy
delivery requires much more transmit power than what the
normal information delivery does. It is very challenging to
provide the quality of the wireless information and power de-
livery simultaneously. It is of practical interest to employ non-
orthogonal multiple access (NOMA) to improve the network
throughput, while fulfilling the EH requirements. To realize
both EH and information decoding, this paper considers a
transmit time-switching (transmit-TS) protocol. Two impor-
tant problems of users’ max-min throughput optimization
and energy efficiency maximization under power constraint
and EH thresholds, which are non-convex in beamforming
vectors, are addressed by efficient path-following algorithms.
In addition, the conventional power splitting (PS)-based EH
receiver is also considered. The provided numerical results
confirm that the proposed transmit-TS based algorithms
clearly outperform the PS-based algorithms in terms of both,
throughput and energy efficiency.

Index Terms—Wireless power delivery, energy harvest-
ing, non-orthogonal multiple access (NOMA), transmit time-
switching, nonconvex optimization, throughput, energy effi-
ciency, quality-of-service (QoS).

I. INTRODUCTION

A. Motivation

Radio frequency (RF) energy harvesting (EH) [1]–[3]
has emerged as a potential technology to energize the Inter-
net of things. To realize both wireless EH and information
decoding (ID), the users need to split the received signal for
EH and ID either by power splitting (PS) or time switching
(TS), where the latter is referred to as “receive-TS” [1], [4],
[5]. PS has been shown mostly outperforming receive-TS
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but it is complicated and inefficient for practical imple-
mentation. Recent findings in [4], [6] and [7] demonstrate
the advantages of the new “transmit-TS” approach over the
PS approach, where information and energy are transferred
separately so the users do not need any sophisticated device
for EH.

For information transmission, one of the most critical
tasks is to provide the quality of service (QoS) in terms
of throughput to those users, who are located far from the
BS. Non-orthogonal multiple access (NOMA) technique
(see e.g. [8] and [9]) is able to improve the throughput
at these users by allowing the near-by users to access the
information intended for them. NOMA is also capable of
supporting numbers of users that are more than the number
of available orthogonal time-, frequency-, or code-domain
resources, so it is considered as a potential candidate to
satisfy the radical spectral efficiency and massive connec-
tivity requirements of 5G [10]. An efficient beamforming
design for NOMA multicell systems was proposed in [11].

B. Literature Survey

A wireless powered communication network, where
the BS charges users and enables them to transmit in-
formation for uplink communication by using NOMA,
was considered in [12] and [13]. A similar study for a
wireless-powered sensor network was conducted in [14].
The trade-off among the energy efficiency, fairness, har-
vested energy, and system sum rate of a NOMA based
heterogeneous network was investigated in [15]. Optimal
resource allocation strategies for cognitive radio networks
with NOMA were designed in [16]. Wireless power transfer
and NOMA in machine-to-machine communication, where
the machine-type communication device harvests energy
in the downlink while transmitting information to the BS
via machine-type communication gateway in the uplink,
were considered [17] and [18]. All these works considered
problems for single antenna nodes, which either harvest
energy or decode information but not implement both EH
and ID.

In EH based cooperative NOMA systems, the cell-
centered or “nearly-located users” harvest energy from the
wireless signals received from the BSs and act as a relay
to forward the information to the “far-located users”. Most
of works used PS at the relay users. Outage expressions
for far end users were derived in [19]–[22]. Different users
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pairing schemes for NOMA were proposed in [23]. The
problem of maximizing the data rate of the strong user
while satisfying the QoS requirement of the weak user was
considered in [24]. Antenna selection schemes at the BS
were proposed in [21].

A hybrid receive-TS/PS for EH at the relay users was
proposed in a recent work [25], while a simple TS mode
at the relay receiver, where half of the time is dedicated
for EH, was considered in [26].

Exploiting wireless EH in NOMA systems, the work
[27] considered various energy harvesting protocols, e.g.,
conventional receive-TS, PS and generalized (hybrid
TS/PS) under a setup of a single antenna BS and a single
user pair. Wireless power transfer by PS and information
transmission in a NOMA system was also studied in [28]
under a simple setup with a single antenna BS. The work
[29] considered an energy-constrained full-duplex informa-
tion transmitter, which harvests energy from a dedicated
energy transmitter while transmitting information to the
information receivers by employing NOMA. A cognitive
radio based wireless information and power transfer net-
work with NOMA was considered in [30].

C. Research Gap and Contribution

Recently, throughput optimization with multi-antenna
beamforming and PS based EH in simple NOMA systems
with one BS serving one nearly-located user and one far-
located user, was addressed in [24]. Like [29] and [30],
semidefinite relaxation (SDR) is its tool for computation,
which is quite inefficient because SDR has to first solve for
matrix optimization of much higher dimension [6], [31]. In
addition, it employed a PS-based approach for EH, which
is also not very practical due to the need of variable PS.
Thus, an efficient solution for such important throughput
max-min optimization problem is still missing. Meanwhile,
the energy efficiency (EE), which is defined as the sum
throughput per Joule of consumed energy (ratio of sum
throughput to power consumption), is a key performance
indicator for new wireless technologies [32]. Therefore, EE
maximization is an important target for EH enabled NOMA
systems. To the best of authors’ knowledge, the problem
of EE maximization by multi-antenna beamforming in EH
enabled NOMA network has not been addressed in the lit-
erature. This problem is more computationally difficult than
the throughput maximization problem due to the additional
optimization variables appearing in the denominator of the
EE function [33], [34].

This paper considers multi-antenna beamforming in an
EH enabled NOMA network, which delivers information
and energy separately in fractional times, enabling the EH
by simple devices. Thus, both throughput and harvested
energy can be improved by separated information and en-
ergy beamformers. We formulate two important problems
of throughput max-min optimization and EE maximization
under power constraint and EH constraints at the nearly-

located users. As these problems are highly nonconvex,
checking their feasibility is already computationally dif-
ficult. Nevertheless, like [6], [7] for throughput max-min
optimization and EE in orthogonal multiple access (OMA)
EH enabled networks, and [11] for throughput maximiza-
tion in NOMA networks, we aim to develop efficient path-
following algorithms for their computation. Compared to
these our previous works, the contribution of the paper is
two-fold:

• To address the problem of throughput max-min op-
timization with new and much more complex non-
convex constraints compared with those in [6], [7],
[11], we propose completely new their inner convex
approximations. They lead to path-following algo-
rithms of low-computational complexity, which con-
verge rapidly to an optimal solution.

• To address the problem of EE maximization, we
also develop new path-following computational pro-
cedures, which avoid approximations of the entire EE
objective functions proposed in [7]. As such, they
reveal that this problem is not more computationally
complex than the problem of throughput maximiza-
tion, contrary to the commonly accepted conception
[33], [34]

For comparison purpose, we consider both PS-based and
transmit-TS based energy harvesting and propose novel
algorithms to solve above-mentioned novel beamforming
problems. Our numerical results confirm that the proposed
transmit-TS approach clearly outperforms the PS approach
in terms of both, throughput and energy efficiency.

