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Non-Orthogonal Multiple Access with Improper
Gaussian Signaling

H. D. Tuan, A. A. Nasir, H. H. Nguyen, T. Q. Duong and H. V. Poor

Abstract—Improper Gaussian signaling (IGS) helps to im-
prove the throughput of a wireless communication network
by taking advantage of the additional degrees of freedom
in signal processing at the transmitter. This paper exploits
IGS in a general multiuser multi-cell network, which is
subject to both intra-cell and inter-cell interference. With IGS
under orthogonal multiple access (OMA) or non-orthogonal
multiple access (NOMA), designs of transmit beamform-
ing to maximize the users’ minimum throughput subject
to transmit power constraints are addressed. Such designs
are mathematically formulated as nonconvex optimization
problems of structured matrix variables, which cannot be
solved by popular techniques such as weighted minimum
mean square error or convex relaxation. By exploiting the
lowest computational complexity of 2 × 2 linear matrix
inequalities, lower concave approximations are developed for
throughput functions, which are the main ingredients for
devising efficient algorithms for finding solution of these
difficult optimization problems. Numerical results obtained
under practical scenarios reveal that (i) there is an almost
two-fold gain in the throughput by employing IGS instead
of the conventional proper Gaussian signaling (PGS) under
both OMA and NOMA; and (ii) NOMA-IGS offers better
throughput compared to that achieved by OMA-IGS.

Index Terms—Transmission beamforming, improper Gaus-
sian signaling (IGS), non-orthogonal multiple access (NOMA),
multi-cell networks, nonconvex optimization, 2 × 2 linear
matrix inequality
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I. INTRODUCTION

The pressing need for wireless spectrum sharing among
users offers the opportunities for applications of signal
processing techniques at both transmit and receive ends
to manage not only the background noise but also diver-
sified interference sources such as intra-cell and inter-cell
interference. Conventionally, communication systems use
proper Gaussian signaling (PGS), under which transmit
signals are proper Gaussian, so they are uncorrelated with
their complex conjugates and their probability distribution
is invariant under rotation in the complex plane. As such,
they are fully characterized by their covariance matrix and
can be generated from proper Gaussian information bearing
sources by linear precoding. Using PGS thus simplifies the
task of analyzing the performance of communication sys-
tems. Moreover, for Gaussian noise-limited channels such
as single-user channels, conventional PGS is optimal [1].
In terms of sum-capacity, PGS is also optimal for multiple-
input single-output (MISO) and multiple-input multiple-
output (MIMO) broadcast channels by dirty-paper-coding
(DPC) [2]–[5]. As clearly explained in [6], with DPC, there
is one user who does not suffer any interference so the
optimal transmit signal for this user is proper complex
Gaussian as in the single-user case. The next user is
interfered with the previous user only, whose signal is
already proper complex Gaussian, so the optimal transmit
signal of the next user is also proper complex Gaussian.
The reasoning can be successively applied to all users.
An important observation is that the optimality of PGS is
strictly tied to DPC, which is not practical for more than
two users.

In contrast to PGS, improper Gaussian signaling (IGS)
relaxes the Gaussian properness to attain additional degrees
of signaling freedom. The improperness of the transmit
signals in IGS implies that they are correlated with their
complex conjugates, making their pseudo-covariance ma-
trix nonzero. As such, they must be generated from proper
Gaussian information bearing sources by widely linear
precoding. The superiority of IGS over PGS in terms of
degree of freedom has been analyzed in single-input single-
output (SISO) interference channel [7]–[13], MIMO inter-
ference channel [14]–[19], where there are multiple unicast
transmitter-receiver pairs to share the spectrum medium
over the same time. The achieved degree of freedom by
IGS in broadcast communications has also been analysed
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in [15], [20].1

As the joint design of IGS covariance and pseudo-
covariance matrices in MISO broadcast channel is highly
complex, [21] addressed their design separately by semi-
definite relaxation (SDR), which is computationally inef-
ficient as it involves matrix optimization of augmented
dimensionality [22], [23]. In addition, since rank-one con-
straint is dropped, SDR may fail to find just a feasible point,
especially, when there are many constraints or the objective
function is non-smooth (such as a max-min function). The
additional SDR-based randomization for locating a feasible
point is both theoretically and practically inefficient [22].

On the other hand, non-orthogonal multiple access
(NOMA) [24]–[26], which allows some users to access
channels of other users in such a way that interference is
reduced, is one of the promising strategies to accommodate
more users in sharing spectrum as compared to the conven-
tional orthogonal multiple access (OMA) [27], [28]. Nat-
urally, PGS for OMA (PGS-OMA) and for NOMA (PGS-
NOMA) have been comprehensively studied in multi-cell
broadcast interference networks (see e.g. [23], [29]–[32]
and references therein). In particular, based on a nonsmooth
(non-differentiable) function optimization model proposed
firstly in [29], references [31], [32] show that the de-
sign problem of PGS-NOMA is not more computationally
difficult than that of PGS-OMA. In fact, both problems
can be efficiently solved by path-following computational
procedures, which are based on the same nonconcave
function approximation framework.

Against the above background, the present paper aims
to lay down the nonconvex optimization foundation for
designing IGS for both OMA (OMA-IGS) and NOMA
(NOMA-IGS) in a general multi-cell broadcast commu-
nication network, where the multi-antenna base station
(BS) in each cell serves multiple single-antenna users.
To the authors’ best knowledge, this is the first paper
to consider NOMA-IGS. The problem of designing IGS
is fundamentally different from that of PGS because the
latter is based on logarithmic function optimization in
beamforming vectors while the former is based on log-
determinant function optimizations in structured matrix
variables of beamforming vectors. The universal convex
quadratic optimization based approach in [30], [31] for
MIMO optimization is still applicable to these complex
optimization problems of IGS. However, this paper devel-
ops a much more efficient optimization technique for their
computation, which is based on linear matrix inequality
(LMI) optimization.

