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1. INTRODUCTION
Fibre reinforced polymer (FRP) composites have been
used for strengthening concrete structures since the
early 1990s and the technique is now very popular
worldwide. More recently, FRP has been used to
retrofit concrete structures against dynamic loadings
such as impact (Bhatti et al. 2011; Boyd et al. 2008),
blast (Heffernan et al. 2011; Wu et al. 2009; Buchan
and Chen 2007; Crawford et al. 1997) and earthquake
(Niroomandi et al. 2010; Pantelides and Gergely 2007;
Teng et al. 2007). These studies have confirmed that
FRP retrofitting is effective in increasing the structural
resistance against these dynamic loadings as well as
preventing fragmentation-induced damage to people
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Abstract: This paper presents a study on the bond behaviour of FRP-concrete bonded
joints under static and dynamic loadings, by developing a meso-scale finite element
model using the K&C concrete damage model in LS-DYNA. A significant number of
single shear experiments under static pull-off loading were modelled with an extensive
parametric study covering key factors in the K&C model, including the crack band
width, the compressive fracture energy and the shear dilatation factor. It is
demonstrated that the developed model can satisfactorily simulate the static debonding
behaviour, in terms of mesh objectivity, the load-carrying capacity and the local bond-
slip behaviour, provided that proper consideration is given to the selection of crack
band width and shear dilatation factor. A preliminary study of the effect of the dynamic
loading rate on the debonding behaviour was also conducted by considering a dynamic
increase factor (DIF) for the concrete strength as a function of strain rate. It is shown
that a higher loading rate leads to a higher load-carrying capacity, a longer effective
bond length, and a larger damaged area of concrete in the single shear loading scenario.
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and properties. It has also been observed that, as for
static loading cases, debonding on the FRP-concrete
interface is one of the predominant failure modes under
dynamic loadings. However, most of early studies were
either experimental (Tarapada and Debabrata 2006) or
macro-scale numerical simulations focused on the
global structural behaviour (Crawford et al. 2001), with
limited analytical investigation (De Lorenzis and La
Tegola 2005). Little attention has been paid to the
critical FRP-concrete interfacial bond behaviour under
dynamic loadings. The dynamic bond behaviour could
be very different from that under static or quasistatic
loadings because of the effects of higher strain rate, as
well as damage to concrete due to propagation of intense
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under static loading, debonding usually occurs at
2–5 mm depth of the concrete adjacent to the FRP (Lu
et al. 2004). This depth is smaller than the aggregate
size of 10-40 mm in normal strength concrete, and much
smaller than the assumed crack band width, making the
non-local models unsuitable for modelling the FRP-
concrete debonding behaviour.

This study develops a finite element model based on
the K&C local damage concrete model in LSDYNA
(LSTC 2007; Malvar et al. 2000; Malvar et al. 1997;
Malvar and Simons 1996) for an appropriate prediction
of debonding behaviour of the FRP-concrete bonded
joint. The model was first validated against various
laboratory experiments under static pull-off tests. It was
then applied to numerically investigate the dynamic
pull-off behaviour under high strain rate loadings.

2. THE K&C CONCRETE DAMAGE MODEL
The finite element package LSDYNA Explicit (LSTC
2007) was chosen in this study considering its capability
in modelling high energy events such as blast and
impact loadings. The concrete material was modelled by
an enhanced version (material #72_Rel3 in LSDYNA
v971) of the K&C concrete damage model (Malvar
et al. 1997). The model is regarded as one of the most
comprehensive damage plasticity models for concrete-
like materials in transient analysis codes and has been
widely used (Tu and Lu 2009).

The K&C model uses three independent strength
surfaces, namely, an initial yield surface, a maximum
failure surface and a residual surface with consideration
of three stress invariants, I1, J2 and J3. The compressive
meridians of the three surfaces are defined in terms of the
effective deviatoric stresses (∆σ = ) independently
as (Malvar et al. 1997):

initial yield failure surface:

(1)

maximum failure surface:

(2)

residual failure surface:

(3)

where ∆σy, ∆σm and ∆σr are functions of the mean
pressure p = I1/3, in which I1 is the first invariant of
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stress wave ahead of global deformation-induced
debonding or FRP fracture. Accurate quantification of
these effects by experiments is very demanding both
economically and technically, especially for high
loading rate scenarios such as impact and blast. On the
other hand, the advancement of finite element (FE)
techniques tends to provide a seemingly viable tool for
high fidelity numerical investigation into such complex
phenomenon.

