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UAV-Enabled Communication Using NOMA
A. A. Nasir, H. D. Tuan, T. Q. Duong and H. V. Poor

Abstract—Unmanned aerial vehicles (UAVs) can be de-
ployed as flying base stations (BSs) to leverage the strength
of line-of-sight connections and effectively support the cover-
age and throughput of wireless communication. This paper
considers a multiuser communication system, in which a
single-antenna UAV-BS serves a large number of ground
users by employing non-orthogonal multiple access (NOMA).
The max-min rate optimization problem is formulated under
total power, total bandwidth, UAV altitude, and antenna
beamwidth constraints. The objective of max-min rate op-
timization is non-convex in all optimization variables, i.e.
UAV altitude, transmit antenna beamwidth, power allocation
and bandwidth allocation for multiple users. A path-following
algorithm is proposed to solve the formulated problem.
Next, orthogonal multiple access (OMA) and dirty paper
coding (DPC)-based max-min rate optimization problems
are formulated and respective path-following algorithms are
developed to solve them. Numerical results show that NOMA
outperforms OMA and achieves rates similar to those attained
by DPC. In addition, a clear rate gain is observed by jointly
optimizing all the parameters rather than optimizing a subset
of parameters, which confirms the desirability of their joint
optimization.

Index Terms—Unmanned aerial vehicle (UAV), non-
orthogonal multiple access (NOMA), orthogonal multiple
access (OMA), dirty paper coding (DPC), non-convex opti-
mization, throughput.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) can assist normal
communication networks by acting as flying base stations
(UAV-BSs) and taking care of traffic demand in exceptional
situations, e.g., sports events, concerts, disaster position,
military situations, traffic congestion, etc. [1]–[6]. UAVs
can also function as temporary hotspots or relay nodes for
connections between the safe area and disaster areas [7]–
[9]. Ground users served by the UAV-BSs can expect line-
of-sight (LoS) air-to-ground communication. Thus, UAV-
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enabled communication can be efficient in supporting the
coverage and throughput of wireless communications [10],
[11].

UAV-enabled communication networks have recently
gained significant interests and are actively investigated
in open literature. Thanks to the flexibility of UAV de-
ployment, the coverage area, throughput, and energy effi-
ciency of UAV-enabled communication can be improved by
optimizing different parameters, such as, UAV placement
or UAV trajectory design [12]–[15], considering multiple-
UAV setup [16], [17], beamwidth control [18], power
allocation [19], joint power allocation and UAV place-
ment optimization [1], [20], joint bandwidth allocation
and trajectory design [21], or joint bandwidth and power
allocation [22].

Unlike conventional cellular communication, which op-
erates in a rich scattering environment that supports multi-
antenna array transmission for spatial diversity, UAV-
enabled downlink communication exhibits much poorer
scattering and as such a single-antenna UAV is most
desired. To be served by the same UAV over the same time,
multiple users must share the communication bandwidth.
Usually each user is assigned an individual bandwidth
channel so its achievable rate is very sensitive to the
number of users sharing the same bandwidth. Naturally
one may think to assign a bandwidth channel to a group
users but this would be not efficient because it is conven-
tionally known that over the same transmission bandwidth,
the downlink communication is only efficient when the
number of transmit antennas is not less than the number of
served users. Meanwhile, non-orthogonal multiple access
(NOMA) is known to simultaneously serve multiple users
in non-orthogonal resources, by separating the users in
the power domain [23], [24]. NOMA can improve the
achievable rate of far users (who receive lower received
signal power) by allowing the near-by users (who receive
higher received signal power) to access the information
intended for the far users [25], [26].

There are quite a few recent studies that have considered
the use of NOMA to improve the performance of UAV-
enabled communication system. In [27], the authors con-
sidered a UAV-BS to communicate with two ground users
using NOMA and investigated their outage probability.
In [28], the authors characterized the capacity region of
a UAV-enabled broadcast channel with two ground users
and jointly optimized the UAVs trajectory and transmit
power/rate allocations over time. In [29], the authors con-
sidered a multi-antenna UAV-BS to generate directional
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beams and served multiple users to maximize their outage
sum rates by using NOMA and beam scanning. In [30], the
authors employed a UAV system and NOMA to optimize
power allocation and UAV altitude to maximize sum-rate
for two users [30]. However, in order to achieve the max-
imum rate gains from UAV-enabled communication, it is
important to jointly optimize multiple relevant parameters,
e.g., UAV altitude, antenna beamwidth, power allocation
and bandwidth allocation. To the best authors’ knowledge,
this important problem, with a NOMA setting, is still
unsolved.

In this article, we consider a multiuser communication
system, in which a single-antenna UAV-BS serves a large
number of ground users by employing NOMA. Our work
is novel and contributive in the following aspects:

• Unlike previous works, we jointly optimize multiple
parameters, e.g., the UAV’s flying altitude, transmit
antenna beamwidth, and the amount of power and
bandwidth allocated to multiple users, and show the
performance benefit achieved due to this joint op-
timization. Our objective is to solve the max-min
rate optimization problem under total power, total
bandwidth, UAV altitude and antenna beamwidth con-
straints. The objective function is non-convex in all
optimization variables, i.e., power, bandwidth, alti-
tude, and beamwidth. In addition, it is also challenging
to handle the coverage constraint, which is dependent
nonlinearly on the beamwidth and UAV altitude. We
tackle these challenges by using inner convex approx-
imations and propose a path-following algorithm to
solve the problem.