Since the pioneering work in [33], which formulates
the reduced-order H∞ control synthesis for linear time-
invariant systems as a rank-constrained LMI optimization
problem in Lyapunov matrix variables, LMI optimization
became the irreplaceable tool in augmenting the power of

1The degree of freedom is an appropriate metric only under very high
signal-to-noise ratios.

convex optimization in solving nonconvex control problems
(see, e.g. [34] and [35] and references therein). LMI
optimization is often more computationally complex than
convex quadratic optimization [36]. However, the LMI
obtained in this paper is of the lowest size, namely 2× 2,
so its computational complexity is the same as that of
convex quadratic programming while it provides a better
approximation mean since it maximally exploits partial
convex structures of the problems.2 To summarize, our
work is novel and contributive in the following aspects:
• We develop a new universal lower concave approxi-

mation for multi-output throughput functions, which
are log-determinant functions in IGS beamforming
vectors. Accordingly, we propose path-following al-
gorithms to obtain solutions of both OMA-IGS and
NOMA-IGS problems, which invoke 2× LMI opti-
mization of the lowest-computational complexity at
each iteration and rapidly converge at least to a locally
optimal solution.

• The computational efficiency of the developed al-
gorithms allows us to simulate and analyze the
performance of OMA-IGS and NOMA-IGS under
both single-cell and multi-cell setups. The rigorously-
conducted tests by varying different sets of simulation
parameters, e.g., number of BS antennas, number of
users, BS transmit power, or noise power reveal that
there is almost two-fold gain in the throughput by
employing IGS instead of PGS under both NOMA
and OMA systems. Furthermore, with IGS, NOMA
offers better throughput compared to that achieved by
OMA.

The rest of the paper is organized as follows. Section II is
devoted to studying OMA-IGS. In particular, a new lower
concave approximation for the log-determinant function
of improper Gaussian signaling throughput is developed
in this section. Section III is devoted to the study of
NOMA-IGS, which makes use of the function approxima-
tion developed in Section II. Section IV provides com-
prehensive numerical results to substantiate the theoretical
results established in Sections II and III. Finally, Section
V concludes the paper.

Notation. Bold-faced upper-case letters, e.g., X are used
for matrices, bold-faced lower-case letters, e.g., x, are used
for vectors, and normal lower-case letters, e.g., x, are used
for for scalars. In is the identity matrix of size n × n.
XH , XT , and X∗ are the Hermitian transpose, normal
transpose, and conjugate of the matrix X, respectively.
The inner product 〈X,Y〉 of the matrices X and Y is
defined as trace(XHY). Denote by 〈X〉 the trace of the
matrix X, and by |X| its determinant. ‖ · ‖ stands for
matrix’s Frobenius norm or vector’s Euclidean norm. C
is the set of all complex numbers and R is the set of all

22 × 2 LMI
[
x1 x2

x2 x3

]
� 0 is seen as the set of convex quadratic

constraints x1 ≥ 0, x3 ≥ 0, and x1x3 − (x2)2 ≥ 0.
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real numbers. x ∼ CN (η,Z) means that x is a complex
random vector following a circular Gaussian distribution
with mean η and covariance matrix Z. ∇f(x) is the
gradient of function f(·) with respect to its variable x.
A � 0 means that the matrix A is positive definite. E{·}
denotes the expectation operator. [X]2 = XXT for real
valued matrix X. Row[ai]i∈I arranges ai, i ∈ I in row-
block. For instance Row[ai]i∈{1,2} = [a1 a2].

II. IGS FOR ORTHOGONAL MULTIPLE ACCESS (OMA)

Consider the downlink of a multiuser multi-cell wireless
communication system which consists of K cells, where
the BS of each cell is equipped with Nt antennas to
serve N single-antenna users (also called user equipments,
or UEs) within its cell. In each cell, there are N

2 cell-
centered UEs, which are located close to the BS and
N
2 cell-edge UEs, which are located far away from the

BS and near the cell boundary. The N
2 far UEs in each

cell not only experience poorer channel conditions than
other N

2 near UEs, but also suffer more severe inter-cell
interference from adjacent cells. Of course the case K = 1
corresponds to the single-cell setup, which will also be
considered in Section IV together with the case of multi-
cell setup K > 1. In this work, we assume the availability
of full channel state information at the BSs and focus
on the resource allocation problem. In a single-cell setup,
channel information can be obtained by uplink channel
estimation via the principle of time division duplexing
and channel reciprocality. In a multi-cell setup, channel
state information can be acquired by different means, e.g.,
through coordination among BSs [37].

Let K , {1, 2, · · · ,K} and N , {1, 2, · · · , N}, where
N is an even integer. The n-th UE in the k-th cell is
referred to as UE (k, n) ∈M , K×N . The cell-centered
UEs are UE (k, n), n ∈ Nc , {1, · · · , N2 } while the cell-
edge UEs are UE (k, n), n ∈ Ne , {N2 +1, · · · , N}. Thus
the set of cell-centered UEs and the set of cell-edge UEs
are Mc , K ×Nc and Me , K ×Ne, respectively.

Let xk′,n′ be the signal that BS k′ intends to transmit
to its UE (k′, n′). Then the transmitted signal of BS k′ is∑N
n′=1 xk′,n′ . The received signal at UE (k, n) is given by

yk,n =
∑

(k′,n′)∈M

hk′,k,nxk′,n′ + nk,n, (1)

where hk′,k,n ∈ C1×Nt is the MISO channel from BS k′ ∈
K to UE (k, n), and nk,n ∼ CN (0, σ2) is the background
noise.