D. Organization and Notation

The paper is organized as follows. After a brief in-
troduction of system model, Section II presents the for-
mulation of throughput and EE maximization problems
and their computational solution for PS-based NOMA
implementation. Section III describes the formulation and
solution of such problems for transmit-TS based NOMA
implementation. Section IV evaluates the performance of
our proposed algorithms by numerical examples. Finally,
Section V concludes the paper.

Notation. Bold-faced lower-case letters, e.g., x, are used
for vectors and lower-case letters, e.g., x, are used for for
scalars. xH , xT , and x∗ denote Hermitian transpose, nor-
mal transpose, and conjugate of the vector x, respectively.
‖ · ‖ stands for the vector’s Euclidean norm. C is the set of
all complex numbers, and ∅ is an empty set. <{x} denotes
the real part of a complex number x. ∇f(x) is the gradient
of function f(·) at x. Also, we define 〈x,y〉 , xHy.
Col[ai]i∈I arranges ai, i ∈ I in row-block. For instance

Col[ai]i∈{1,2} =

[
a1

a2

]
.
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Fig. 1. Downlink multiuser multicell interference scenario in a dense
network consisting of K small cells. For clarity, the intercell interference
channels are not shown, however, the interference occurs in all K cells.

II. SYSTEM MODEL AND PS-BASED NOMA

Consider a downlink system consisting of N cells under
dense deployment, where the BS of each cell is equipped
with Nt antennas to serve 2K single-antenna-equipped
users (UEs) within its cell. In each cell, there are K near
UEs (cell-center UEs), which are located inside the inner
circular area and K far UEs (cell-edge UEs), which are
located in the ring area between inner circle and outer
radius. A representative figure for three cells is shown
in Fig. 1. The K far UEs in each cell are not only in
poorer channel conditions than other K near UEs but also
are under more drastic inter-cell interference from adjacent
cells.

Upon denoting I , {1, 2, · · · , N} and J ,
{1, 2, · · · , 2K}, the j-th UE in the i-th cell is referred to
as UE (i, j) ∈ S , I × J . The cell-center UEs are UE
(i, j), j ∈ Jc , {1, · · · ,K} while the cell-edge UEs are
UE (i, j), j ∈ Je , {K+1, · · · , 2K}. Thus the set of cell-
center UEs and the set of cell-edge UEs are Sc , I × Jc
and Se , I × Je, respectively. Due their proximity, the
cell-center UE (i, j), j ∈ Jc is able to do both information
decoding and energy harvesting. By exploiting the differen-
tiated channel conditions between the cell-center and cell-
edge UEs, each cell-center UE (i, j) ∈ Sc is randomly
paired with cell-edge UE (i, p(j)) ∈ Se of the same cell to
create a virtual cluster to improve the network throughput.1

For notational convenience, the paired UE (i, p(j)) for UE
(i, j) is chosen, such that p(j) = j +K.

1This is a practical user-pairing strategy. Using more sophisticated
user-pairing strategies may improve the performance of MIMO-NOMA
networks (see e.g. [35]) but this is beyond the scope of this paper.

A. PS-based NOMA

For comparison point-of-view with transmit-TS based
NOMA, which will be presented in Section III, let us
first develop the system model, problem formulation, and
solution approach for PS-based NOMA implementation.

The signal superpositions are precoded at the BSs prior
to being transmitted to the UEs. Specifically, the message
intended for UE (i, j) is si,j ∈ C with E{|si,j |2} = 1,
which is beamformed by vector wi,j ∈ CNt . The received
signals at UE (i, j) and UE (i, p(j)) are expressed as

yi,j =
∑

(s,`)∈S

hs,i,jws,`ss,` + ni,j , (1)

and

yi,p(j) =
∑

(s,`)∈S

hs,i,p(j)ws,`ss,` + ni,p(j), (2)

where hs,i,j ∈ C1×Nt is the MISO channel from the BS
s ∈ I to UE (i, j) ∈ S and ni,j ∼ CN (0, σ) is the
additive noise. In this paper, we assume that full channel
state information is available by some means, e.g., through
coordination among the BSs [36].

To implement simultaneous wireless information and
power transfer (SWIPT), the power splitter divides the
received signal yi,j into two parts in the proportion of
αi,j : (1 − αi,j), where αi,j ∈ (0, 1) is termed as the
PS ratio for UE (i, j). The first part √αi,jyi,j forms an
input to the ID receiver as:

√
αi,jyi,j + zci,j =

√
αi,j

 ∑
(s,`)∈S

hs,i,jws,`ss,` + ni,j

+ zci,j , (3)

where zci,j ∼ CN (0, σc) is the additional noise introduced
by the ID receiver circuitry.

The energy of the second part
√

1− αi,jyi,j of the
received signal yi,j is harvested by the EH receiver of UE
(i, j) as

Ei,j(w, αi,j) , ζi,j(1− αi,j) (pi,j(w)) . (4)

For notational convenience, we define w , [wi,j ](i,j)∈S ,
which constitutes all possible beamforming vectors. As
can be sensed from (3) and (4), the near-by UEs (i, j)
harvest energy through wireless signals not only from the
serving BSs but also from the neighboring BSs. Note that
the harvested and stored energy Ei,j may be used later
for different power constrained operations at cell-center
UEs (i, j), e.g., assisting uplink data transmission to the
BS or performing downlink information processing. In (4),
the constant ζi,j ∈ (0, 1) denotes the efficiency of energy
conversion at the EH receiver, and

pi,j(w) =
∑

(s,`)∈S

|hs,i,jws,`|2. (5)
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In NOMA, the message si,p(j) is decoded by UE (i, j)
and (i, p(j)). The interference plus noise at UE (i, j) in
decoding si,p(j) is

INci,p(j)(w) , αi,j

(∑
(s,`)∈S\{(i,p(j))} |hs,i,jws,`|2

+σ) + σc
= αi,j(‖Lci,p(j)(w)‖2 + σ) + σc,

with

Lci,p(j)(w) , Col[hs,i,jws,`](s,`)∈S\{(i,p(j))}, (6)

which is a linear operator. Therefore, the signal-to-
interference-plus-noise (SINR) in decoding si,p(j) at UE
(i, j) is |hi,i,jwi,p(j)|2/

(
‖Lci,p(j)(w)‖2 + σ + σc/αi,j

)
.