Many static FE studies have been conducted for
concrete structures strengthened by FRP composites
(Chen et al. 2011, 2012; Kim and Vecchio 2008; Lu
et al. 2004; Yang et al. 2003; Teng et al. 2002; Chen
and Teng 2001). Because most debonding failures occur
in the concrete adjacent to the FRP, rather than in the
adhesive layer, or at the FRP-adhesive or adhesive-
concrete interfaces, the modelling of concrete damage
and fracture is of crucial importance for any reasonable
prediction of the bond behaviour.

There are mainly two approaches for modelling
concrete cracking in FE analysis: the smeared crack
model based on continuum mechanics (Bazant and Oh
1983) and the discrete crack model explicitly modelling
discontinuity (Yang et al. 2003). Although the latter is
capable of modelling individual macro-cracks, the need
of re-meshing (Yang et al. 2003) or embedding cohesive
elements (Su et al. 2010; Yang et al. 2009) makes it
cumbersome to model a large number of meso-scale
distributed cracks during debonding in FRP-
strengthened concrete structures. The smeared crack
model is more suitable for such cases because it does not
require re-meshing and can make use of concrete stress-
strain curves that are readily available for static and
dynamic loadings. This model has indeed been adopted
in most of existing studies (Tao and Chen 2014; Chen et
al. 2011, 2012; Lu et al. 2004, 2005) to investigate the
meso-scale debonding behaviour of FRP-concrete
joints. However, all these studies considered static or
quasi-static loadings only.

There are two classes of smeared crack models, local
(Lubliner 1989) and non-local (Bazant and Ozbolt 1990;
Bazant and Pijaudier-Cabot 1988). Concrete damage is
calculated in each element independently in the former,
whereas in the latter damage calculation in an element
takes into account the stiffness degradation in its
surrounding elements, depending on a specified crack
band width and the element size. The crack band width,
often approximated as three times the maximum
aggregate size under static loading (Bazant and Oh
1983), may be regarded as a material property.
However, no consensus on its value has been reached
for dynamic loadings due to the lack of reliable
experimental data. In FRP-bonded concrete structures



stress tensor, and the coefficients a0y, a1y, a2y, a0, a1, a2,
a0f, a1f and a2 f are considered as material constants and
can be determined from experiments (Malvar et al.
1997). During an analysis, the current failure surface ∆σ
is interpolated between the maximum failure surface,
∆σm and either the yield ∆σy or the residual failure
surface ∆σr as:

(4)

(5)

where the damage accumulation parameter η is a user-
defined function of a modified effective plastic strain
measure λ. The concrete model requires user input of a
series of (λ, η) pairs to describe the function η(λ) which
shall first increase from an initial value, i.e. 0, before
any plasticity has occurred, to 1.0 at the maximum
failure surface, and then decrease (softening) to 0 at the
residual failure surface. The initial yield surface is given
by:

(6)

where ηy = η(0) is the initial value of η (Malvar et al.
1997; Malvar and Simons 1996). The modified effective
plastic strain λ is calculated as:

(7)

(8)

where is the effective plastic

strain increment, εij
p is the three-dimensional plastic

strain state of the material, ft the quasi-static concrete
tensile strength, rf the strain rate enhancement factor, b1

and b2 the parameters controlling the softening part of
the stress strain curve. A scaled damage factor (SDF) is
defined to measure the damage:

(9)

where λm is the value of λ at the maximum failure
surface (η = 1). SDF is a positive non-decreasing
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variable: 0< SDF <1 means no damage, SDF > 1
represents damage with material softening, and SDF = 2
full damage.

In LSDYNA, the user may only input the unconfined
compressive strength f ′c, in which case all other material
parameters for the K&C concrete damage model can be
automatically generated. Schwer and Malvar (2005)
highlighted that these automaticly generated parameters
were calibrated using the well characterized 45.6 MPa
unconfined compression strength concrete for which
uni-axial, bi-axial, and tri-axial test data in tension and
compression are available, and this concrete strength is
commonly used as the ‘standard concrete’ in many
numerical simulations. Whilst this makes the concrete
model simple to use and it generally produces a robust
representation of many response characteristics of this
complex material, including damage and failure, care
needs to be exercised where the concrete differs
significantly from the ‘standard concrete’ in which case
additional model parameter calibration is required
(Markovich et al. 2011; Schwer and Malvar 2005).

3. FE MODELLING OF STATIC SINGLE
SHEAR TEST

3.1. The FE Model

The FRP-to-concrete bond behaviour is commonly
tested using the single pull-push shear (or pull-off) test
in which a plate is bonded to a concrete prism and is
subject to tension (Chen et al. 2001) (Figure 1). The test
specimen S-CFS-400-25 reported in Wu et al. (2001)
was used as the reference case in this study. The
specimen consisted of a 275 × 100 × 100 mm (length ×
width × depth) concrete prism bonded with a 0.22 mm
thick and 40 mm wide FRP sheet with a bond length of
250 mm. The concrete had a cylinder compressive
strength of 57.6 MPa. The FRP had a modulus of
elasticity of 230 GPa.