Let the message intended for UE (k′, n′) be sk′,n′ ∼
CN (0, 1). This message is processed by a widely linear
precoder to produce the following IGS message for trans-
mission:

xk′,n′ = www1,k′,n′sk′,n′ +www2,k′,n′s∗k′,n′ , (2)

where www1,k′,n′ ∈ CNt×1 and www2,k′,n′ ∈ CNt×1. Then, the
received signal in (1) at UE (k, n) is rewritten as

yk,n =
∑

(k′,n′)∈M

hk′,k,n(www1,k′,n′sk′,n′ +www2,k′,n′s∗k′,n′)

+nk,n. (3)

In what follows we use the following notations:

wwwk,n , {<{wwwi,k,n},={wwwi,k,n}, i = 1, 2} ∈ R4Nt ,

www , {wwwk,n, (k, n) ∈M} ∈ R4NtKN ,

H̄k′,k,n ,

[
<{hk′,k,n} −={hk′,k,n}
={hk′,k,n} <{hk′,k,n}

]
∈ R2×(2Nt),

(4)
and

ȳk,n ,

[
<{yk,n}
={yk,n}

]
∈ R2, s̄k,n ,

[
<{sk,n}
={sk,n}

]
∈ R2,

n̄k,n ,

[
<{nk,n}
={nk,n}

]
∈ R2.

(5)

Also, define a linear mapping from R4Nt to R(2Nt)×2:

L(wwwk,n) =[
<{www1,k,n}+ <{www2,k,n} −={www1,k,n} − ={www2,k,n}
={www1,k,n}+ ={www2,k,n} <{www1,k,n} − <{www2,k,n}

]
∈ R(2Nt)×2.

Then Equation (3) can be rewritten as

ȳk,n =
∑

(k′,n′)∈M

H̄k′,k,nL(wwwk′,n′)s̄k′,n′ + n̄k,n. (6)

It is simple to verify that

E{[s̄k′,n′ ]2} =
1

2
I2,E{[n̄k,n]2} =

1

2
σ2I2, (7)

and

E{[H̄k′,k,nL(wwwk′,n′)s̄k′,n′ ]2} =
1

2
[H̄k′,k,nL(wwwk′,n′)]2.

(8)
Thus, the throughput at UE (k, n) in nats/sec/Hz is given

by [1]

ρk,n(www) =
1

2
ln

∣∣∣∣∣I2 + E{[H̄k,k,nL(wwwk,n)s̄k,n]2}

×

( ∑
(k′,n′)∈M\{(k,n)}

E{[H̄k′,k,nL(wwwk′,n′)s̄k′,n′ ]2}

)−1∣∣∣∣∣ =

1

2
ln

∣∣∣∣∣I2 + [H̄k,k,nL(wwwk,n)]2
(
[Λk,n(www)]2 + σ2I2

)−1 ∣∣∣∣∣, (9)

where

Λk,n(www) , Row[H̄k′,k,nL(wwwk′,n′)](k′,n′)∈M\{(k,n)},
(10)

which is a linear mapping. For later use, we also define

Λ̂k,n(www) , Row[H̄k′,k,nL(wwwk′,n′)](k′,n′)∈M. (11)
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By maximizing the worst user throughput, the max-min
throughput criterion ensures fairness among all users. Such
a performance criterion is very common in the literature
and also adopted in this paper. The max-min throughput
optimization problem is formulated as:

max
www

Ψ(www) , min
(k,n)∈M

ρk,n(www) (12a)

s.t.
∑

(k,n)∈M

||wwwk,n||2 ≤ Pmax
k , k ∈ K. (12b)

The objective function (12a) is not only nonconcave but
also nonsmooth, making (12) very computationally diffi-
cult. Moreover, the presence of linear mappings L(wwwk,n)
and Λk,n(www) in the definition (9) for the throughput
function ρk,n makes (12) complex structured, preventing
application of the popular weighted minimum mean square
error (WMMSE)-based approach [38]. This is also true
even for the easier problems of smooth optimization such
as the following sum throughput optimization problem

max
www

∑
(k,n)∈M

ρk,n(www) s.t. (12b). (13)

On the other hand, using Shur’s complement to expand
the determinant of 2 × 2 matrix in (9) as done in [21]
results in even much more complex forms of the throughput
functions.

Fortunately, it has been recently shown in [30], [31] that
many partial convex structures of throughput functions like
the function ρk,n in (12) can be systematically exploited for
tractable computation. Specifically, by observing that ρk,n
in (12) is composed from a nonlinear function f defined
by

f(X1,X2) = ln |I2 + [X1]2
(
[X2]2 + σ2I2

)−1 | (14)

and linear mappings X1(www) , H̄k,k,nL(wwwk,n) and
X2(www) = Λk,n(www), i.e.,

ρk,n(www) = f(X1(www),X2(www)),

one can simply approximate ρk,n(www) by approximating
the function f(X1,X2). Indeed, if f̃(X1,X2) is a con-
vex/concave approximation of f(X1,X2) then the com-
posed function f̃(X1(www),X2(www)) is also a convex/concave
approximation of ρk,n(www) because such partial convex
structures are preserved under linear mappings X1(www) and
X2(www) [39]. The key ingredient is the following result,
whose proof given in the Appendix.

Lemma 1: For all matrices Xi ∈ R2×m and X̄i ∈ R2×m,
i = 1, 2, the following inequality holds true

f(X1,X2) ≥
f(X̄1, X̄2) + 4− σ2〈

(
[X̄2]2 + σ2I2

)−1〉
−

〈
2∑
i=1

[X̄i]
2 + σ2I2,

(
2∑
i=1

(X̄iX
T
i + XiX̄

T
i

− [X̄i]
2) + σ2I2

)−1〉
−〈
(
[X̄2]2 + σ2I2

)−1
, [X2]2〉, (15)

over the convex trust region constrained by the 2× 2 LMI

2∑
i=1

(X̄iX
T
i + XiX̄

T
i − [X̄i]

2) � 0. (16)

The right hand side (RHS) of (15) is a concave function
of (X1,X2),3 which matches with f at (X̄1, X̄2). �

It is pointed out that the following inequality was ob-
tained in [30], [31]:

f(X1,X2) ≥
a+

(
2〈A, X̄1X

T
1 〉 − 〈B, [X1]2〉

)
− 〈B, [X2]2〉, (17)

over the polytopic trust region constrained by the linear
constraint

2〈A, X̄1X
T
1 〉 − σ2〈B〉 > 0, (18)

with a = f(X̄1, X̄2) − 〈[X̄1]2,
(
[X̄2]2 + σ2I2

)−1〉 −
σ2〈B〉, A =

(
[X̄2]2 + σ2I2

)−1
, and 0 � B =(

[X̄2]2 + σ2I2
)−1−([X̄1]2 + [X̄2]2 + σ2I2

)−1
. The RHS

of (17) is thus a sum of two uncorrelated concave quadratic
functions fi(Xi) of Xi over the trust region (18) for the
variable X1 only. In contrast, the variables X1 and X2 are
correlated in the RHS of (15) over the trust region (16)
involving both of them. This makes the RHS of (15) more
refined than the RHS of (18) for approximating the function
f .

Let www(κ) , {www(κ)
k,n, (k, n) ∈ M} be a feasible point for

(12) that is found at the (κ− 1)th iteration. With regard to
the function ρk,n(www) in (12a), applying the inequality (15)
for

X1 = H̄k,k,nL(wwwk,n), X2 = Λk,n(www),

and
X̄1 = H̄k,k,nw̄ww

(κ)
k,n, X̄2 = Λk,n(www(κ)),

yields the following lower concave approximation:

ρk,n(www) ≥
1

2

(
a
(κ)
k,n−

〈
A(κ)
k,n,

(
Λ̂k,n(www)Λ̂T (www(κ))

+Λ̂k,n(www(κ))Λ̂Tk,n(www)− [Λ̂k,n(www(κ))]2 + σ2I2

)−1
〉

−
〈
B(κ)k,n, [Λk,n(www)]2

〉)
,

ρ
(κ)
k,n(www) (19)

over the trust region

Λ̂k,n(www)Λ̂T (www(κ)) + Λ̂k,n(www(κ))Λ̂Tk,n(www)

−[Λ̂k,n(www(κ))]2 � 0, (20)
(k, n) ∈M,

3〈A,X−1〉 with A � 0 is convex in X � 0 (see e.g. [40, p. 467]
or [41, Appendix A]) so the second term in the RHS of (15) is a convex
function, while the third term in the RHS of (15) is obviously a concave
quadratic function.
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Algorithm 1 OMA-IGS Max-min Rate Optimization Al-
gorithm

Initialization: Set κ := 0 and a feasible point www(0)

satisfying the power constraint (12b).
1: repeat
2: Solve the convex optimization problem (22) to ob-

tain the optimal solution www(κ+1).
3: Set κ := κ+ 1.
4: until Convergence of the objective in (12).

with

a
(κ)
k,n , 2ρk,n(www(κ)) + 4

−σ2

〈(
[Λk,n(www(κ))]2 + σ2I2

)−1〉
, (21a)

0 ≺ A(κ)
k,n , [Λ̂k,n(www(κ))]2 + σ2I2, (21b)

0 ≺ B(κ)k,n ,
(

[Λk,n(www(κ))]2 + σ2I2

)−1
. (21c)

Thus, at the κ-th iteration, we solve the following convex
optimization problem to generate the next iterative feasible
point www(κ+1) for (12):

max
www

Ψ(κ)(www) , min
(k,n)∈M

ρ
(κ)
k,n(www) s.t. (12b), (20).

(22)

This problem involves 2KNNt decision variables and K
quadratic constraints in (12b) of power constraint plus
KN 2 × 2 LMI constraints (20) of trust region, so its
computational complexity is O

(
(2KNNt)

3 (KN +K)
)

[36, p. 4].
Algorithm 1 outlines the steps to solve the the max-min

rate problem (12). Note that

Ψ
(κ)
k,n(www(κ+1)) > Ψ

(κ)
k,n(www(κ))

because www(κ+1) is the optimal solution of (22) while www(κ)

is its feasible point. Therefore,

Ψ(www(κ+1)) ≥ Ψ(κ)(www(κ+1))

> Ψ(κ)(www(κ))

= Ψ(www(κ)), (23)

where the last equality follows from the equality
ρ
(κ)
k,n(www(κ)) = ρk,n(www(κ)), which is easily checked using

the definition (19). Algorithm 1 thus generates a sequence
{www(κ)} of improved feasible points for (12). Using similar
arguments as in [23], it can be easily shown that Algo-
rithm 1 at least converges to a locally optimal solution
of (12), which satisfies the Karush-Kuh-Tucker (KKT)
optimality condition. It is noteworthy to point out that the
simulation results in [23] show that this type of solution is
often globally optimal.

Before closing this section, let us mention that the
following problem of sum throughput maximization subject
to quality-of-service (QoS) constraints

max
www

∑
(k,n)∈M

ρk,n(www) s.t. (12b),

ρk,n(www) ≥ γk,n, (k, n) ∈M (24)

can be addressed similarly, where its next iterative feasible
point www(κ+1) is generated as the optimal solution of the
convex optimization problem

max
www

∑
(k,n)∈M

ρ
(κ)
k,n(www) s.t. (12b),

ρ
(κ)
k,n(www) ≥ γk,n, (k, n) ∈M. (25)

Compared to the problem of sum throughput maximization
(13), the problem (25) is much more meaningful as it
enables the network to serve all its users by setting the QoS
constraints in terms of users’ throughput in (25). Without
these QoS constraints, the network will concentrate its
throughput at a few users of the best channel condition,
offering almost zero throughput to other users.