Meanwhile, the edge-user UE (i, p(j) decodes its own
message si,p(j) only, so the interference plus noise at UE
(i, p(j)) is INei,p(j)(w) , ‖Lei,p(j)(w)‖2 +σ with the linear
operator

Lei,p(j)(w) , Col[hs,i,p(j)ws,`](s,`)∈S\{(i,p(j))}. (7)

In what follows, we use the general rate function ψ(x,y, ν)
defined by

ψ(x,y, ν) = ln

(
1 +

‖x‖2

‖y‖2 + σ + σcν

)
. (8)

Suppose that Ri,p(j) is the achievable rate in decoding
si,p(j). Since both near UE (i, j) and far UE (i, p(j)) will
decode the far user’s information si,p(j), thus, Ri,p(j) for
UE (i, j) and UE (i, p(j)), respectively, is defined by

min{ψ(hi,i,jwi,p(j),Lci,p(j)(w), 1/αi,j),

ψ(hi,i,jwi,p(j),Lei,p(j)(w), 0)}.

Thus Ri,p(j) satisfies the following constraints:

Ri,p(j) ≤ ψ(hi,i,jwi,p(j),Lci,p(j)(w), 1/αi,j), (9)
Ri,p(j) ≤ ψ(hi,i,p(j)wi,p(j),Lei,p(j)(w), 0). (10)

UE (i, j) subtracts si,p(j) from the right hand side of (3) in
decoding si,j . Then the achievable rate Ri,j by decoding
si,j is ψ(hi,i,jwi,j ,Lci,j(w), 1/αi,j) and is expressed by
the constraint:

Ri,j ≤ ψ(hi,i,jwi,j ,Lci,j(w), 1/αi,j), (11)

with

Lci,j(w) , Col[hs,i,jws,`](s,`)∈S\{(i,p(j)),(i,j)}. (12)

For convenience, we also use the notations

ααα , (αi,j)(i,j)∈S
R , (Ri,j)(i,j)∈S .

We consider two basic problems:

1) Throughput max-min optimization

max
w,R,ααα

min
(i,j)∈I×J

Ri,j s.t. (9), (10), (11), (13a)

ζi,j (pi,j(w)) ≥
emin
i,j

1− αi,j
, i ∈ I, j ∈ Jc, (13b)

0 < αi,j < 1, i ∈ I, j ∈ Jc, (13c)∑
j∈J
‖wi,j‖2 ≤ Pmax

i , i ∈ I, (13d)

where (13b) defines the EH constraint such that emin
i,j is the

EH threshold and pi,j(w) is defined in (5), and Pmax
i in

(13d) is the transmit power budget of BS i.
2) Energy-efficiency maximization under QoS constraints

max
w,R,ααα

F(w,R) ,

∑
(i,j)∈I×J Ri,j
ξπ(w) + Pc

s.t. (9), (10), (11), (13b), (13c), (13d), (14a)
Ri,j ≥ ri,j , i ∈ I, j ∈ Jc, (14b)

Ri,p(j) ≥ ri,p(j), i ∈ I, j ∈ Jc, (14c)

where π(w) =
∑
i∈I
∑
j∈J ‖wi,j‖2, ξ is the reciprocal

constant power amplifier efficiency, Pc , NtPA+Pcir, PA
is the power dissipation at each transmit antenna, Pcir is the
fixed circuit power consumption for base-band processing,
and (14b) and (14c) are the QoS constraints, such that, ri,j ,
i ∈ I, j ∈ J is the threshold rate to ensure a certain QoS.

B. Computational solutions for PS-based NOMA

Let us first address the throughput max-min optimization
problem (13). We have to resolve the non-convex rate
constraints (9), (10), and (11) and the non-convex EH
constraint (13b). In order to deal with the non-convexity of
rate constraints (9), (10), and (11), we have to provide a
concave lower bounding function for ψ(x,y, 0) defined by
(8), at a given point (x(κ),y(κ)) [5], [7]. In the Appendix
A, we prove the following new and universal concave
function bound:

ψ(x,y, µ) ≥ Λ(x,y, µ) (15)

over the trust region

2<{(x(κ))Hx} − ‖x(κ)‖2 > 0, (16)

with ψ(x(κ),y(κ), µ(κ)) = Λ(x(κ),y(κ), µ(κ)), where

Λ(x,y, µ) ,a(x(κ),y(κ), µ(κ))

− ‖x(κ)‖2

2<{(x(κ))Hx} − ‖x(κ)‖2

− b(x(κ),y(κ), µ(κ))‖x‖2

− c(x(κ),y(κ), µ(κ))(‖y‖2 + σcµ), (17)

and

a(x(κ),y(κ), µ(κ)) = ψ(x(κ),y(κ), µ(κ)) + 2

− ‖x(κ)‖2

‖x(κ)‖2 + ‖y(κ)‖2 + µ̃(κ)

σ

‖y(κ)‖2 + µ̃(κ)
, (18)
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0 < b(x(κ),y(κ), µ(κ))

=
‖y(κ)‖2 + µ̃(κ)

(‖x(κ)‖2 + ‖y(κ)‖2 + µ̃(κ))‖x(κ)‖2
, (19)

0 < c(x(κ),y(κ), µ(κ))

=
‖x(κ)‖2(

‖x(κ)‖2 + ‖y(κ)‖2 + µ̃(κ)
) (
‖y(κ)‖2 + µ̃(κ)

)(20)

for µ̃(κ) = σ+σcµ
(κ). Let (w(κ),R(κ),ααα(κ)) be a feasible

point for (13) that is found from the (κ − 1)th iteration,
where ααα(κ) , (α

(κ)
i,j )(i,j)∈S and R(κ) , (R(κ)

i,j )(i,j)∈S .
Applying inequality (15) yields

ψ(hi,i,jwi,p(j),Lci,p(j)(w), αi,j)

≥ Λ(hi,i,jwi,p(j),Lci,p(j)(w), 1/αi,j)

over the trust region

2<{(w(κ)
i,p(j))

HhHi,i,p(j)hi,i,p(j)wi,p(j)}

−‖hi,i,p(j)w
(κ)
i,p(j)‖

2 > 0, (21)

where the concave function
Λ(hi,i,jwi,p(j),Lci,p(j)(w), 1/αi,j) is defined from (17),

(18)-(20) for x(κ) = hi,i,jw
(κ)
i,p(j), y(κ) = Lci,p(j)(w

(κ)),

and µ(κ) = 1/α
(κ)
i,j . As such, the nonconvex constraint (9)

is innerly approximated by the convex constraints (21)
and

Ri,p(j) ≤ Λ(hi,i,jwi,p(j),Lci,p(j)(w), 1/αi,j). (22)

Analogously, the nonconvex constraints (10) and (11) are
innerly approximated by the convex constraints

Ri,p(j) ≤ Λ(hi,i,p(j)wi,p(j),Lei,p(j)(w), 0), (23)
Ri,j ≤ Λ(hi,i,jwi,j ,Lci,j(w), αi,j), (24)

2<{(w(κ)
i,p(j))

HhHi,i,jhi,i,jwi,p(j)}

−‖hi,i,jw(κ)
i,p(j)‖

2 > 0, (25)

2<{(w(κ)
i,j )HhHi,i,jhi,i,jwi,j} − ‖hi,i,jw(κ)

i,j ‖
2 > 0, (26)

where the concave functions
Λ(hi,i,p(j)wi,p(j),Lei,p(j)(w), 0) is defined from (17)-(20)
for

(x(κ),y(κ), µ̃(κ)) = (hi,i,p(j)w
(κ)
i,p(j),L

e
i,p(j)(w

(κ)), σ),

while the concave functions Λ(hi,i,jwi,j ,Lci,j(w), 1/αi,j)
is defined from (17)-(20) for

(x(κ),y(κ), µ̃(κ)) = (hi,i,jw
(κ)
i,j ,L

c
i,j(w

(κ)), σ + 1/α
(κ)
i,j ).