• We also formulate orthogonal multiple access (OMA)
and dirty paper coding (DPC)-based max-min rate
optimization problems and develop path-following al-
gorithms to solve them.

• Numerical results show that NOMA outperforms
OMA and achieves rates similar to those attained
by DPC. In addition, we observe a clear rate gain
by jointly optimizing all the parameters rather than
optimizing subset of parameters, which emphasize the
need of their joint optimization.

Organization: The paper is organized as follows. Section
II presents the formulation of max-min rate optimization
problems. Section III describes algorithms to solve the
formulated problems. Section IV evaluates the performance
of our proposed algorithms using numerical examples.
Finally, Section V concludes the paper.

II. SYSTEM MODEL AND PROBLEM STATEMENT

Let us consider that a certain out-door location (stadium,
traffic jam, concert, etc.) is served by a single-antenna
UAV as depicted in Fig. 1. We assume that there are
K ground users in the location, such that K/2 users,
k ∈ {1, . . . ,K/2}, are located in closer vicinity (in terms
of Euclidean distance) of the UAV, and are called “near

Fig. 1. A system model showing UAV-BS and the ground users.

users” or “cell-centered users”. The remaining K/2 users,
k ∈ {K/2 + 1, . . . ,K} are located relatively at farther
distances, and are called “far users” or “cell-edge users”.
The UAV can employ NOMA to pair each near user with
each of the far users.

Let θ be the squared antenna beamwidth, h be the
squared UAV altitude (or UAV height above ground), which
must satisfy the coverage condition

R ≤
√
h tan

√
θ, (1)

where R is the radius of the coverage, so all users are
located inside the coverage area. Note that we have to
use
√
h and

√
θ for the UAV altitude and its antenna

beamwidth, respectively, as it will later on simplify the
handling of the non-convex coverage constraint (1). Let go
denote the channel power gain at a reference distance of
1 m, zk = (xk, yk) denote the coordinates of user k and
zu = (xu, yu) denote the location of the UAV projected
on the horizontal ground plane. The channel power gain
between the UAV and user k is given by

~k(h, θ) =
go|h̃k|2

θ(‖zk − zu‖2 + h)α/2

=
gog̃k

θ(‖zk − zu‖2 + h)α/2
(2)

where α is the path-loss exponent and h̃k ∼ CN (µ, 2σ2),
represents the Rician distributed small scale fading channel
co-efficient with Rician factor KR = |µ|2/2σ2 and normal-



3

ized power E(|h̃k|2) = 1 [9], or in other words, g̃k ≡ |h̃k|2
follows non-central chi-square distribution [31].

Let B be the total available bandwidth, which can be op-
timally divided among the near-by users k ∈ {1, . . . ,K/2},
such that the bandwidth allocated for user k can be written
as

wk = τkB, k ∈ {1, . . . ,K/2}, (3)

where 0 ≤ τk ≤ 1 is the fraction of the bandwidth
allocated to the user k. Accordingly, each near-by user k is
“assigned” a far-user j(k) = k+ K

2 to share the bandwidth
wk. In this work, we have simply paired the near-by user
with the far-user on the basis of the minimum Euclidean
distance.1

There are a couple of transmission techniques to improve
the multi-user rates. In the following, we will formulate the
multi-user rate max-min optimization problem for NOMA,
DPC, and OMA.

A. NOMA Problem Formulation
To make the rate functions more appealing, we use (2)

and introduce

dk = ‖zk − zu‖2, k = 1, . . . ,K.

NOMA allows user k to decode the information intended
for the paired user j(k) to cancel the user j(k)’s interfer-
ence in decoding the information intended for it. Assum-
ing additive white Gaussian noise (AGWN) channel, the
achievable rate in nats/sec/Hz of user k ∈ {1, 2, . . . ,K/2},
is given by

rk(τττ ,p, h, θ) = τk ln

(
1 +

pk~k(h, θ)

σBτk

)
= τk ln

(
1 +

gog̃kpk
σBτkθ(dk + h)α/2

)
,(4)

where σB = σ2B with the noise power density σ2, so
σBτk is the noise power over the bandwidth τkB, pk is the
power of signal carrying the information intended for it,
τττ , (τ1, . . . , τK/2), and p , (p1, . . . , pK).

The achievable rate of user j(k) in nats/sec/Hz is given
by

rj(k)(τττ ,p, h, θ) = min
{
r1j(k)(τττ ,p, h, θ), r

2
j(k)(τττ ,p, h, θ)

}
,

(5)

where,

r2j(k)(τττ ,p, h, θ) = τk ln

(
1 +

pj(k)~j(k)(h, θ)
σBτk + pk~j(k)(h, θ)

)
= τk ln

(
1 +

gog̃j(k)pj(k)

σBτkθ(dj(k) + h)α/2 + gog̃j(k)pk

)
,

(6)

1The more sophisticated user-pairing strategies may improve the perfor-
mance of NOMA networks (see e.g., [32]). Finding an optimum pairing
strategy is out of scope of this work. However, our simulation results
in Section IV clearly shows the performance gains of our proposed
Algorithms, even with our simple pairing strategy.

is the rate by user j(k), k ∈ {1, 2, . . . ,K/2}, in decoding
its own message, and

r1j(k)(τττ ,p, h, θ) = τk ln

(
1 +

pj(k)~k(h, θ)

σBτk + pk~k(h, θ)

)
= τk ln

(
1 +

gog̃kpj(k)

σBτkθ(dk + h)α/2 + gog̃kpk

)
, (7)

is the rate by user k, k ∈ {1, 2, . . . ,K/2}, in decoding the
user j(k)’s message.