There are generally two approaches to modelling
debonding in FRP-strengthened RC structures: one is to
employ a layer of interface elements between the FRP
and the concrete, in which debonding is simulated as the
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Figure 1. FE model geometry of a single shear (pull-off) test



failure of the interface elements. This approach requires
the use of a bond-slip model for the interface elements
which is therefore not really predictive. Another
approach is direct modelling of cracking and failure of
concrete adjacent to the FRP. This approach is valid
when debonding failure occurs in the concrete (as in
most test observations), and has the capability of
predicting the bond-slip relationship (Lu et al. 2004).
The aim of this study was to establish an accurate
predictive FE model for static loading and use it to
explore the effect of dynamic bond-slip behaviour.
Therefore, the second approach is adopted.

The present FE model adopted the same geometry
and boundary conditions as those in Lu et al.’s (2004)
(Figure 1). Meshes with an element size of 2.5 mm,
1 mm and 0.5 mm, respectively, were chosen for mesh
convergence analysis in this study. The test was
modelled as a two-dimensional (2D) plane stress
problem but the predicted results including loads,
stresses, strains and slips were corrected according to
Chen and Teng’s (2001) width effect factor to consider
the three-dimensional (3D) effects.

The K&C concrete model employed in this study
only works in a 3D setting. In the present model both the
FRP plate and the concrete were modelled using the
eight node hexahedron 3D solid elements. The width
direction of the test specimen (z direction in Figure 1)
was represented by a single element of thickness equal
to the element side length. The model thus consists of a
single layer of elements. All nodes on one face (at z = 0)
of this layer of elements were restrained for
displacement in the z direction to simulate the plane
stress condition.

The FRP was modelled as an isotropic linear elastic
material with a thickness tf = 1 mm and Young’s
modulus Ef = 50.6 GPa so that its axial rigidity Eftf
remains the same as in the test. Because debonding of
FRP in the single shear test usually occurs at a small
distance beneath the adhesive-concrete interface in the
concrete, the FRP was assumed to be perfectly bonded
to the concrete prism in the current study. The specimen
was loaded with a time dependent displacement at the
loaded end in the FE model.

It should be noted that the K&C concrete damage
model is a smeared crack band model with a default
localisation width lw = 25.4 mm, which is presumably
applicable when the characteristic length of the
elements is larger than 25.4 mm. However, if the
element size is smaller than lw, the model will
internally use lw in defining the softening rate,
consequently mesh objectivity becomes problematic.
In such cases, lw should reasonably be set equal to the
element characteristic length hc, so that the Mode I

fracture energy G I
f as a material constant may be

preserved in each element. That is to say, the following
equation is maintained in the simulation when lw is
made equal to hc:

(10)

The parameter b2 in the K&C concrete damage model
(Eqn 8) governs the basic softening branch of the
concrete under uni-axial tension. Its default value is 1.35
based on laboratory material characterization of
45.6 MPa concrete mentioned before. However, this
default value may not produce the correct fracture
energy  GI

f when the concrete strength is different,
therefore the b2 value may need to be adjusted
accordingly. Generally, a reduction in b2 increases  GI

f .
For the concrete used in the reference experiment, GI

f

was calculated to be 102 N/m according to CEB-FIP
(1993). To produce this value, b2 was set to 0.45. The
parameter b1 was set as 1.6 so that the compressive
fracture energy is approximately 100 times the tensile
fracture energy (Li 2012). All the concrete parameters
for the reference case are listed in Table 1.

3.2. FE Calibration Factor According to Chen

And Teng’s Model

As mentioned earlier, the numerical model for the pull-
off test was simplified as a 2D plane stress problem,
where the widths of the FRP and concrete are the same.
However in the original experiment, the actual width of
FRP plate, bft, and the width of the concrete prism, bct,
of the test specimen were 40 mm and 100 mm,
respectively. In the current FE model, both widths were
treated equal to the thickness of the model. This implies
that the different width effect as in the actual experiment
was not represented in the numerical model. To
compensate for this effect, the FE results are corrected
according to Chen and Teng’s (2001) width effect by
multiplying βt for actual bft and bct values and dividing
by βt for bft = bct = 1, with:

(11)