III. IGS FOR NON-ORTHOGONAL MULTIPLE ACCESS
(NOMA)

With NOMA, by exploiting the large difference in the
channel conditions between the cell-centered and cell-edge
UEs, each cell-centered UE (k, n) ∈ Nc is randomly paired
with cell-edge UE (k, p(n)) ∈ Ne of the same cell to
create a virtual cluster. This paring operation in NOMA
would improve the network throughput. For notational
convenience, the paired UE (k, p(n)) for UE (k, n) is
chosen, such that p(n) = n+ N

2 .
The signal received by cell-centered UE (k, n) ∈Mc is

given by the same expression (3), while the signal received
by cell-edge UE (k, p(n)) ∈Me can be expressed as

yk,p(n) =
∑

(k′,n′)∈M

hk′,k,p(n)(www1,k′,n′sk′,n′

+www2,k′,n′s∗k′,n′) + nk,p(n), (26)

which is rewritten similarly to (6) as

ȳk,p(n) =
∑

(k′,n′)∈M

H̄k′,k,p(n)L(wwwk′,n′)s̄k′,n′

+n̄k,p(n). (27)

In NOMA, the information sk,p(n) is first decoded by both
the cell-centered UE (k, n) and the cell-edge UE (k, p(n)).
As such the throughput of UE (k, p(n)) is given by the
minimum of the two throughput expressions, i.e.,

ρ̃k,p(n)(www) = min{ρ̃(1)k,p(n)(www), ρ̃
(2)
k,p(n)(www)}. (28)
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In particular, the term ρ̃
(1)
k,p(n)(www) in (28) is the throughput

at UE (k, n), when trying to decode sk,p(n):

ρ̃
(1)
k,p(n)(www) =

1

2
ln

∣∣∣∣∣I2 + [H̄k,k,nL(wwwk,p(n))]
2

×
(

[Υ
(1)
k,p(n)(www)]2 + σ2I2

)−1 ∣∣∣∣∣, (29)

with

Υ
(1)
k,p(n)(www) ,

Row[H̄k′,k,nL(wwwk′,n′)](k′,n′)∈M\{(k,p(n))}. (30)

Likewise, ρ̃(2)k,p(n)(www) is the throughput at UE (k, p(n)),
when trying to decode its own information sk,p(n):

ρ̃
(2)
k,p(n)(www) =

1

2
ln

∣∣∣∣∣I2 + [H̄k,k,p(n)L(wwwk,p(n))]
2

×
(

[Υ
(2)
k,p(n)(www)]2 + σ2I2

)−1 ∣∣∣∣∣, (31)

with

Υ
(2)
k,p(n)(www) =

Row[H̄k′,k,p(n)L(wwwk′,n′)](k′,n′)∈M\{(k,p(n))}. (32)

The decoding in NOMA is such that UE (k, n) ∈ Mc

first decodes the message sk,p(n), and then removes it from
the superimposed received signal in order to decode its own
information sk,n. Thus, the throughput for decoding sk,n
by UE (k, n) is given by

ρ̃k,n(www) =
1

2
ln

∣∣∣∣∣I2 + [H̄k,k,nL(wwwk,n)]2

×
(
[Υk,n(www)]2 + σ2I2

)−1 ∣∣∣∣∣, (33)

for

Υk,n(www) ,

Row[H̄k′,k,nL(wwwk′,n′)](k′,n′)∈M\{(k,n),(k,p(n))}. (34)

The users’ max-min throughput is defined by

min
(k,n)∈M

ρ̃k,n(www) =

min
(k,n)∈Mc

min{ρ̃k,n(www), ρ̃k,p(n)(www)} =

min
(k,n)∈Mc

min{ρ̃k,n(www),min{ρ̃(1)k,p(n)(www),

ρ̃
(2)
k,p(n)(www)}} =

min
(k,n)∈Mc

min{ρ̃k,n(www), ρ̃
(1)
k,p(n)(www), ρ̃

(2)
k,p(n)(www)}. (35)

The max-min throughput optimization problem is then
formulated as:

max
www

Φ(www) , min
(k,n)∈Mc

min{ρ̃k,n(www), ρ̃
(1)
k,p(n)(www),

ρ̃
(2)
k,p(n)(www)} s.t. (12b). (36)

Since the objective function in (36) is non-concave,
in what follows, we first find the lower bound concave
approximations for ρ̃k,n(www), ρ̃(1)k,p(n)(www), and ρ̃

(2)
k,p(n)(www).

Let www(κ) be a feasible point for (36) that is found at the
(κ− 1)th iteration. Similarly to (19),

ρ̃k,n(www) ≥ ρ̃
(κ)
k,n(www)

,
1

2

(
ã
(κ)
k,n−

〈
Ã(κ)
k,n,

(
Υ̂k,n(www)(Υ̂k,n(www(κ)))T

+Υ̂k,n(www(κ))Υ̂T
k,n(www)

−[Υ̂k,n(www(κ))]2 + σ2I2

)−1
〉

−
〈
B̃(κ)k,n, [Υk,n(www)]2

〉)
(37)

over the trust region

Υ̂k,n(www)(Υ̂k,n(www(κ)))T + Υ̂k,n(www(κ))Υ̂T
k,n(www)

−[Υ̂k,n(www(κ))]2 � 0, (k, n) ∈Mc, (38)

with

Υ̂k,n(www) , [H̄k′,k,nL(wwwk′,n′)](k′,n′)∈M\{(k,p(n))}, (39a)

ã
(κ)
k,n , 2ρ̃k,n(www(κ)) + 4

−σ2

〈(
[Υk,n(www(κ))]2 + σ2I2

)−1〉
, (39b)

0 ≺ Ã(κ)
k,n , [Υ̂k,n(www(κ))]2 + σ2I2, (39c)

0 ≺ B̃(κ)k,n ,
(

[Υk,n(www(κ))]2 + σ2I2

)−1
. (39d)