The optimization problem is to find the optimal values of
bandwidth allocation τττ , power allocation p, UAV altitude√
h, and antenna beamwidth

√
θ, with the objective of

maximizing the worst user’s rate. It can be formulated
mathematically as follows:

max
τττ,p,h,θ

fNOMA(τττ ,p, h, θ) , min
k=1,...,K

rNOMA
k (τττ ,p, h, θ)

(8a)
s.t. (1),

h2min ≤ h ≤ h2max, θ2min ≤ θ ≤ θ2max, (8b)
K/2∑
k=1

τk = 1, & τk ≥ 0, ∀k ∈ {1, . . . ,K/2} (8c)

K∑
k=1

pk = P, & pk ≥ 0, ∀k ∈ {1, . . . ,K}, (8d)

where

rNOMA
k (τττ ,p, h, θ)

=

{
rk(τττ ,p, h, θ), k ∈ {1, . . . ,K/2},
rj(k)(τττ ,p, h, θ), j(k) ∈ {K/2 + 1, . . . ,K},

rk(τττ ,p, h, θ) is given by (4), rj(k)(τττ ,p, h, θ) is given by
(5), P is the total power budget, and θmin and θmax specify
the allowed range of the antenna beamwidth, i.e., (0, π/2).
It is quite challenging to solve the non-convex problem
(8) because the objective function (8a) is non-convex and
non-linear function of four different types of variables, i.e.,
power, bandwidth, altitude, and beamwidth. In addition,
it is also challenging to handle the coverage constraint,
which is dependent nonlinearly on the beamwidth and UAV
altitude. In Section III, we will provide an inner convex
approximation-based path-following algorithm to solve this
problem.

B. DPC Problem Formulation

For two users sharing the same bandwidth, the capacity-
achieving DPC is practical [33]–[35]. In DPC, the users’
data is successively decoded in a specific order. Thus, under
DPC, cell-centered user k perfectly eliminates the interfer-
ing signal intended for user j(k) from its received signal.
Therefore, the rate of user k ∈ {1, . . . ,K/2} is defined
by (4) while the rate of user j(k) ∈ {K/2 + 1, . . . ,K} is
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defined by (6) [26]. Thus, the max-min rate optimization
problem under DPC can be formulated as follows:

max
τττ,p,h,θ

fDPC(τττ ,p, h, θ) , min
k=1,...,K

rDPC
k (τττ ,p, h, θ)

s.t. (1), (8b)− (8d), (9)

where

rDPC
k (τττ ,p, h, θ)

=

{
rk(τττ ,p, h, θ), k ∈ {1, . . . ,K/2},
r2j(k)(τττ ,p, h, θ), j(k) ∈ {K/2 + 1, . . . ,K},

rk(τττ ,p, h, θ) is given by (4) and far-user rate
r2j(k)(τττ ,p, h, θ) is defined in (6).

C. OMA Problem Formulation

For OMA, the optimization problem can be formulated
in two ways. The first way, which we term “OMA-1” is to
allocate distinct bandwidth to all users, i.e., in (3), wk =
τkB, will be defined for k ∈ {1, . . . ,K}. Thus, under this
OMA-1, the optimization problem can be formulated as
follows:

max
τττ,p,h,θ

fOMA-1(τττ ,p, h, θ) , min
k=1,...,K

rOMA-1
k (τττ ,p, h, θ)

(10a)
s.t. (1), (8b), (8d),

K∑
k=1

τk = 1, & τk ≥ 0, ∀ k ∈ {1, . . . ,K}, (10b)

where τττ , (τ1, . . . , τK) for OMA-1, rOMA-1
k (τττ ,p, h, θ) =

rk(τττ ,p, h, θ), ∀ k = {1, . . . ,K} and rk(τττ ,p, h, θ) is
defined in (4).

The second option, which we term “OMA-2”, is to
find optimal K/2 bandwidth partitions along with optimal
altitude, power, and antenna beamwidth, and solve the
following optimization problem:

max
τττ,p,h,θ

fOMA-2(τττ ,p, h, θ) , min
k=1,...,K/2

rOMA-2
k (τττ ,p, h, θ)

s.t. (1), (8b)− (8d), (11)

where

rOMA-2
k (τττ ,p, h, θ)

=

{
rO
k (τττ ,p, h, θ), k ∈ {1, . . . ,K/2},
rO
j(k)(τττ ,p, h, θ), j(k) ∈ {K/2 + 1, . . . ,K},

such that

rO
k (τττ ,p, h, θ) = τk ln

(
1 +

pk~k(h, θ)

σBτk + pj(k)~k(h, θ)

)
= τk ln

(
1 +

gog̃kpk
σBτkθ(dk + h)α/2 + gog̃kpj(k)

)
,

∀ k ∈ {1, . . . ,K/2}, (12a)

rO
j(k)(τττ ,p, h, θ) = τk ln

(
1 +

pj(k)~j(k)(h, θ)
σBτk + pk~j(k)(h, θ)

)
= τk ln

(
1 +

gog̃j(k)pj(k)

σBτkθ(dj(k) + h)α/2 + gog̃j(k)pk

)
∀ j(k) ∈ {K/2, . . . ,K}. (12b)

Since user k and user j(k) are sharing the bandwidth,
user k experiences interference from user j(k) in (12a) to
decode its own data and user j(k) experiences interference
from user k in (12b) to decode its own data.