3.3. Static Modeling and Results

The simulation was conducted using the explicit time
integration method for the static test, consistent with the
dynamic modelling to be presented later in the paper.
When an explicit solver is used to model static and
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quasi-static problems, the loading time shall be long
enough to avoid the dynamic effect, but not too long for
computational efficiency. The computational demand is
mainly controlled by the time step and the total loading
time. The largest time step ∆tcr without causing
numerical instability is usually the time for the P-wave to
travel through the smallest element in the model. As far
as the global response is concerned, the dynamic effect
becomes negligible when the total loading time is greater
or equal to 10T, where T is the fundamental period of the
structure (Chen et al. 2009). A smooth velocity loading
is advantageous because it enables a zero initial
acceleration, in addition to zero initial displacement and
velocity. In simulating the static test specimens in this
study, a smooth velocity loading history was generated
so that it produced a maximum displacement of 1.6 mm
at the loaded end of the FRP by the end of the loading
phase, similar to the reference experiment. More details
can be found in (Li et al. 2010).

Figure 2 shows the predicted load-slip response for
three different trial meshes. It can be seen that the
loading capacity increases with the reduction of the
mesh size in general but the difference was already very
small between those from the 1 mm and 0.5 mm meshes.
The peak load 14.5 kN predicted from the 0.5 mm mesh
is very close to the test result 14.1 kN and a previous FE
prediction of 13.8 kN by Lu et al.’s (2004). The
prediction by Chen and Teng’s (2001) model is 11.4 kN.
The model is therefore regarded to be capable of
simulating the static FRP-to-concrete bond behaviour
with good accuracy. All meshes successfully
reproduced the debonding failure as observed in the test.
Figure 3 shows the damage contours at different loading
stages for the 0.5 mm mesh.

The FE results from the 0.5 mm mesh are further
analysed here in terms of the FRP strain distribution and
the bond-slip relationship. Figure 4 shows that the FRP
strain distributions at different loading levels are in
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Table 1. Parameters for the reference case

a0y a1y a2y λ1 λ2 λ3 λ4 λ5 λ6 λ7

1.3 × 107 6.2 × 10–1 4.5 × 10–9 0.0 8 × 10–6 2.4 × 10–5 4.0 × 10–5 5.6 × 10–5 7.2 × 10–5 8.8 × 10–5

a0 a1 a2 η1 η2 η3 η4 η5 η6 η7

1.7 × 107 4.5 × 10–1 1.4 × 10–9 0.0 0.85 0.97 0.99 1.0 0.99 0.97

a1f a2f λ8 λ9 λ10 λ11 λ12 λ13

4.4 × 10–1 2.0 × 10–9 3.2 × 10–4 5.7 × 10–4 5.4 × 10–4 1.0 10 1.0 × 1010

f ′c ft ω η8 η9 η10 η11 η12 η13

57.6 Mpa 4.02 MPa 0.5 0.5 0.1 0.01 0.001 0.0001 0.0

b1 b2 rf

1.6 0.45 0
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Figure 2. Load-slip curves: mesh convergence



close agreement with the test data of Wu et al. (2001)
and the FE predictions of Lu et al. (2004). Note that the
load has been normalised in Figure 4 by their respective
ultimate load Pu from the three studies.

Figure 5 shows the local bond-slip relationship
obtained at 19.5 mm from the loaded end using the
following equation:

(12)

in which τ is the local bond (shear) stress, ∆σf the
difference of axial stress between two adjacent FRP
elements, ∆x the length of the FRP element, and tf the

τ
σ

=
∆

∆
f

fx
t

thickness of the FRP plate. Shown for comparison are
also the bond-slip curves obtained from the test and
from a previous FE analysis (Lu et al. 2004) and using
a “simplified model” (Lu et al. 2005). The area under
the local bond-slip curve predicted in this study is
slightly larger than that of the previous FE prediction,
but close to that under the bi-linear curve deduced from
the test data.

It should be noted that the bond-slip curve obtained
from an FE analysis is different at one location from
another and it also depends on the relative position to
the micro-cracks in the concrete. Therefore it is difficult
to judge from such results predicted from different FE
models. The bi-linear bond-slip curve in Figure 5 was
deduced from the experiment based on the maximum
load and it represents an average of the local bond-slip
relation over the bond length. The maximum bond stress
is evaluated according to the following equation:

(14)τ
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where τmax is the peak value of the bond stress; Pu is the
ultimate load applied on the FRP; Ef is the elastic
modulus of the FRP; tf is the thickness of the FRP; bft is
the width of the FRP; and δf is the slip at which the bond
stress reduces to zero.

4. SHEAR DILATION
Dilation is a measure of volume increase when a material
is under shear. In the Mohr-Coulomb material model, a
dilation angle α is specified in a range from zero to the
internal friction angle ϕ. For associated flow rules α = ϕ.
The two are not equal for non-associated flow rules.
According to Chandra et al. (2010), soft rocks usually
have lower dilation angles while hard brittle rocks have
higher values. A good starting estimate is α = ϕ/3 for soft
rocks and α = 2ϕ/3 for hard rocks, and zero for very
weak rocks. It appears that there is no clear guideline for
the selection of the dilation angle α for concrete.