Next, by using the following approximation [7]

|hHs,i,jx|2 ≥ −|hHs,i,jx|2 + 2<
{(

x(κ)
)H

hs,i,jh
H
s,i,jx

}
,

an inner convex approximation for the nonconvex EH
constraint (13b) is given by

ζi,j
∑

(s,`)∈S

(
2<{(w(κ)

s,` )HhHs,i,jhs,i,jws,`}

−|hs,i,jw(κ)
s,` |

2
)
≥

emin
i,j

1− αi,j
. (27)

At the κ-th iteration, we solve the following convex
quadratic optimization problem of computational com-
plexity O

(
(2KN(Nt + 2))3 (8KN +N)

)
[37, p. 4] to

generate the next feasible point (w(κ+1),R(κ+1),ααα(κ+1)):

max
w,ααα,R

min
(i,j)∈I×J

Ri,j s.t. (13c), (13d), (21)− (27).

(28)
Algorithm 1 outlines the steps to solve the through-
put max-min optimization problem (13). Note that
min(i,j)∈I×J R(α+1)

i,j > min(i,j)∈I×J R(α)
i,j because

(w(κ+1),R(κ+1),ααα(κ+1)) is the optimal solution of (28)
while (w(κ),R(κ),ααα(κ)) is its feasible point. Therefore,
Algorithm 1 is a path-following algorithm, which gener-
ates a sequence {(w(κ),R(κ),ααα(κ))} of improved feasible
points for (13). By using similar arguments to that shown
in [5], [6], we can easily show that it converges at least
to a locally optimal solution of (13), which satisfies the
Karush-Kuhn-Tucker (KKT) optimality condition.

Since the EH constraint (13b) is nonconvex, locating
an initial feasible point (w(0),R(0),ααα(0)) for (13) is a
nonconvex problem, which is resolved via the iterations

max
w,R,ααα

min
(i,j)∈I×Jc

{
Ri,j
r0
− 1,

Ri,p(j)
r0

− 1,

ζi,j
∑

(s,`)∈S

(
2<{(w(κ)

s,` )HhHs,i,jhs,i,jws,l}

−|hs,i,jw(κ)
s,l |2

)
− emin

i,j

1−αi,j

}
s.t. (13c), (13d), (21)− (26) (29)

for a fixed r0 > 02 till reaching a value more than or equal
to 0 and thus the feasibility for (13).

Algorithm 1 PS-based algorithm for throughput max-min
optimization problem (13)

1: Initialization: Set κ := 0 and initialize a feasible point
(w(0),R(0),ααα(0)) for (13)

2: Repeat until convergence of the objective in (13):
Solve the convex optimization problem (28) to generate
the feasible point (w(κ+1),R(κ+1),ααα(κ+1)) for (13);
Reset κ := κ+ 1.

Next, we address the EE maximization problem (14),
which is equivalent to the following minimization problem

min
w,ααα,R

ξπ(w) + Pc∑
(i,j)∈I×J Ri,j

s.t. (9), (10), (11), (13b), (13c), (13d), (14b), (14c). (30)

2r0 plays the role of good initial value of the max-min throughput
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The advantage of this transformation is that the objective
function is already convex so there is no need of using
Dinkelbach’s iteration or approximating it. Actually, the
Dinkelbach iteration for (14) still involves a nonconvex
optimization problem, which is as computationally difficult
as (14) itself (see e.g., [34]). At the κ-th iteration, we solve
the following convex optimization problem of computa-
tional complexity O

(
(2KN(Nt + 2))3 (10KN +N)

)
to

generate its next feasible point (w(κ+1),R(κ+1),ααα(κ+1)):

min
w,ααα,R

ξπ(w) + Pc∑
(i,j)∈I×J Ri,j

s.t. (13c), (13d), (14b), (14c), (21)− (27). (31)

Algorithm 2 outlines a path-following computational proce-
dure to solve the the energy-efficiency (EE) maximization
problem (14). Like Algorithm 1, at least it converges to a
locally optimal solution of (14), which satisfies the KKT
optimality condition.

Locating a feasible point (w(0),R(0),ααα(0)) for the non-
convex constraints (13b), (9), (10), and (11) to initialize
Algorithm 2 is resolved via the iterations

max
w,R,ααα

min
(i,j)∈I×Jc

{
Ri,j
ri,j
− 1,

Ri,p(j)
ri,p(j)

− 1,

ζi,j
∑

(s,`)∈S

(
2<{(w(κ)

s,` )HhHs,i,jhs,i,jws,l}

−|hs,i,jw(κ)
s,l |

2
)
−

emin
i,j

1− αi,j

}
s.t. (13c), (13d), (21)− (26) (32)

till reaching a value more than or equal to 0.

Algorithm 2 PS-based algorithm for energy-efficiency
(EE) maximization problem (14)

1: Initialization: Set κ := 0 and initialize a feasible point
(w(0),R(0),ααα(0)) for (14).

2: Repeat until convergence of the objective in (14):
Solve the convex optimization problem (31) to obtain
the optimal solution w(κ+1),ααα(κ+1),R(κ+1); Reset
κ := κ+ 1.

III. TRANSMIT TS-BASED NOMA

In a time-switching (TS) based system, a fraction of time
0 < ρ < 1 is used for power transfer while the remaining
fraction of time 1− ρ for information transfer, where ρ is
termed as TS ratio. For power transfer, we have to design
the energy beamforming vectors wE

i,j , ∀, i ∈ I, j ∈ Jc.
For pi,j(wE) ,

∑
(s,`)∈Sc |hs,i,jw

E
s,`|2 and ζi,j ∈ (0, 1)

as the energy conversion efficiency for the EH receiver,
the harvested energy by the cell-center user UE(i, j) is
expressed as

Ei,j(w
E , ρ) , ρζi,j(pi,j(w

E)). (33)

Here, we assume a common TS ratio ρ for all BSs, i ∈
I, where near-by users harvest energy through wireless
signals not only from the serving BSs but also from the
neighboring BSs. Let us denote wE , [wE

i,j ]i∈I,j∈Jc .
The remaining time (1−ρ) will be used for information

decoding by all users UE (i, j), i ∈ I, j ∈ J . Let wI ,
[wI

i,j ]i∈I,j∈J define the information beamforming vectors
and suppose that Ri,p(j) is the achievable rate by decoding
si,p(j). Recalling the definitions (6), (7), (12) and (8), we
have

Ri,p(j) ≤ (1− ρ)ψ(hi,i,jw
I
i,p(j),L

c
i,p(j)(w

I), 0), (34)

Ri,p(j) ≤ (1− ρ)ψ(hi,i,p(j)w
I
i,p(j),L

e
i,p(j)(w

I), 0). (35)

After decoding si,p(j), UE (i, j), j ∈ Jc decodes si,j . The
achievable rate Ri,j by decoding si,j is

Ri,j ≤ (1− ρ)ψ(hi,i,jw
I
i,j ,Lci,j(wI), 0). (36)

In the following subsections, we present problem formula-
tion and solution for throughput max-min optimization and
energy-efficiency optimization.