III. ALGORITHMS

In this section, we will solve the formulated problems
in Section II, which are non-convex optimization problems
and thus pose computational challenges. In this section, we
will be using the following Lemma.

Lemma 1: For every x > 0, y > 0, τ > 0, x̄ > 0, ȳ > 0
and τ̄ > 0:

τ ln

(
1 +

1

xy

)
≥ 2τ̄ ln

(
1 +

1

x̄ȳ

)
+
τ̄ (2− x/x̄− y/ȳ)

1 + x̄ȳ

− τ̄2 ln(1 + 1/x̄ȳ)

τ
(13)

Proof : See Appendix A.

A. NOMA Algorithm

From the definitions (4) and (6), one can see that the
objective function (8a) of the optimization problem (8) is
a complex non-concave function. Also, the constraint (1)
is non-convex. To obtain a path-following computational
procedure [36], [37], which improves a feasible point
of (8) after each iteration and converges to an optimal
solution, we need to develop a lower-bounding concave
approximation for the objective function and also an inner
convex approximation for constraint (1).

Let (τττ (κ),p(κ), h(κ), θ(κ)) be a feasible point for (8) that
is found at the (κ − 1)th iteration. With regard to the
function rk in (8), applying the inequality (13) in Lemma
1 for

τ = τk, x = σBθ/gog̃kpk, y = τk(dk + h)α/2

and

τ̄ = τ
(κ)
k , x̄ = σBθ

(κ)/gog̃kp
(κ)
k , ȳ = τ

(κ)
k (dk + h(κ))α/2
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yields

rk(τττ ,p, h, θ) ≥ a(κ)k + b
(κ)
k

(
2−

p
(κ)
k

θ(κ)
θ

pk

− τk(dk + h)α/2

τ
(κ)
k (dk + h(κ))α/2

)
−
c
(κ)
k

τk
(14)

where

0 < a
(κ)
k = 2τ̄ ln(1 + 1/x̄ȳ),

0 < b
(κ)
k =

τ̄

1 + x̄ȳ
,

0 < c
(κ)
k = τ̄2 ln(1 + 1/x̄ȳ). (15)

From (14) it remains to deal with

p
(κ)
k

θ(κ)
θ

pk
=

1

4

( θ

θ(κ)
+
p
(κ)
k

pk

)2

−

(
θ

θ(κ)
−
p
(κ)
k

pk

)2


≤ 1

4

(
θ

θ(κ)
+
p
(κ)
k

pk

)2

, π
(κ)
k (θ, pk) (16)

and

τk(dk + h)α/2

τ
(κ)
k (dk + h(κ))α/2

=
1

4

( τk

τ
(κ)
k

+
(dk + h)α/2

(dk + h(κ))α/2

)2

−

(
τk

τ
(κ)
k

− (dk + h)α/2

(dk + h(κ))α/2

)2


≤ 1

4

(
τk

τ
(κ)
k

+
(dk + h)α/2

(dk + h(κ))α/2

)2

, ϕ
(κ)
k (τk, h), (17)

Therefore,

rk(τττ ,p, h, θ) ≥ r(κ)k (τττ ,p, h, θ) (18)

for

r
(κ)
k (τττ ,p, h, θ) , a

(κ)
k + b

(κ)
k

(
2− π(κ)

k (θ, pk)

−ϕ(κ)
k (τk, h)

)
−
c
(κ)
k

τk
, (19)

which is a concave function under pk ≥ 0, as mentioned
explicitly in the constraint (8d).

With regard to the function r2j(k), applying the inequality
(13) in Lemma 1 for

τ = τk , x = σBθ/gog̃j(k)pj(k),

y = τk(dj(k) + h)α/2 + gog̃j(k)pk/(σBθ)

and

τ̄ = τ
(κ)
k , x̄ = σBθ

(κ)/gog̃j(k)p
(κ)
j(k),

ȳ = τ
(κ)
k (dj(k) + h(κ))α/2 + gog̃j(k)p

(κ)
k /(θ(κ)σB)

yields

r2j(k)(τττ ,p, h, θ) ≥ a
(κ)
j(k) + b

(κ)
j(k)

2−
p
(κ)
j(k)

θ(κ)
θ

pj(k)

−
τk(dj(k) + h)α/2 + gog̃j(k)pk/(σBθ)

τ
(κ)
k (dj(k) + h(κ))α/2 + gog̃j(k)p

(κ)
k /(σBθ(κ))

)

−
c
(κ)
j(k)

τk
, (20)

where

0 < a
(κ)
j(k) = 2τ̄ ln(1 + 1/x̄ȳ),

0 < b
(κ)
j(k) =

τ̄

1 + x̄ȳ
,

0 < c
(κ)
j(k) = τ̄2 ln(1 + 1/x̄ȳ). (21)

From (20), it remains to deal with

p
(κ)
j(k)

θ(κ)
θ

pj(k)
≤ 1

4

p(κ)j(k)

pj(k)
+

θ

θ(κ)

2

, π
(κ)
j(k)(pj(k), θ), (22)

and

τk(dj(k) + h)α/2 + gog̃j(k)pk/(σBθ)

τ
(κ)
k (dj(k) + h(κ))α/2 + gog̃j(k)p

(κ)
k /(σBθ(κ))