Furthermore,

ρ̃
(1)
k,p(n)(www) ≥

ρ̃
(1,κ)
k,p(n)(www) ,

1

2

(
ã
(1,κ)
k,p(n)−

〈
Ã(1,κ)
k,p(n),

(
Υ̂

(1)
k,p(n)(www)(Υ̂

(1)
k,p(n)(www

(κ)))T

+Υ̂
(1)
k,p(n)(www

(κ))(Υ̂
(1)
k,p(n)(www))T

− [Υ̂
(1)
k,p(n)(www

(κ))]2 + σ2I2

)−1
〉

−
〈
B̃(1,κ)k,p(n), [Υ

(1)
k,p(n)(www)]2

〉)
(40)

over the trust region

Υ̂
(1)
k,p(n)(www)(Υ̂

(1)
k,p(n)(www

(κ)))T +

Υ̂
(1)
k,p(n)(www

(κ))(Υ̂
(1)
k,p(n)(www))T − [Υ̂

(1)
k,p(n)(www

(κ))]2 � 0, (41)

(k, n) ∈Mc,

with

Υ̂
(1)
k,p(n)(www) , Row[H̄k′,k,nL(wwwk′,n′)](k′,n′)∈M, (42a)

ã
(1,κ)
k,p(n) , 2ρ̃

(1)
k,p(n)(www

(κ)) + 4

−σ2

〈(
[Υ

(1)
k,p(n)(www

(κ))]2 + σ2I2

)−1〉
, (42b)

0 ≺ Ã(1,κ)
k,p(n) , [Υ̂

(1)
k,p(n)(www

(κ))]2 + σ2I2, (42c)

0 ≺ B̃(1,κ)k,p(n) ,
(

[Υ
(1)
k,p(n)(www

(κ))]2 + σ2I2

)−1
. (42d)
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Likewise,

ρ̃
(2)
k,p(n)(www) ≥

ρ̃
(2,κ)
k,p(n)(www) ,

1

2

(
ã
(2,κ)
k,p(n)−

〈
Ã(2,κ)
k,p(n),

(
Υ̂

(2)
k,p(n)(www)(Υ̂

(2)
k,p(n)(www

(κ)))T

+Υ̂
(2)
k,p(n)(www

(κ))(Υ̂
(2)
k,p(n)(www))T

− [Υ̂
(2)
k,p(n)(www

(κ))]2 + σ2I2

)−1
〉

−
〈
B̃(κ)k,p(n), [Υ

(2)
k,p(n)(www)]2

〉)
(43)

over the trust region

Υ̂
(2)
k,p(n)(www)(Υ̂

(2)
k,p(n)(www

(κ)))T +

Υ̂
(2)
k,p(n)(www

(κ))(Υ̂
(2)
k,p(n)(www))T − [Υ̂

(2)
k,p(n)(www

(κ))]2 � 0, (44)

(k, n) ∈Mc,

with

Υ̂
(2)
k,p(n)(www) , [H̄k′,k,p(n)L(wwwk′,n′)](k′,n′)∈M, (45a)

ã
(2,κ)
k,p(n) , 2ρ̃

(2)
k,p(n)(www

(κ)) + 4

−σ2

〈(
[Υ

(2)
k,p(n)(www

(κ)) + σ2I2

)−1〉
, (45b)

0 ≺ Ã(2,κ)
k,p(n) , [Υ̂

(2)
k,p(n)(www

(κ))]2 + σ2I2, (45c)

0 ≺ B̃(2,κ)k,p(n) ,
(

[Υ
(2)
k,p(n)(www

(κ))]2 + σ2I2

)−1
. (45d)

Thus, at the κ-th iteration, we solve the following convex
optimization problem to generate the next iterative feasible
point www(κ+1) for (36)

max
www

Φ(κ)(www) , min
(k,n)∈Mc

min{ρ̃(κ)k,n(www), ρ̃
(1,κ)
k,p(n)(www),

ρ̃
(2,κ)
k,p(n)(www)}

s.t. (12b), (38), (41), (44). (46)

Compared to OMA-IGS iteration (22), this NOMA
IGS iteration involves the same number 2KNNt
of decision variables but more KN/2 2 × 2 LMI
constraints (44), so its computational complexity is
O
(
(2KNNt)

3 (1.5KN +K)
)
.

Algorithm 2 outlines the steps to solve the max-min rate
problem (36). Similar to (23) one has:

Φ(www(κ+1)) > Φ(www(κ)),

and like Algorithm 1, it can be shown that Algorithm 2 at
least converges to a locally optimal solution of (36).

Like the problem (24) for OMA, the problem of NOMA
sum throughput maximization subject to QoS constraints
is formulated as

max
www

∑
(k,n)∈M

ρ̃k,n(www) s.t. (12b),

ρ̃k,n(www) ≥ γk,n, (k, n) ∈M, (47)

Algorithm 2 NOMA-IGS Max-Min Rate Optimization
Algorithm

Initialization: Set κ := 0 and a feasible point www(0)

satisfying the power constraint (12b).
1: repeat
2: Solve the convex optimization problem (46) to ob-

tain the optimal solution www(κ+1).
3: Set κ := κ+ 1.
4: until Convergence for the objective in (36).

where γk,n is the user (k, n)’s throughput threshold. By
using the expression (28) for the throughput function
ρ̃k,p(n)(www) of user (k, p(n)) ∈ Me, we can rewrite (47)
by

max
www

∑
(k,n)∈Mc

[
ρ̃k,n(www) + min{ρ̃(1)k,p(n)(www),

ρ̃
(2)
k,p(n)(www)}

]
s.t. (12b), (48a)

ρ̃k,n(www) ≥ γk,n, (k, n) ∈Mc, (48b)

min{ρ̃(1)k,p(n)(www), ρ̃
(2)
k,p(n)(www)} ≥ γk,n(p), (48c)

(k, n) ∈Mc,

which can be computed by generating the next iterative
feasible point www(κ+1) as the optimal solution of the convex
optimization problem∑

(k,n)∈Mc

[
ρ̃
(κ)
k,n(www) + min{ρ̃(1,κ)k,p(n)(www),

ρ̃
(2,κ)
k,p(n)(www)}

]
s.t. (12b), (49a)

ρ̃
(κ)
k,n(www) ≥ γk,n, (k, n) ∈Mc, (49b)

ρ̃
(1,κ)
k,p(n)(www) ≥ γk,n(p), ρ̃

(2,κ)
k,p(n)(www)} ≥ γk,n(p), (49c)

(k, n) ∈Mc.