In the K&C concrete damage model, a partially
associated flow rule is used. This flow rule is
characterised by an input parameter ω, which represents
the ratio of an associated plastic flow to the Prandtl-
Reuss plastic flow. The plastic flow is purely deviatoric
for ω = 0 and is associative for ω = 1, and it is
interpolated between the two for 0 < ω < 1 (Baylot and
Bevins 2007). It enables a control over the amount of
plastic volume change in the material.

To investigate the effects of the shear dilation on the
structural behaviour of the FRP-concrete bonded joint,
the experimental specimen I-6 reported in Yao (2004)
was modelled using various ω values. The specimen had
a concrete strength f ′c MPa. The load-slip curves from
the numerical simulation are compared with the
experimental data in Figure 6. It is seen that ω taking a
value around 0.3 tends to result in a reasonable fit to the

test results for this specimen. As shown in Figure 7, the
peak load increases almost linearly with the increase of
ω for both concrete strength levels. Figures 8 and 9
show the different evolution processes of pressure and
damage from using different ω values. A larger ω value
(e.g. 0.5 in Figure 9) produces higher pressures and a
deeper debonding zone as compared with the results
from using a smaller ω value (e.g. 0.3 in Figure 8). This
may be explained by the fact that a higher shear dilation
tends to lead to stronger confinement, thus involving
more concrete to resist debonding and consequently a
higher loading capacity.

A few more FRP-concrete bonded joint experiments
with different f ′c were modelled using the K&C model
with various ω, including IV-12 and III-7 in Yao et al.
(2005), C4 in Wu et al. (2010) and B-1 in Ueda et al.
(1999). The ω values which produce the best fit peak
loads for the corresponding specimens are listed in
Table 2. From these results, an empirical formula for the
“best-fit” ω is obtained as a function of f ′c as:
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(15)

Figure 10 illustrates the above relationship. To
examine the applicability of this empirical equation, a
large number of FRP-concrete bonded joints tests
reported in Wu et al. (2010), Yao (2004), Wu et al.
(2001) and Ueda et al. (1999) were modelled, using ω
values calculated using Eqn 15. All the selected
experimental specimens failed by debonding in
concrete. Table 3 summarises the key parameters and
the experimental, FE (PFE) and predicted (by Chen and
Teng’s (2001) model, Ppred) peak loads. The ratios of the
peak loads predicted from the current FE model to the
experimental counterparts are also plotted in Figure 11.
It can be seen that the FE model using ω values from
Eqn 15 resulted in good agreement.

5. LOADING RATE EFFECTS ON FRP-TO-
CONCRETE BOND BEHAVIOUR

5.1. Dynamic Increasing Factor (DIF) of

Concrete Strength

For concrete structures subjected to transient dynamic
loadings, the strain rate can be very high (e.g. up to
1000s–1 for blast). At such high strain rates, the apparent
or engineering strength of concrete can increase
significantly. This is often described by the ratio of the
dynamic to static strength, namely, the dynamic
increase factor (DIF). For concrete, the DIF can be

ω = × − + +−4 10 0 0003 0 009 0 26 3 2f f fc c c
' ' '. . .

larger than 2 in compression and 6 in tension at high
strain rates on or above the order of 100s–1 (Malvar and
Crawford 1998). The function relating DIF to the strain
rate is treated as a material property in the K&C
concrete damage model. The CEB-FIP (1993) DIF
curve for concrete in compression was adopted in this
study:

DIF = fc/fcs = (ε./ε.s)1.026αs for ε. ≤ 30s–1 (16)

DIF = fc /fcs = γ s(ε
.
/ε.s)1.026αs for ε. ≤ 30s–1 (17)

where ε. is the strain rate (from 30 × 10–6 to 300s–1), ε.s
is the reference static strain rate and is assumed to be 30
× 10–6s–1, fc is the dynamic compressive strength at ε., fcs

is the static compressive strength at ε.s, and

log γ s = 6.456αs – 2 (18)

αs = 1/(5 + 9 fcs/fco) (19)

here, fco = 10 MPa
For concrete in tension with strain rates between 10–1

and 160s–1, the Modified CEB-FIP curve proposed by
Malvar and Crawford (1998) was used in this study:

DIF = ft /fts = (ε./ε.s)δ for ε. ≤ 1s–1 (20)