=
(τk/τ

(κ)
k ).[(dj(k) + h)α/2/(dj(k) + h(κ))α/2]

1 + gog̃j(k)p
(κ)
k σB/θ(κ)τ

(κ)
k (dj(k) + h(κ))α/2

+
(pk/p

(κ)
k ).(θ(κ)/θ)

σBθ(κ)τ
(κ)
k (dj(k) + h(κ))α/2/gog̃j(k)p

(κ)
k + 1

≤ 1

4

(
(τk/τ

(κ)
k ) + (dj(k) + h)α/2/(dj(k) + h(κ))α/2

)2
1 + gog̃j(k)p

(κ)
k /σBθ(κ)τ

(κ)
k (dj(k) + h(κ))α/2

+
1

4

(
(pk/p

(κ)
k ) + (θ(κ)/θ)

)2
σBθ(κ)τ

(κ)
k (dj(k) + h(κ))α/2/gog̃j(k)p

(κ)
k + 1

, ν
(κ)
k (τk, pk, θ). (23)

Therefore,

r2j(k)(τττ ,p, h, θ) ≥ r
2,(κ)
j(k) (τττ ,p, h, θ) (24)

for

r
2,(κ)
j(k) (τττ ,p, h, θ) , a

(κ)
j(k) + b

(κ)
j(k)

(
2− π(κ)

j(k)(θ, pj(k))

−ν(κ)k (τk, pk, θ)
)
−
c
(κ)
j(k)

τk
. (25)
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Analogously,

r1j(k)(τττ ,p, h, θ) ≥ ã
(κ)
j(k) + b̃

(κ)
j(k)

2−
p
(κ)
j(k)

θ(κ)
θ

pj(k)

− τk(dk + h)α/2 + gog̃kpk/(σBθ)

τ
(κ)
k (dk + h(κ))α/2 + gog̃kp

(κ)
k /(σBθ(κ))

)

−
c̃
(κ)
j(k)

τk

≥ r1,(κ)j(k) (τττ ,p, h, θ) (26)

for

r
1,(κ)
j(k) (τττ ,p, h, θ) , ã

(κ)
j(k) + b̃

(κ)
j(k)

(
2− π(κ)

j(k)(θ, pj(k))

−ν̃(κ)k (τk, pk, θ)
)
−
c̃
(κ)
j(k)

τk
, (27)

and

ν̃
(κ)
k (τk, pk, θ)

,
1

4

(
(τk/τ

(κ)
k ) + (dk + h)α/2/(dk + h(κ))α/2

)2
1 + gog̃kp

(κ)
k /σBθ(κ)τ

(κ)
k (dk + h(κ))α/2

+
1

4

(
(pk/p

(κ)
k ) + (θ(κ)/θ)

)2
σBθ(κ)τ

(κ)
k (dk + h(κ))α/2/gog̃kp

(κ)
k + 1

, (28)

and

ã
(κ)
j(k) = 2τ̄ ln(1 + 1/x̄ȳ),

b̃
(κ)
j(k) =

τ̄

1 + x̄ȳ
,

c̃
(κ)
j(k) = τ̄2 ln(1 + 1/x̄ȳ), (29)

under

τ̄ = τ
(κ)
k , x̄ = σBθ

(κ)/gog̃kp
(κ)
j(k),

ȳ = τ
(κ)
k (dk + h(κ))α/2 + gog̃kp

(κ)
k /(σBθ

(κ)).

A lower bounding concave function for the objective
function (8a) is

fNOMA,(κ)(τττ ,p, h, θ) = min
k=1,...,K

r
NOMA,(κ)
k (τττ ,p, h, θ),

(30)
where

r
NOMA,(κ)
k (τττ ,p, h, θ)

=

{
r
(κ)
k (τττ ,p, h, θ), k ∈ {1, . . . ,K/2},
r
2,(κ)
j(k) (τττ ,p, h, θ), j(k) ∈ {K/2 + 1, . . . ,K},

(31)

and

r
(κ)
j(k)(τττ ,p, h, θ) = min

{
r
1,(κ)
j(k) (τττ ,p, h, θ), r

2,(κ)
j(k) (τττ ,p, h, θ)

}
,

where r
(κ)
k (τττ ,p, h, θ), r

1,(κ)
j(k) (τττ ,p, h, θ), and

r
2,(κ)
j(k) (τττ ,p, h, θ) defined in (19), (27), and (25),

respectively.

It remains to deal with the non-convex constraint (1).
Proposition 1: From the convexity of the tangential

function, it follows that
√
h tan

√
θ

≥
√
h

(
tan

√
θ(κ) +

√
θ −
√
θ(κ)

(cos
√
θ(κ))2

)
(32a)

=
sin
√
θ(κ) cos

√
θ(κ) −

√
θ(κ)

(cos
√
θ(κ))2

√
h+

√
hθ

(cos
√
θ(κ))2

(32b)

≥ sin
√
θ(κ) cos

√
θ(κ) −

√
θ(κ)

(cos
√
θ(κ))2

(√
h(κ)

2
+

h

2
√
h(κ)

)

+

√
hθ

(cos
√
θ(κ))2

. (32c)

Proof : See Appendix B.
Therefore, an inner approximation of (1) is2

R ≤ sin
√
θ(κ) cos

√
θ(κ) −

√
θ(κ)

(cos
√
θ(κ))2

(√
h(κ)

2
+

h

2
√
h(κ)

)

+

√
hθ

(cos
√
θ(κ))2

, (33)

i.e. every feasible point for the latter is also feasible for
the former.