IV. SIMULATION RESULTS

In all simulations, the channel hk′,k,n from BS k′ ∈ K
to UE (k, n) at a distance of d meters is generated as

hk′,k,n =
√

10−σ2PL/10h̃k′,k,n.

In the above, h̃k′,k,n is a normalized Rayleigh fading
channel gain, if k′ = k and n ∈ Ne (channels between
the BS and its own cell-edge users), or if k′ 6= k (channels
between the BS and users in neighboring cells). On the
other hand, h̃k′,k,n is a normalized Rician fading channel
with a Rician factor of 0 dB if k′ = k and n ∈ Nc (channels
between the BS and its own cell-centered users). The path
loss (in dB) is specified as

σ2
PL = 38.46 + 10β log10(d),

where the loss factor 38.46 is the free space path loss at
a reference distance of 1 meter at carrier frequency of 2
GHz [42], and β is the path-loss exponent. For the Rician
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fading channels between the BS and its own cell-centered
UEs (k′ = k and n ∈ Nc), β is set to be 2, while for the
Rayleigh fading channels, β is set to 3.1 [42].

For simplicity, the same power budget is set for each cell,
i.e., Pmax

k ≡ Pmax, ∀ k ∈ K. Unless stated otherwise,
Pmax = 26 dBm, and the noise power spectral density
σ2

B = −174 dBm/Hz with bandwidth B = 20 MHz.
To analyze the performance of the proposed algorithms,
we present simulation results separately for both single-
cell (K = 1) and multi-cell (K > 1) setups. We follow
[32, Algorithm 3] for evaluating the performance of the
corresponding OMA-PGS and NOMA-PGS.

A. Results for a Single-Cell Network (K = 1)

We setup a single-cell network as shown in Fig. 1, which
simulates an urban micro-cellular environment with a cell
radius of 300 meters, where the cell-centered UEs are
placed around the distance of 110 meters from the BS while
the cell-edge users are placed at a distance of about 265
meters from the BS [42]. In this subsection, unless stated
otherwise, we consider N = 8 UEs with four cell-centered
and four cell-edge UEs and Nt = 6 transmit antennas at
each BS.

Fig. 2 shows the convergence of the proposed algorithms
(Algorithms 1 and 2) under Nt = 6 BS antennas, K = 1
cell, N = 8 UEs, and Pmax = 26 dBm. Fig. 2 shows that
both Algorithm 2 (NOMA-IGS) and Algorithm 1 (OMA-
IGS) converge after approximately within 40 iterations.
The computational complexities of Algorithms 1 and 2
are given in Table I, which shows the rounded average
number of iterations over different channel realizations,
number of decision variables, and number of quadratic/LMI
constraints.

TABLE I
COMPUTATIONAL COMPLEXITIES OF THE PROPOSED ALGORITHMS

UNDER Nt = 6 BS ANTENNAS, K = 1 CELL, N = 8 UES, AND
Pmax = 26 DBM.

Alg. # iterations # variables # constraints
Alg. 1 30 96 9
Alg. 2 44 96 13

Fig. 3 plots the optimized worst user rate versus varying
number of BS antennas Nt, for fixed K = 1 cells, N = 8
UEs, and Pmax = 26 dBm. As expected, the throughput
increases with the increase in the number of antennas,
thanks to the larger degree of freedom. It can be seen
that an approximately two-fold gain in the throughput is
obtained by employing IGS instead of PGS under both
NOMA and OMA systems. However, the performance gain
decreases with the increase in the number of BS antennas.
One important observation from Fig. 3 is that Algorithm
2 (NOMA-IGS) and Algorithm 1 (OMA-IGS) have a
similar performance when the number of BS antennas Nt
is the same as the number of UEs N . Fig. 4 illustrates
how the optimized worst user rate decreases as the noise

power spectral density σ2

B increases for fixed Nt = 6 BS
antennas, K = 1 cell, N = 8 UEs, and Pmax = 26
dBm. Fig. 4 once again shows that there is a substantial
gain, approximately two-fold gain, in the throughput by
employing IGS instead of PGS under both NOMA and
OMA systems. This performance gain is comes from the
additional degree of freedom as captured via the non-
zero pseudo-covariance matrix in IGS. Both Figs. 3 and
4 clearly show that NOMA-IGS (Algorithm 2) offers the
best throughput compared to all other signaling/multiple
access strategies under consideration.

Fig. 5 illustrates how the optimized worst user rate
increases when increasing the BS transmit power budget
Pmax, for fixed Nt = 6 BS antennas, K = 1 cell, and
N = 8 UEs per cell. Observe that the performance gap in
the throughput between IGS and PGS increases with the
increase in the power budget. Fig. 6 plots optimized worst
user rate versus varying number of UEs N , under fixed
Nt = 6 BS antennas, K = 1 cell, and Pmax = 26 dBm.
As expected, the throughput decreases with the increase
in the number of UEs per cell due to the increase in
interference. Again, both Figs. 3 and 6 show that NOMA-
IGS (Algorithm 2) offers the best throughput.

B. Results for a Multi-Cell Network (K = 3)

A three-cell network is depicted in Fig. 7. The radius
of each cell is 300 meters, where the cell-centered UEs
in each cell are placed around the distance of 110 meters
from the serving BS, while the cell-edge users are placed at
about 265 meters from the serving BS. In this subsection,
unless stated otherwise, we consider N = 4 UEs with two
cell-centered and two cell-edge UEs and Nt = 3 transmit
antennas at each BS.

Fig. 8 illustrates the convergence of the proposed Algo-
rithms 1 and 2, under Nt = 3 BS antennas, K = 3 cells,
N = 4 UEs, and Pmax = 26 dBm. Fig. 8 shows that both
Algorithm 2 (NOMA-IGS) and Algorithm 1 (OMA-IGS)
converge within 25 iterations approximately. In Table II, the
computational complexities of the two proposed algorithms
are provided for Nt = 3 BS antennas, K = 3 cells, N = 4
UEs, and Pmax = 26 dBm.