A. Throughput max-min Optimization

Thus, the throughput max-min optimization problem for
TS-based NOMA SWIPT system is given by

max
wI ,wE ,R,ρ

min
(i,j)∈I×J

Ri,j s.t. (34), (35), (36), (37a)

ζi,j
(
pi,j(w

E)
)
≥
emin
i,j

ρ
, i ∈ I, j ∈ Jc, (37b)

0 < ρ < 1, (37c)
1

1− ρ
∑
j∈Jc

‖wE
i,j‖2 +

∑
j∈J
‖wI

i,j‖2 ≤

Pmax
i

1− ρ
+
∑
j∈Jc

‖wE
i,j‖2, i ∈ I (37d)

‖wE
i,j‖2 ≤ Pmax

i i ∈ I, j ∈ Jc (37e)

‖wI
i,j‖2 ≤ Pmax

i i ∈ I, j ∈ J . (37f)

Note that (37d) is the equivalent reexpression of the sum
power constraint

ρ
∑
j∈Jc

‖wE
i,j‖2 + (1− ρ)

∑
j∈J
‖wI

i,j‖2 ≤ Pmax
i , i ∈ I,

while (37e) and (37f) set the limit of transmit power during
any fraction of time.

Let (wI,(κ),wE,(κ),R(κ), ρ(κ)) be a feasible point for
(37) that is found from the (κ − 1)th iteration. By using
the inequality x ≤ 0.5(x2/x̄ + x̄) ∀x), x̄ > 0 [38, (78)]
and (15), we can innerly approximate (34), (35) and (36)
by

0.5
Ri,p(j))2/R(κ)

i,p(j) +R(κ)
i,p(j)

1− ρ
≤

Λ(hi,i,jw
I
i,p(j),L

c
i,p(j)(w

I), 0), (38)
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0.5
(Ri,p(j))2/R(κ)

i,p(j) +R(κ)
i,p(j)

1− ρ
≤

Λ(hi,i,p(j)w
I
i,p(j),L

e
i,p(j)(w

I), 0), (39)

and

0.5
(Ri,j)2/R(κ)

i,j +R(κ)
i,j

1− ρ
≤ Λ(hi,i,jw

I
i,j ,Lci,j(wI), 0)

(40)

over the trust regions

2<{(wI,(κ)
i,p(j))

HhHi,i,p(j)hi,i,p(j)w
I
i,p(j)}

−‖hi,i,p(j)w
I,(κ)
i,p(j)‖

2 > 0, (41a)

2<{(wI,(κ)
i,p(j))

HhHi,i,jhi,i,jw
I
i,p(j)}

−‖hi,i,jwI,(κ)
i,p(j)‖

2 > 0, (41b)

2<{(wI,(κ)
i,j )HhHi,i,jhi,i,jw

I
i,j}

−‖hi,i,jwI,(κ)
i,j ‖

2 > 0, (41c)

with the concave functions Λ(hi,i,jw
I
i,p(j),L

c
i,p(j)(w

I), 0),
Λ(hi,i,p(j)w

I
i,p(j),L

e
i,p(j)(w

I), 0), and
Λ(hi,i,jw

I
i,j ,Lci,j(wI), 0) defined from (17), (18)-(20) for

(x(κ),y(κ), µ̃(κ)) = (hi,i,jw
I,(κ)
i,p(j),L

c
i,p(j)(w

I,(κ)), σ),

(x(κ),y(κ), µ̃(κ)) = (hi,i,p(j)w
I,(κ)
i,p(j),L

e
i,p(j)(w

I,(κ)), σ),

and (x(κ),y(κ), µ̃(κ)) = (hi,i,jw
I,(κ)
i,j ,Lci,j(wI,(κ)), σ), re-

spectively.
The EH constraint (37b) is innerly approximated by [7]∑

(s,`)∈Sc

[
2<
{

(w
E,(κ)
s,` )HhHs,i,jhs,i,jw

E
s,`

}
−
∣∣∣hi,i,jwE,(κ)

s,`

∣∣∣2] ≥ emin
i,j

ζi,jρ
, i ∈ I, j ∈ Jc, (42)

while the power constraint (37d) is innerly approximated
by [7]

1

1− ρ
∑
j∈Jc

‖wE
i,j‖2 +

∑
j∈J
‖wI

i,j‖2 ≤(
2

1− ρ(κ)
− 1− ρ

(1− ρ(κ))2

)
Pmax
i

+
∑
j∈J

(
2<
{

(w
E,(κ)
i,j )HwE

i,j

}
− ‖wE,(κ)

i,j ‖2
)
. (43)

In summary, at the κth iteration we solve the following
convex optimization problem of computational complexity
O
(
(2KN(Nt +Nt/2 + 1) + 1)3 (9KN +N + 1)

)
to generate the feasible point
(wI,(κ+1),wE,(κ+1),R(κ), ρ(κ+1)) for (37):

max
wE ,wI ,R,ρ

min
(i,j)∈I×J

Ri,j

s.t. (37c), (37e), (37f), (38)− (43). (44)

Algorithm 3 outlines a path-following computational pro-
cedure to solve the throughput max-min optimization prob-
lem (37). Like Algorithm 1, it converges at least to a

local optimal solution satisfying the KKT condition. To
find an initial feasible point (wE,(0),wI,(0), ρ(0),R(0))
of (37), we first fix ρ(0) and find (wE,(0),wI,(0)) by
randomly generating Nt × 1 complex vectors followed by
their normalization to satisfy (37d), (37e), and (37f). We
then find

(
wE,(0),wI,(0),R(0)

)
via the iterations

max
wE ,wI ,γ>0

γ s.t. (37e), (37f), (45a)

ζi,j
∑

(s,`)∈Sc

(
2<{(wE,(κ)

s,` )HhHs,i,jhs,i,jw
E
s,l}

−|hs,i,jwE,(κ)
s,l |2

)
≥ γ

emin
i,j

ρ(0)
, (i, j) ∈ I × Jc (45b)

ρ(0)
∑
j∈Jc

‖wE
i,j‖2 + (1− ρ(0))

∑
j∈J
‖wI

i,j‖2

≤ Pmax
i , i ∈ I, (45c)

r0

1− ρ(0)
γ ≤ Λ(hi,i,jw

I
i,p(j),L

c
i,p(j)(w

I), 0), (45d)

r0

1− ρ(0)
γ ≤ Λ(hi,i,p(j)w

I
i,p(j),L

e
i,p(j)(w

I), 0), (45e)

r0

1− ρ(0)
γ ≤ Λ(hi,i,jw

I
i,j ,Lci,j(wI), 0), (45f)

till reaching a value more than or equal to 1, for fixed ρ(0)

and r0.3

Algorithm 3 Transmit TS-based algorithm for throughput
max-min optimization problem (37)

1: Initialization: Set κ := 0 and initialize a feasible point(
wE,(0),wI,(0),R(0), ρ(0)

)
for (37).