In summary, at the κ-th iteration, we solve the following
convex optimization problem to generate the next iterative
feasible point (τ (κ+1), p(κ+1), θ(κ+1), h(κ+1)):

max
τττ,p,h,θ

fNOMA,(κ)(τττ ,p, h, θ)

s.t. (8b), (8c), (8d), (33). (34)

Algorithm 1 outlines the steps to solve the max-min rate
optimization problem (8).

Finding an initial feasible point: The initial feasible
point (τττ (0),p(0), θ(0), h(0)) can be obtained by following
the following three steps.

1) First, we can calculate τττ (0) and p(0) by assuming
random power and random bandwidth allocation
which satisfies (8b) and (8c), i.e.,

∑K/2
k=1 τ

(0)
k = 1 and∑K

k=1 p
(0)
k = P .

2) We can find θ(0) by fixing it to some value that
satisfies θ2min ≤ θ ≤ θ2max in (8b).

3) Finally, we can find h(0) by solving a feasibility
problem for h under convex constraints h2min ≤ h ≤
h2max and R ≤

√
h tan

√
θ(0).

Note that fNOMA,(κ)(τττ (κ+1),p(κ+1), h(κ+1), θ(κ+1)) >
fNOMA,(κ)(τττ (κ),p(κ), h(κ), θ(κ)) because (τττ (κ+1),
p(κ+1), h(κ+1), θ(κ+1)) and (τττ (κ),p(κ), h(κ), θ(κ)) are re-

2sin
√
θ(κ) cos

√
θ(κ) −

√
θ(κ) < 0
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Algorithm 1 NOMA-based algorithm for max-min rate
optimization problem (8)
Initialization: Set κ := 0 and a feasible point

(τττ (0),p(0), θ(0), h(0)) for constraints (1), (8b), (8c),
and (8d).

1: repeat
2: Solve the convex optimization problem

(34) to obtain the optimal solution
(τττ (κ+1),p(κ+1), θ(κ+1), h(κ+1)).

3: Set κ := κ+ 1.
4: until Convergence

spectively the optimal solution and a feasible point of (34).
Therefore

fNOMA(τττ (κ+1),p(κ+1), h(κ+1), θ(κ+1))

≥ fNOMA,(κ)(τττ (κ+1),p(κ+1), h(κ+1), θ(κ+1)) (35)

> fNOMA,(κ)(τττ (κ),p(κ), h(κ), θ(κ))

= fNOMA(τττ (κ),p(κ), h(κ), θ(κ)), (36)

where (35) is true because fNOMA,(κ) is a lower
bound of fNOMA while (36) is true because fNOMA,(κ)

matches with fNOMA at (τττ (κ),p(κ), h(κ), θ(κ)), so
(τττ (κ+1),p(κ+1), h(κ+1), θ(κ+1)) is a better feasible
point than (τττ (κ),p(κ), h(κ), θ(κ)). As such, the sequence
{(τττ (κ),p(κ), h(κ), θ(κ))} at least converges to a locally
optimal solution of (8) [36], [37].

B. DPC Algorithm

The objective function of the DPC problem (9) is similar
to that for the NOMA problem (8). Thus, DPC problem
will have the same solution as that of the NOMA problem.
Therefore, at the κ-th iteration, we solve the following
convex optimization problem to generate the next iterative
feasible point (τ (κ+1), p(κ+1), θ(κ+1), h(κ+1)):

max
τττ,p,h,θ

fDPC,(κ) , min
k=1,...,K/2

r
DPC,(κ)
k (τττ ,p, h, θ)

s.t. (8b), (8c), (8d), (33), (37)

where

r
DPC,(κ)
k (τττ ,p, h, θ)

=

{
r
(κ)
k (τττ ,p, h, θ), k ∈ {1, . . . ,K/2},
r
2,(κ)
j(k) (τττ ,p, h, θ), j(k) ∈ {K/2 + 1, . . . ,K}.

Note that r(κ)k (τττ ,p, h, θ) and r2,(κ)j(k) (τττ ,p, h, θ) are derived
in (19) and (25), respectively. Algorithm 2 outlines the
steps to solve the max-min rate optimization problem (9).

C. OMA Algorithm

The objective function of the OMA-1 problem (10)
also has similarity in its structure to that for the NOMA
problem (8). The non-convex constraint (1) can be ap-
proximated by (33). Thus, we can use the inequality (13)

Algorithm 2 DPC-based algorithm for max-min rate opti-
mization problem (9)
Initialization: Set κ := 0 and a feasible point

(τττ (0),p(0), θ(0), h(0)) for constraints (1), (8b), (8c),
and (8d).

1: repeat
2: Solve the convex optimization problem

(37) to obtain the optimal solution
(τττ (κ+1),p(κ+1), θ(κ+1), h(κ+1)).

3: Set κ := κ+ 1.
4: until Convergence

Algorithm 3 OMA-1 algorithm for max-min rate optimiza-
tion problem (10)
Initialization: Set κ := 0 and a feasible point

(τττ (0),p(0), θ(0), h(0)) for constraints (1), (8b), (10b),
and (8d).

1: repeat
2: Solve the convex optimization problem

(38) to obtain the optimal solution
(τττ (κ+1),p(κ+1), θ(κ+1), h(κ+1)).