TABLE II
COMPUTATIONAL COMPLEXITIES OF THE PROPOSED ALGORITHMS
UNDER Nt = 3 BS ANTENNAS, K = 3 CELLS, N = 4 UES, AND

Pmax = 26 DBM.

Alg. # iterations # variables # constraints
Alg. 1 24 72 15
Alg. 2 26 72 21

Fig. 9 plots the optimized worst user rate versus varying
number of BS antennas Nt, for fixed K = 3 cells, N = 4
UEs, and Pmax = 26 dBm. As in the case of single-cell
setup, it can be seen that: (i) the throughput increases as
the number of antennas increases, and (ii) an approximately
two-fold gain in the throughput is obtained by employing
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Fig. 1. A single-cell network setup.
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Fig. 2. Convergence of the proposed algorithms (Algorithms 1 and
2) in a single-cell setup: Nt = 6 BS antennas, N = 8 UEs, and
Pmax = 26 dBm.
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IGS instead of PGS under both NOMA and OMA systems.
Again, this performance gain is due to the additional degree
of freedom captured via the non-zero pseudo-covariance
matrix in IGS. Fig. 10 plots the optimized worst user rate
versus varying number of cells K under fixed Nt = 3
BS antennas, N = 4 UEs, and Pmax = 26 dBm. As
can be seen, the throughput decreases with the increase
in the number of cells, which is expected since the inter-
cell interference increases. We can observe from Figs. 9
and 10 that, also in a multi-cell network, NOMA-IGS
offers the best throughput compared to all other alternative
signaling/multiple access strategies under consideration.

V. CONCLUSIONS

This paper has considered the design problems of trans-
mit beamforming to maximize the users’ max-min through-

put subject to power constraints when improper Gaussian
signaling (IGS) is used in multiuser multi-cell broadcast in-
terference networks with either orthogonal multiple access
(OMA) or non-orthogonal multiple access (NOMA). The
computational solution for such non-convex problems is
non-trivial as the throughput functions depend on a partic-
ular structure of widely linear precoding matrices. We have
developed 2×2 LMI optimization based algorithms to solve
these design problems efficiently. Numerical results showed
that there is almost a two-fold gain in the throughput by
employing IGS instead of the conventional proper Gaussian
signaling (PGS), under both OMA and NOMA. When
compared with other signaling/multiple access strategies,
including OMA-IGS, PGS-OMA and PGS-NOMA, it of-
fers the best throughput.
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Fig. 8. Convergence of the proposed algorithms (Algorithms 1 and 2),
for Nt = 3 BS antennas, K = 3 cells, N = 4 UEs, Pmax = 26
dBm.

APPENDIX: THE PROOF OF LEMMA 1

Since the function ϕ(X) , ln |X| is concave on the
domain X � 0, it is true that [39, Prop. 2.21, p. 62]

ln |X| = ϕ(X)

≤ ϕ(X̄) + 〈∇ϕ(X̄),X− X̄〉
= ln |X̄| − 2 + 〈X̄−1,X〉 (50)

for all positive definite matrices X and X̄ of size 2 × 2.
This also means that

ln |X−1| = −ϕ(X)

≥ ln |X̄−1|+ 2− 〈X̄−1,X〉. (51)

Making use of the fact that a matrix is positive definite
if and only if its inverse is positive definite, we replace

X−1 → X and X̄−1 → X̄ in (51) to obtain

ln |X| ≥ ln |X̄|+2−〈X̄,X−1〉, ∀ X � 0, X̄ � 0. (52)

Now, representing the function f defined in (14) by

ln |[X1]2 + [X2]2 + σ2I2|+ ln |
(
[X2]2 + σ2I2

)−1 |
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Fig. 9. Optimized worst user rate for varying number of BS antennas
Nt, and fixed K = 3 cells, N = 4 UEs, and Pmax = 26 dBm.
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Fig. 10. Optimized worst user rate for varying number of cells K in
the network and fixed Nt = 3 BS antennas, N = 4 UEs, Pmax = 26
dBm.

and applying inequality (52) to the first term and inequality
(51) to the second term, one obtains

f(X1,X2) ≥
ln |I2 + [X̄1]2

(
[X̄2]2 + σ2I2

)−1 |+ 4

−σ2〈
(
[X̄2]2 + σ2I2

)−1〉
−

〈
2∑
i=1

[X̄i]
2 + σ2I2,

(
2∑
i=1

[Xi]
2 + σ2I2

)−1〉
(53)

−〈
(
[X̄2]2 + σ2I2

)−1
, [X2]2 + σ2I2〉. (54)

Further, applying the inequality

[Xi]
2 � XiX̄

T
i + X̄iX

T
i − [X̄i]

2, (55)

which is an equivalent expression of the obvious inequality
[Xi − X̄i]

2 � 0, to the term (53) yields〈
2∑
i=1

[X̄i]
2 + σ2I2,

(
2∑
i=1

[Xi]
2 + σ2I2

)−1〉
≤〈

2∑
i=1

[X̄i]
2 + σ2I2, 〈

(
2∑
i=1

(
X̄iX

T
i + XiX̄

T
i

−[X̄i]
2
)

+ σ2I2
)−1〉

(56)

over the trust region (27)4, for which we have also used the
inequalities 〈B,X〉 ≥ 〈B, X̄〉 for B � 0 and X � X̄ � 0,
and 0 ≺ X−1 � X̄−1 for X � X̄ � 0. Now, the RHS of
(26) is obtained from the RHS of (54) upon replacing the
term (53) by the RHS of (56).

4Since the left hand side of (55) is positive definite, it is meaningful
only under the trust region (27), which constrains the RHS of (55) positive
semi-definite.
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