2: Repeat until convergence of the objective
in (37): Solve the convex optimization
problem (44) to obtain the optimal solution(
wE,(κ+1),wI,(κ+1),R(κ+1), ρ(κ+1)

)
; Reset

κ := κ+ 1.

B. Energy-Efficiency Optimization

Next, we address the following energy-efficiency maxi-
mization problem

max
wE ,wI ,R,ρ

∑
(i,j)∈I×J Ri,j

ξ [ρπE(wE) + (1− ρ)πI(wI)] + Pc
s.t. (14b), (14c), (34)− (36), (37b)− (37f), (46)

where πE(wE) =
∑
i∈I
∑
j∈Jc ‖w

E
i,j‖2 and πI(w

I) =∑
i∈I
∑
j∈J ‖wI

i,j‖2. Note that we define ρπE(wE) +

(1− ρ)πI(w
I) to differentiate from π(w) in (30). For this

network, it is more appropriate to use (1 − ρ)πI(w
I) for

information delivery.
In contrast to the objective function in (14), the power

consumption function in the denominator of the objective

3Like that in (29), r0 plays the role of good initial value of the max-min
throughput. The initial point (wE,(0),wI,(0)) for (45) is any feasible
point for the convex constraints (37e) and (37f), Simulation results in
Sec. IV show that ρ(0) = 0.2 is a good choice.
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function in (46) is no longer convex, making equivalently
transformed problem like (14) no longer useful. Never-
theless, we now also develop another iterative procedure,
where (46) is seen no more computationally difficult than
the throughput optimization problem (37).

Let (wE,(κ),wI,(κ),R(κ), ρ(κ)) be a feasible point for
(46) that is found from the (κ− 1)th iteration and

t(κ) ,∑
(i,j)∈I×J R

(κ)
i,j

ξ
[
ρ(κ)πE(wE,(κ)) + (1− ρ(κ))πI(wI,(κ))

]
+ Pc

=∑
(i,j)∈I×J R

(κ)
i,j /(1− ρ(κ))

ξ

[
πE(wE,(κ))

(1− ρ(κ))− 1
+ ξπI(w

I,(κ))

]
+

Pc
1− ρ(κ)

At the κth iteration we address the problem

max
wE ,wI ,R,ρ

∑
(i,j)∈I×J Ri,j

1− ρ
− t(κ)

[
ξ

(
1

1− ρ
− 1

)
×πE(wE) + ξπI(w

I) +
Pc

1− ρ

]
s.t. (14b), (14c), (34)− (36), (37b)− (37f). (47)

Substituting x =
∑

(i,j)∈I×J Ri,j , x̄ =
∑

(i,j)∈I×J R
(κ)
i,j ,

and t = 1− ρ, t̄ = 1− ρ(κ) into the following inequality

x

t
≥ 2

√
x̄

t̄

√
x− x̄

t̄2
t ∀ x > 0, x̄ > 0, t > 0, t̄ > 0, (48)

the proof of which is given by Appendix B, the first term
in the objective of (47) is lower bounded by the concave
function

f (κ)(R, ρ) , 2

√∑
(i,j)∈I×J R

(κ)
i,j

1− ρ(κ)

√ ∑
(i,j)∈I×J

Ri,j

−
∑

(i,j)∈I×J R
(κ)
i,j

(1− ρ(κ))2
(1− ρ).

The second term g(w, ρ) , ξ
(

1
1−ρ − 1

)
πE(wE) +

ξπI(w
I) + Pc

1−ρ in the objective of (47) is upper bounded
by the convex function

g(κ)(w, ρ) , 1
(1−ρ)ξπE(wE) + ξπI(w

I) + Pc
1−ρ

−ξ
∑
i∈I
∑
j∈Jc

(
2<{(wE,(κ)

i,j )HwE
i,j} − ‖w

E,(κ)
i,j ‖2

)
,

because ‖x‖2 ≥ 2<{(x(κ))Hx} − ‖x(κ)‖2.
Thus, we solve the following convex optimization

problem of computational complexity
O
(
(2KN(Nt +Nt/2 + 1) + 1)3 (11KN +N + 1)

)
to

generate (wE,(κ+1),wI,(κ+1),R(κ+1), ρ(κ+1)):

max
wE ,wI ,R,ρ

[f (κ)(R, ρ)− t(κ)g(κ)(w, ρ)]

s.t. (14b), (14c), (38)− (43). (49)

Algorithm 4 outlines the steps to solve the energy-
efficiency (EE) maximization problem (46). Locating an
initial feasible point

(
wE,(0),wI,(0), ρ(0),R(0)

)
for (46)
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Fig. 2. A multicell network setup used in our numerical examples.

is resolved via iterations (45) with ri,p(j) (ri,j , resp.)
replacing r0 in (45d) and (45e) ((45f), resp.) till reaching
a value greater than or equal to 1.

Algorithm 4 Transmit TS-based algorithm for energy-
efficiency (EE) maximization problem (46)

1: Initialization: Set κ := 0 and initialize a feasible point(
wE,(0),wI,(0), ρ(0),R(0)

)
for (46).

2: Repeat until convergence of the objective
in (46): Solve the convex optimization
problem (49) to obtain the optimal solution(
wE,(κ+1),wI,(κ+1),R(κ+1), ρ(κ+1)

)
; Reset

κ := κ+ 1.

IV. SIMULATION RESULTS

To analyze the proposed algorithms through simulations,
a network topology as shown in Fig. 2 is set up. There
are N = 3 cells and 2K = 4 UEs per cell with two
placed close to the BS and the remaining two placed near
cell-edges. These 12 users are served over the same time
and frequency. Other users are allocated different frequency
band or different time for communication. The cell radius
is set to be 100 meters, where, near-by users are placed
about the distance of 10 meters from the serving BS while
cell-edge users are placed about the distance of 80 − 90
meters from the serving BS.