DIF = ft /fts = β (ε./ε.s)1/3 for ε. ≤ 1s–1 (21)

where ft is the dynamic tensile strength at ε., fts is the
static tensile strength at ε.s = 10–6s–1, and

log β = 6δ – 2 (22)

δ = 1/(1 + 8fcs / fco) (23)

5.2. Dynamic Effect in Single Shear Test

The same specimen S-CFS-400-25 in Wu et al. (2001)
modelled in the static analyses presented in Section 4
was used as the reference case in the dynamic analyses
here. The same geometry and boundary conditions in
Figure 1 were adopted. The static concrete properties (as
from the experiment) were used together with the DIF
described above to model the dynamic behaviour of
concrete. The mesh remained the same as in the static
analyses with 1mm uniform 8-noded brick elements.
The dynamic load was applied via a velocity history as
shown in Figure 12 such that debonding was made to
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Table 2. Best-fit peak load and dilation parameter ω
(data for deriving Eqn 15)

Test specimen f ′c(MPa) ω PTest PFE

IV-12 19.8 0.3 5.67 5.60
III-7 27.1 0.32 4.78 4.73
B-1 40.9 0.35 20.60 19.99
C4 47.1 0.4 10.64 10.16
WU-1 57.6 0.5 14.1 14.21
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ω

 = 4 × 10−6 fe’3 − 0.0003 fe’2 + 0.009 fe’+ 0.2ω

Figure 10. Relationship between “best-fit” ω and f ′c



54 Advances in Structural Engineering Vol. 18 No. 1 2015

Modelling Static and Dynamic FRP-Concrete Bond Behaviour Using a Local Concrete Damage Model

Table 3. Parameters of test specimens and FE prediction with concrete dilation based on Eqn 15

f ′c bc bp L Ep tp PPred Ptest PEF PFE/ Ppred /
Specimen (MPa) (mm) (mm) (mm) (GPa) (mm) ω (kN ) (kN ) (kN ) Ptest Ptest