3: Set κ := κ+ 1.
4: until Convergence

and the approximations (16) and (17) to approximate the
non-concave objective function in (10). Thus, we solve
the following convex optimization problem, at the κ-
th iteration, to generate the next iterative feasible point
(τ (κ+1), p(κ+1), θ(κ+1), h(κ+1)):

max
τττ,p,h,θ

fOMA-1,(κ) , min
k=1,...,K

r
OMA-1,(κ)
k (τττ ,p, h, θ)

s.t. (8b), (10b), (8d), (33), (38)

where r
OMA-1,(κ)
k (τττ ,p, h, θ) = r

(κ)
k (τττ ,p, h, θ), ∀ k =

{1, . . . ,K} and r
(κ)
k (τττ ,p, h, θ) is defined in (19). Al-

gorithm 3 outlines the steps to solve the max-min rate
optimization problem (10). The initial feasible point
(τττ (0),p(0), θ(0), h(0)) can be obtained in the same way as
described for the NOMA in Section III-A.

Next, in order to solve the OMA-2 problem (11), at the
κ-th iteration, we solve the following convex optimiza-
tion problem to generate the next iterative feasible point
(τ (κ+1), p(κ+1), θ(κ+1), h(κ+1)):

max
τττ,p,h,θ

fOMA-2,(κ) min
k=1,...,K/2

r
OMA-2,(κ)
k (τττ ,p, h, θ)

s.t. (8b), (8c), (8d), (33), (39)

where

r
OMA-2,(κ)
k (τττ ,p, h, θ)

=

{
r

O,(κ)
k (τττ ,p, h, θ), k ∈ {1, . . . ,K/2},
r

O,(κ)
j(k) (τττ ,p, h, θ), j(k) ∈ {K/2 + 1, . . . ,K},

where r
O,(κ)
k (τττ ,p, h, θ) and r

O,(κ)
j(k) (τττ ,p, h, θ) are inner

approximations (at the κ-th iteration) of the non-concave
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functions rO
k (τττ ,p, h, θ) and rO

j(k)(τττ ,p, h, θ), respectively
(defined in (12)). Since rO

j(k)(τττ ,p, h, θ) is similar to the rate
function r2j(k)(τττ ,p, h, θ) (defined in (6) for the NOMA-
problem) and rO

k (τττ ,p, h, θ) has similar structure too, we
can use the inequality (13) (given in Lemma 1) and the
approximations (22) and (23) to find the inner approxima-
tions rO,(κ)

k (τττ ,p, h, θ) and rO,(κ)
j(k) (τττ ,p, h, θ).

Thus, by applying the inequality (13) for

τ = τk , x = σBθ/gog̃kpk,

y = τk(dk + h)α/2 + gog̃kpj(k)/(σBθ),

we can obtain the inner approximation for the non-concave
rate function rO

k (τττ ,p, h, θ), as follows:

r
O,(κ)
k (τττ ,p, h, θ) , ã

O,(κ)
k + b̃

O,(κ)
k

(
2− π(κ)

k (θ, pk)

−ν̃O,(κ)j(k) (τk, pj(k), θ)
)
−
c̃
O,(κ)
k

τk
,

(40)

where

ν̃
O,(κ)
j(k) (τk, pj(k), θ)

,
1

4

(
(τk/τ

(κ)
k ) + (dk + h)α/2/(dk + h(κ))α/2

)2
1 + gog̃kp

(κ)
j(k)/σBθ

(κ)τ
(κ)
k (dk + h(κ))α/2

+
1

4

(
(pj(k)/p

(κ)
j(k)) + (θ(κ)/θ)

)2
σBθ(κ)τ

(κ)
k (dk + h(κ))α/2/gog̃kp

(κ)
j(k) + 1

, (41)

and

ã
O,(κ)
k = 2τ̄ ln(1 + 1/x̄ȳ),

b̃
O,(κ)
k =

τ̄

1 + x̄ȳ
,

c̃
O,(κ)
k = τ̄2 ln(1 + 1/x̄ȳ), (42)

under

τ̄ = τ
(κ)
k , x̄ = σBθ

(κ)/gog̃kp
(κ)
k ,

ȳ = τ
(κ)
k (dk + h(κ))α/2 + gog̃kp

(κ)
j(k)/(σBθ

(κ)).

Similarly, by applying the inequality (13) for

τ = τk, x = σBθ/gog̃j(k)pj(k),

y = τk(dj(k) + h)α/2 + gog̃j(k)pk/(σBθ),

we can obtain the inner approximation for the non-concave
rate function rO

j(k)(τττ ,p, h, θ) as follows:

r
O,(κ)
j(k) (τττ ,p, h, θ) , ã

O,(κ)
j(k) + b̃

O,(κ)
j(k)

(
2− π(κ)

j(k)(θ, pj(k))

−ν̃O,(κ)k (τk, pk, θ)
)
−
c̃
O,(κ)
j(k)

τk
, (43)

Algorithm 4 OMA-2 algorithm for max-min rate optimiza-
tion problem (11)
Initialization: Set κ := 0 and a feasible point

(τττ (0),p(0), θ(0), h(0)) for constraints (1), (8b), (8c),
and (8d).

1: repeat
2: Solve the convex optimization problem

(39) to obtain the optimal solution
(τττ (κ+1),p(κ+1), θ(κ+1), h(κ+1)).