The channel hs,i,j from BS s ∈ I to UE (i, j)
at a distance of d meters is generated as hs,i,j =√

10−σPL/10h̃s,i,j , where σPL = 30 + 10β log10(d) is the
path-loss in dB (the path-loss model is consistent with
dense user deployment settings and wireless energy har-
vesting requirements [25]), β is the path-loss exponent, and
h̃s,i,j is the normalized Rayleigh fading channel gain (for
s = i while j ∈ Je or s 6= i, i.e., channel between BS and
its own cell-edge users or channel between BS and users in
the neigboring cells) or h̃s,i,j is the Rician fading channel
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gain with Rician factor of 10 dB (for s = i while j ∈ Jc,
i.e., channel between BS and its own cell-centered users).
We set the path-loss exponents β = β1 = 3 for the former
case and β = β2 = 2 for the later case. Different values for
path-loss exponents have been proposed for different type
of users in the literature too [39], [40]. Considering the
adopted path-loss model and practical simulation setup, the
power of the received signal at the cell-center UEs passes
the threshold minimum power requirement (−21 dBm with
13 nm CMOS technology [1]) to carry out meaningful EH.
For simplicity, set emin

i,j ≡ emin for the energy harvesting
thresholds, ζi,j ≡ ζ, ∀i, j for the energy harvesting
conversion, Pmax

i ≡ Pmax, ∀ i. Further, emin = −20 dBm
for the energy harvesting threshold, ζ = 0.5 for the energy
conversion efficiency, and Pmax = 35 dBm are set (unless
stated otherwise). The bandwidth is set to B = 20 MHz,
the carrier frequency is set to 2 GHz, and unless stated
otehrwise, the power spectral density of additive white
Gaussian noise, σ

B or σc
B , is set to −174 dBm/Hz. For

energy efficiency maximization problems (14) and (46),
the threshold rate ri,j = 0.5 bits/sec/Hz ∀ i, j (unless
stated otherwise), the power amplifier efficiency 1/ξ = 0.2,
power dissipation at each transmit antenna PA = 0.6W
(27.78 dBm), and circuit power consumption Pcir = 2.5W
(33.97 dBm) are set [41], [42]. The convex solver CVX
[43] is used.

A. Results for throughput max-min optimization problems
(13) and (37):

On average (running 100 simulations and averaging
over random channel realizations), the PS-based Algorithm
1 requires 30.05 iterations, while TS-based Algorithm 3
requires 18.25 iterations for convergence.

Fig. 3 plots the optimized max-min rate for varying num-
ber of BS-antennas and fixed BS power budget Pmax = 35
dBm by solving the power splitting (PS)-based problem
(13) and the time switching (TS)-based problem (37). As
expected, the rate increases by increasing the number of
antennas at the BS. Fig. 3 shows that the TS-based Al-
gorithm 3 outperforms the PS-based Algorithm 1 in terms
of achievable rate and the corresponding performance gap
increases by increasing the number of antennas mounted
on the BS. In the TS-based model, the presence of more
antennas helps both information and energy beamforming
vectors to scale their performance more progressively as
compared to the PS-based model with optimizing only
the information beamforming vectors. Fig. 4 plots the
optimized worst user rate for varying values of BS transmit
power budget Pmax and fixed number of BS-antennas
Nt = 6, while solving the same power splitting (PS)-based
problem (13) and time switching (TS)-based problem (37).
Fig. 4 shows that increasing the transmit power budget
raises the level of achievable rate, however, the increase
diminishes at higher values of transmit power budget, e.g.,
there is a marginal improvement in the rate when the

transmit power budget is increased from Pmax = 43 dBm
to 47 dBm. Similarly to Fig. 3, Fig. 4 shows that the TS-
based Algorithm 3 outperforms the PS-based Algorithm 1
in terms of achievable rate.

Fig. 5 plots the optimized worst user rate for varying
values of noise power spectral density σ

B (in dBm/Hz) and
fixed value of transmit power budget Pmax = 35 dBm
and BS antennas Nt = 6, while solving the same power
splitting (PS)-based problem (13) and time switching (TS)-
based problem (37). Fig. 5 shows that, as expected, increas-
ing the noise variance decreases the level of achievable
rate. However, there is a minor decrease in the achievable
rate for PS-based receiver. Therefore, though the TS-based
Algorithm 3 outperforms the PS-based Algorithm 1 in
terms of achievable rate, the corresponding performance
gap decreases by increasing the noise variance. Under a
similar simulation setup, Fig. 6 plots the optimized worst
user rate for varying values of path-loss exponent β1,
showing that increasing the path-loss exponent increases
the level of achievable rate. Indeed, it is an interesting
result as it goes against the usual expectation of decrease in
the achievable rate with the increase in path-loss exponent.
The unexpected trend of increase in the achievable rate
with the increase in the path-loss exponent is due to the
consideration of multicell setup. The intercell interference
decreases with the increase in the path-loss exponent,
which boosts the achievable rate of the affected cell-edge
users.

Remark 1: Figs. 3-6 show that the TS-based Algorithm 3
outperforms the PS-based Algorithm 1 in terms of spectral
efficiency. This is because for the TS-based Algorithm
3, we separately optimize the beamforming vectors for
information transmission and energy harvesting, which
results in better design compared to the case of PS-based
Algorithm 1, where same beamforming vector is used for
both information transmission and energy harvesting.

B. Results for energy efficiency maximization problems
(14) and (46):

On average, the PS-based Algorithm 2 requires 15.05
iterations, while the TS-based Algorithm 4 requires 15.7
iterations before convergence.

Fig. 7 plots the optimized energy efficiency (EE) for
a varying number of BS-antennas and fixed BS power
budget Pmax = 35 dBm, while solving power splitting
(PS)-based problem (14) and time switching (TS)-based
problem (46). As expected, the EE increases by increasing
the number of antennas at the BS. We can also observe
from Fig. 7 that the TS-based Algorithm 4 outperforms the
PS-based Algorithm 2 in terms of achievable EE and the
performance gap is more than 1 bit/Joule. Next, Fig. 8 plots
the energy efficiency for varying values of BS transmit
power budget Pmax and fixed number of BS-antennas
Nt = 4, while solving the same power splitting (PS)-based
problem (14) and time switching (TS)-based problem (46).
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fixed BS power budget Pmax = 35 dBm, by solving the power splitting
(PS)-based problem (13) and the time switching (TS)-based problem
(37).
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Fig. 4. Optimized worst user rate for varying values of BS transmit
power budget Pmax and fixed value of Nt = 6, by solving the power
splitting (PS)-based problem (13) and the time switching (TS)-based
problem (37).
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Fig. 5. Optimized worst user rate for varying values of noise power
spectral density σ

B
and fixed value of Pmax = 35 dBm and BS antennas

Nt = 6 by solving the power splitting (PS)-based problem (13) and
the time switching (TS)-based problem (37).
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Fig. 6. Optimized worst user rate for varying values of path-loss
exponent β1 and fixed value of Pmax = 35 dBm and BS antennas
Nt = 6 by solving the power splitting (PS)-based problem (13) and
the time switching (TS)-based problem (37).