IV-1 18.9 150 25 95 256 0.165 0.30 5.72 5.86 5.59 0.95 1.02
IV-2 18.9 150 25 95 256 0.165 0.30 5.72 5.90 5.59 0.95 1.02
IV-5 18.9 150 25 95 256 0.165 0.30 5.72 5.00 5.59 1.12 1.02
IV-7 18.9 150 25 95 256 0.165 0.30 5.72 5.50 5.59 1.02 1.02
IV-9 18.9 150 25 95 256 0.165 0.30 5.72 5.38 5.59 1.04 1.02
IV-11 18.9 150 25 95 256 0.165 0.30 5.72 5.51 5.59 1.01 1.02
IV-3 19.8 150 25 95 256 0.165 0.30 5.8 5.43 5.60 1.03 1.04
IV-4 19.8 150 25 95 256 0.165 0.30 5.8 5.76 5.60 0.97 1.04
IV-6 19.8 150 25 95 256 0.165 0.30 5.8 7.08 5.60 0.79 1.04
IV-8 19.8 150 25 95 256 0.165 0.30 5.8 5.93 5.60 0.94 1.04
IV-10 19.8 150 25 95 256 0.165 0.30 5.8 6.60 5.60 0.85 1.04
IV-12 19.8 150 25 95 256 0.165 0.30 5.8 5.67 5.60 0.99 1.04
IV-14 19.8 150 25 95 256 0.165 0.30 5.8 6.19 5.60 0.90 1.04
V-1 21.1 150 15 95 256 0.165 0.30 3.71 3.81 3.79 0.99 0.98
V-2 21.1 150 15 95 256 0.165 0.30 3.71 4.41 3.79 0.86 0.98
V-3 21.1 150 25 95 256 0.165 0.30 5.89 6.26 6.03 0.96 0.98
V-4 21.1 150 50 95 256 0.165 0.30 10.51 12.22 10.75 0.88 0.98
V-5 21.1 150 75 95 256 0.165 0.30 14.1 14.29 14.43 1.01 0.98
V-6 21.1 150 100 95 256 0.165 0.30 16.82 15.58 17.20 1.10 0.98
II-1 22.9 150 25 95 256 0.165 0.30 6.02 5.20 5.87 1.13 1.03
II-2 22.9 150 25 95 256 0.165 0.30 6.02 6.75 5.87 0.87 1.03
II-3 22.9 150 25 95 256 0.165 0.30 6.02 5.51 5.87 1.07 1.03
II-4 22.9 150 25 190 256 0.165 0.30 6.02 7.02 6.28 0.89 0.96
II-5 22.9 150 25 190 256 0.165 0.30 6.02 7.07 6.28 0.89 0.96
II-6 22.9 150 25 190 256 0.165 0.30 6.02 6.98 6.28 0.90 0.96
I-1 23 150 25 75 256 0.165 0.30 5.72 4.75 5.75 1.21 0.99
I-2 23 150 25 85 256 0.165 0.30 5.96 5.69 5.98 1.05 1.00
I-3 23 150 25 95 256 0.165 0.30 6.02 5.76 6.05 1.05 1.00
I-4 23 150 25 95 256 0.165 0.30 6.02 5.76 6.05 1.05 1.00
I-5 23 150 25 95 256 0.165 0.30 6.02 6.17 6.05 0.98 1.00
I-6 23 150 25 115 256 0.165 0.30 6.02 5.96 6.10 1.02 0.99
I-7 23 150 25 145 256 0.165 0.30 6.02 5.95 6.20 1.04 0.97
I-8 23 150 25 190 256 0.165 0.30 6.02 6.68 6.28 0.94 0.96
I-9 23 150 25 190 256 0.165 0.30 6.02 6.35 6.28 0.99 0.96
I-10 23 150 25 95 256 0.165 0.30 6.02 6.17 6.05 0.98 1.00
I-11 23 150 25 75 256 0.165 0.30 5.72 5.72 5.75 1.01 0.99
I-12 23 150 25 85 256 0.165 0.30 5.96 6.00 5.98 1.00 1.00
I-13 23 150 25 95 256 0.165 0.30 6.02 6.14 6.05 0.99 1.00
I-14 23 150 25 115 256 0.165 0.30 6.02 6.19 6.10 0.99 0.99
I-15 23 150 25 145 256 0.165 0.30 6.02 6.27 6.20 0.99 0.97
I-16 23 150 25 190 256 0.165 0.30 6.02 7.03 6.28 0.89 0.96
VII-1 24.9 150 25 95 256 0.165 0.31 6.14 6.80 6.46 0.95 0.95 
VII-2 24.9 150 25 95 256 0.165 0.31 6.14 6.62 6.46 0.98 0.93
VII-3 24.9 150 25 145 256 0.165 0.31 6.14 7.33 6.46 0.88 0.84
VII-4 24.9 150 25 145 256 0.165 0.31 6.14 6.49 6.46 1.00 0.95
VII-5 24.9 150 25 190 256 0.165 0.31 6.14 7.07 6.46 0.91 0.87
VII-6 24.9 150 25 190 256 0.165 0.31 6.14 7.44 6.46 0.87 0.83
VII-7 24.9 150 25 240 256 0.165 0.31 6.14 7.16 6.46 0.90 0.86
VII-8 24.9 150 25 240 256 0.165 0.31 6.14 6.24 6.46 1.04 0.98
III-1 27.1 150 25 100 256 0.165 0.32 6.27 5.94 6.70 1.13 1.06
III-2 27.1 150 50 100 256 0.165 0.32 11.19 11.66 11.95 1.02 0.96
III-3 27.1 150 75 100 256 0.165 0.32 15.02 14.63 16.03 1.10 1.03
III-4 27.1 150 100 100 256 0.165 0.32 17.91 19.07 19.12 1.00 0.94
III-7 27.1 100 25.3 100 22.5 1.27 0.32 4.92 4.78 4.73 0.99 1.03
III-8 27.1 100 50.6 100 22.5 1.27 0.32 8.3 8.02 7.98 1.00 1.03
C1 36.1 228.6 25.4 76.2 108 1.016 0.33 8.90 8.46 8.05 0.95 1.05

(Continued)



Figure 13 shows the load-slip curves from different
loading rates applied at the loading end of the FRP. It
can be seen that both the peak load and the maximum
slip increase with the loading rate. For example, when
the loading rate was increased from 0.1 mm/s to
100 mm/s, Pu increased from 18.3 kN to 44.3 kN, while
the maximum slip increased from 0.25 mm to 2.0mm.
This result demonstrates clearly that as the tensile
strength and the fracture energy of concrete increases
under dynamic loading, the dynamic FRP-to-concrete
bond behaviour also enhances significantly.

Figure 14 shows the damage contours of the
specimen at the ultimate state from different loading
rates. It can be clearly observed that the damage zone
also expands as the loading rate increases. This indicates
that, as the loading rate increases, more concrete is
involved in resisting the pull-off load, and hence delays
debonding and increases the loading capacity.