Fig. 8 shows that for TS-based implementation, increasing
the transmit power budget raises the level of achievable
EE, however, for PS-based implementation, there is almost
no improvement in EE when the transmit power budget is
increased from Pmax = 35 dBm to 45 dBm.

Fig. 9 plots the optimized energy efficiency for different
values of noise power spectral density σ

B (in dBm/Hz) and
fixed value of transmit power budget Pmax = 35 dBm and
BS antennas Nt = 4, while solving the power splitting
(PS)-based problem (14) and time switching (TS)-based
problem (46). Fig. 9 shows that, as expected, EE decreases
by increasing the noise variance. In addition, the TS-based
Algorithm 4 outperforms the PS-based Algorithm 2 in
terms of EE. Nevertheless, this performance gap decreases

with the increase of noise variance.

C. Comparison with orthogonal multiple access (OMA):

As mention in Section I, the problem of EE maximiza-
tion with multi-antenna beamforming in an EH-enabled
NOMA network has not been addressed in the literature
before. In addition, the existing research did not consider
“transmit-TS” approach for throughput max-min optimiza-
tion of the EH-enabled NOMA network. Therefore, in this
subsection, we compare the performance of our proposed
algorithms with that obtained by OMA implementation.

Fig. 10 plots the optimized worst user rate for varying
values of BS transmit power budget Pmax and fixed number
of BS-antennas Nt = 6 by solving the same power splitting
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Fig. 7. Optimized energy efficiency for varying number of antennas and
fixed BS power budget Pmax = 35 dBm, while solving power splitting
(PS)-based problem (14) and time switching (TS)-based problem (46).
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Fig. 8. Optimized energy efficiency for varying values of noise power
spectral density σ

B
and fixed BS transmit power budget Pmax = 35

and fixed value of Nt = 4, while solving power splitting (PS)-based
problem (14) and time switching (TS)-based problem (46)
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Fig. 10. Optimized worst user rate for varying values of BS transmit
power budget Pmax and fixed value of Nt = 6, while solving power
splitting (PS)-based NOMA problem (13), time switching (TS)-based
NOMA problem (37), and their OMA counterparts.
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Fig. 11. Optimized energy efficiency for varying values of BS transmit
power budget Pmax and fixed value of Nt = 4 and threshold rate
ri,j = 0.1 bits/sec/Hz (different from previous EE plots), while solving
power splitting (PS)-based NOMA problem (14), time switching (TS)-
based NOMA problem (46), and their OMA counterparts.

(PS)-based NOMA problem (13) and the time switching
(TS)-based NOMA problem (37), and their orthogonal
multiple access (OMA) counterparts. In parallel, Fig. 11
plots the EE for varying values of BS transmit power
budget Pmax and fixed number of BS-antennas Nt = 4
and threshold rate ri,j = 0.1 bits/sec/Hz (different from
previous EE plots) by solving the power splitting (PS)-
based NOMA problem (14), the time switching (TS)-
based NOMA problem (46), and their OMA counterparts.
We have to choose a smaller threshold rate ri,j = 0.1
bits/sec/Hz because implementation with OMA scheme
fails to simultaneously satisfy both the higher threshold rate
and the EH constraint for all simulations. We can clearly

observe from Figs. 10 and 11 that NOMA implementa-
tion outperforms OMA implementation, in terms of both,
throughput and energy efficiency, respectively.

V. CONCLUSIONS

This paper has considered an energy harvesting based
NOMA system, where transmit-TS approach is employed
to realize both wireless energy harvesting and information
decoding at the nearly-located users. We have formu-
lated two important problems of worst-user throughput
maximization and energy efficiency maximization under
power constraint and energy harvesting constraints at the
nearly-located users. For these problems, the optimization
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Fig. 9. Optimized energy efficiency for varying values of of noise
variances σ and fixed value of Pmax = 35 dBm and BS antennas Nt = 4,
while solving power splitting (PS)-based problem (14) and time switching
(TS)-based problem (46)

objective and energy harvesting constraints are highly non-
convex. To address this, we have developed efficient path-
following algorithms to solve the two problems. We have
also proposed algorithms for the case if conventional PS-
based approach is used for energy harvesting. Our nu-
merical results confirmed that the proposed transmit-TS
approach clearly outperforms PS approach in terms of
both, throughput and energy efficiency. One possible future
research direction is to consider many user-pairs per cell
and jointly optimize beamforming vectors and user-pairing
strategy.

APPENDIX A: PROOF FOR (15)

Define the function f(x, y) , ln(x−1 + y−1) which
is convex in x > 0 and y > 0 [44]. Then f(x, y) ≥
f(x(κ), y(κ)) + 〈∇f(x(κ), y(κ)), (x, y) − (x(κ), y(κ))〉 for
all x > 0, y > 0, x(κ) > 0, y(κ) > 0 [45], which means
that

ln

(
1

x
+

1

y

)
≥ ln

(
1

x(κ)
+

1

y(κ)

)
+ 1

− 1

x(κ) + y(κ)

(
y(κ)

x(κ)
x+

x(κ)

y(κ)
y

)
. (50)

Substituting x = ‖x‖2, y = ‖y‖2 + σ + σcµ, x(κ) =
‖x(κ)‖2, and y(κ) = ‖y(κ)‖2 + σ + σµ(κ), we obtain

ln
(

(‖x‖2)−1 + (‖y‖2 + σ + σcµ)−1
)
≥

ln
(

(‖x(κ)‖2)−1 + (‖y(κ)‖2 + µ̃(κ))−1
)

+ 1

− 1

‖x(κ)‖2 + ‖y(κ)‖2 + µ̃(κ)

(
‖y(κ)‖2 + µ̃(κ)

‖x(κ)‖2
‖x‖2

+
‖x(κ)‖2

‖y(κ)‖2 + µ̃(κ)
(‖y‖2 + µ̃(κ))

)
, (51)

where µ̃(κ) , σ + σcµ
(κ). Next, as the functions ln(1/x)

and ‖x‖2 are convex, it is true that

ln

(
1

x

)
≥ ln

(
1

x(κ)

)
− x− x(κ)

x(κ)
, (52)

‖x‖2 ≥ 2<{(x(κ))Hx} − ‖x(κ)‖2. (53)

By substituting ‖x‖2 and ‖x(κ)‖2 in place of 1
x and 1

x(κ)

in (52), we have the following inequality:

ln(‖x‖2) ≥ ln(‖x(κ)‖2) + 1− ‖x(κ)‖2

2<{(x(κ))Hx} − ‖x(κ)‖2
(54)

over the trust region (16). Combining (51) and (54) leads
to (15)-(17).

APPENDIX B: PROOF FOR (48)

As function g(x, t) , x2/t is convex in x > 0 and t > 0,
it is true that [45] x2

t ≥ g(x̄, t̄) + 〈∇g(x̄, t̄), (x, t)− (x̄, t̄)〉
= 2 x̄t̄ x −

x̄2

t̄2 t. Inequality (48) then follows by resetting
x→

√
x and x̄→

√
x̄.
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