Based on the preliminary dynamic analyse discussed
above, it may reasonably be concluded that the loading
rate has a significant effect on the FRP-to-concrete bond
behaviour. It shall also be noted that the study here
assumed that the debonding failure occurs in concrete,
so that other failure modes, such as cohesive failure in
the adhesive and interfacial debonding failure at the
FRP-adhesive interface and at the adhesive-concrete
interface do not occur. Whilst these failure modes are
rare under static condition, it is not necessarily the case
under dynamic condition and they can well become
critical if their DIF values are lower than those of the
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Table 3. Parameters of test specimens and FE prediction with concrete dilation based on Eqn 15 (Continued)

f ′c bc bp L Ep tp PPred Ptest PEF PFE/ Ppred /
Specimen (MPa) (mm) (mm) (mm) (GPa) (mm) ω (kN ) (kN ) (kN ) Ptest Ptest

C14 36.4 228.6 25.4 101.6 108 1.016 0.33 10.67 12.80 10.09 0.79 0.83
C15 36.4 152.4 25.4 152.4 108 1.016 0.33 10.86 11.90 10.33 0.87 0.91
C16 36.4 152.4 25.4 203.2 108 1.016 0.33 11.09 11.57 10.58 0.91 0.96
B-1 40.9 500 100 200 230 0.11 0.35 21.04 20.60 19.99 0.97 1.02
M4 42.4 100 50 75 380 0.165 0.36 12.72 10.00 12.80 1.28 1.27
M6 42.7 100 50 65 230 0.22 0.36 11.26 9.55 11.64 1.22 1.18
B-2 45.9 500 100 200 230 0.33 0.38 37.50 38.00 38.11 1.00 0.99
B-3 45.9 500 100 200 230 0.33 0.38 37.50 34.1 38.11 1.12 1.10
C2 47.1 228.6 25.4 76.2 108 1.016 0.39 9.96 9.93 10.16 1.02 1.00
C3 47.1 228.6 25.4 76.2 108 1.016 0.39 9.96 10.64 10.16 0.95 0.94
C4 47.1 228.6 25.4 76.2 108 1.016 0.39 9.96 10.64 10.16 0.95 0.94
C100_50A 54.7 200 50 100 170 1.25 0.46 25.32 17.30 24.98 1.44 1.46
C200_50A 54.7 200 50 200 170 1.25 0.46 31.67 27.50 30.90 1.12 1.15
C300_50A 54.7 200 50 300 170 1.25 0.46 31.67 35.10 31.33 0.89 0.90
C400_50A 54.7 200 50 400 170 1.25 0.46 31.67 26.90 32.37 1.20 1.18
WU-1 57.6 100 40 250 230 0.22 0.5 11.32 14.10 14.21 1.01 0.80
WU-2 57.6 100 40 250 390 0.501 0.5 22.24 23.50 24 1.02 0.95

Average 0.997 0.999
CoV 10.9% 9.34%
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concrete. These questions should be looked into in the
follow-up research.

6. CONCLUSIONS
Modelling of fracture in concrete is an important topic,
and this is particularly so when a finite element analysis
with a local material damage model is employed. Mesh-
objectivity cannot be achieved without an appropriate
consideration of the localization in the finite element
model and its relationship to the fracture energy. For
meso-scopic modelling where the element size is
smaller than the standard concrete aggregate size, the
localized width (or crack band) should be set as the

element characteristic length, especially in tension-
dominated problems where the localization generally
takes place in a single element. The results reported in
this paper confirms that, by obeying its localization rule,
the uni-axial tension and compression stress strain curve
in a single element is rendered mesh dependent, but the
overall behaviour becomes essentially mesh-
independent because the tension and fracture energy are
kept as a constant.

This paper has presented a study on the modelling of
the FRP-to-concrete bond behaviour using the K&C
concrete damage model in LSDYNA with the explicit
integration scheme, starting from the static case. The
proposed FE model uses the first order eight node
hexahedron 3D solid elements with one integration
point and sub-millimetre mesh. The model has been
demonstrated to be capable of simulating the static FRP-
to-concrete bond behaviour, given proper consideration
of strain localization and dilation of concrete. The load-
carrying capacity, load-displacement behaviour and
local bond-slip behaviour were predicted with
reasonable accuracy and mesh objectivity.

An important observation from this study is that the
dilation of concrete has an important effect on the
simulation results for the type of problems under
investigation. A large dilation angle tends to increase
the confinement of concrete, thus leading to higher
loading capacity. An empirical relationship between the
dilation parameter and the concrete strength for
simulating FRP-to-concrete bond behaviour has been
proposed.

A preliminary study on the effect of dynamic loading
rate on the behaviour of FRP-to-concrete bonded joint
has been presented. By considering the dynamic
increase factor for concrete strength as a function of the
strain rate, the effects of loading rate on the load-slip
curve, effective bond length, ultimate load and the
damaged concrete zone were explored. The developed
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numerical model and results will be useful for the
numerical simulation and improved understanding of
the structural behaviour of FRP-strengthened concrete
structures under dynamic loadings such as impact, blast
and earthquakes.
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