3: Set κ := κ+ 1.
4: until Convergence

where

ν̃
O,(κ)
k (τk, pk, θ)

,
1

4

(
(τk/τ

(κ)
k ) + (dj(k) + h)α/2/(dj(k) + h(κ))α/2

)2
1 + gog̃j(k)p

(κ)
k /σBθ(κ)τ

(κ)
k (dj(k) + h(κ))α/2

+
1

4

(
(pk/p

(κ)
k ) + (θ(κ)/θ)

)2
σBθ(κ)τ

(κ)
k (dj(k) + h(κ))α/2/gog̃j(k)p

(κ)
k + 1

,

(44)

and

ã
O,(κ)
j(k) = 2τ̄ ln(1 + 1/x̄ȳ),

b̃
O,(κ)
j(k) =

τ̄

1 + x̄ȳ
,

c̃
O,(κ)
j(k) = τ̄2 ln(1 + 1/x̄ȳ), (45)

under

τ̄ = τ
(κ)
k //, ///x̄ = σBθ

(κ)/gog̃j(k)p
(κ)
j(k),

ȳ = τ
(κ)
k (dj(k) + h(κ))α/2 + gog̃j(k)p

(κ)
k /(σBθ

(κ)).

Algorithm 4 outlines the steps to solve the max-min
rate optimization problem (11). The initial feasible point
(τττ (0),p(0), θ(0), h(0)) can be obtained in the same way as
described for the NOMA in Section III-A.

Before closing this section, let us mention that it is
possible to extend our computational approach to scenarios
of multiple UAVs serving their own users and thus creating
multiple cells as follows. For simplicity of explanation,
suppose that each UAV serves the same number K of
ground users so the total bandwidth is divided and re-used
in each cell for spectral efficiency. To cancel inter-cell in-
terference, which is difficult to be enhanced due to the poor
scattering of the air-to-ground (A2G) channels, one simply
allocates different bandwidths to users on cell boundary, i.e.
those on cell boundary from different cells are allocated
different bandwidths. As such (8) (for NOMA), (9) (for
DPC), (10) (for OMA-1) and (11) (for OMA-1) will involve
the same variable τττ of bandwidth allocation satisfying
the constraint (8c) or (10b) but each cell i has its own
variables p(i), h(i), and θ(i) of power allocation for its
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Fig. 2. Network topology used in the simulations.

0 5 10 15 20
Number of iterations

0

1

2

3

4

5

6

O
p
ti
m

iz
e

d
 m

a
x
-m

in
 u

s
e

r 
ra

te
 (

M
b
p
s
)

DPC (Alg. 2)
NOMA (Alg. 1)
OMA-1 (Alg. 3)
OMA-2 (Alg. 4)

Fig. 3. The convergence of the proposed Algorithms 1-4.

users, UAV’s altitude and beamwidth, which are indepen-
dently constrained. Thus, all the proposed algorithms can
be adjusted for computational solution of these problems.

IV. SIMULATION RESULTS

In this section, we analyze the performance of the pro-
posed Algorithms 1-4 via simulations. We use the network
topology as used in Fig. 2, where the cell radius is set to
R = 300 meters, and there are K = 20 users randomly
placed within the cell. The UAV BS is at the cell-center
and at altitude

√
h above the ground-level. Fig. 2 shows the

ground-level projection of the UAV BS. Half of the users
are placed closer to the UAV BS, while the rest of the users
are farther from the UAV BS. The channel power gain go
at a distance of 1 meter is set to 3.24 × 10−4, which in-
corporates −38.47 dB (1.42×10−4) path loss and antenna
gain 2.2846 [18]. The Rician factor for the Rician fading
channel h̃k is set to KR = 12 dB [31]. The maximum and
minimum UAV altitude are set to hmax = 500 meters and
hmin = 50 meters, respectively. The range of the antenna
beamwidth is set to θmin = 0 and θmax = π/2 rad. The
total power budget is P = 2 mW (3 dBm). Unless stated
otherwise, we set total available bandwidth B = 15 MHz,
the noise power density σ2 = −174 dBm/Hz, and the path-
loss exponent α = 2 [9], [20]. However, in this section, we
will also test our proposed algorithms for different values of
B, σ2, and α. The simulations are run by using MATLAB
and off-the-shelf solvers such as CVX [38].

A. Performance of the Proposed Algorithms 1-4

Fig. 3 plots the convergence results of the proposed
Algorithms 1-4 employing NOMA problem (8), DPC prob-
lem (9), OMA-1 problem (10), and OMA-2 problem (11),
respectively. Fig. 3 shows that NOMA (Alg. 1) and DPC
(Alg. 2) take around 16 iterations to converge. On the

other hand, the convergence of the OMA-1 and OMA-
2 (Algorithms 3 and 4) requires only eight and seven
iterations, respectively. However, the NOMA and DPC
achieve better rates than their OMA counterparts. Even,
at the sventh iteration, which is the point where the OMA-
1 (Alg. 3) converges, the optimized rates of the NOMA
and DPC are better than that of the OMA-1.

The computational complexity of NOMA (Alg.
1) is O

(
iA1(1.5K + 2)3(2K + 7)

)
, DPC (Alg. 2)

is O
(
iA2(1.5K + 2)3(2K + 7)

)
, OMA-1 (Alg. 3) is

O
(
iA3(2K + 2)3(2K + 7)

)
, and OMA-2 (Alg. 4) is

O
(
iA4(1.5K + 2)3(2K + 7)

)
[39, p. 4], where iA1 = 16,

iA2 = 17.2, iA3 = 7, iA4 = 6 are the average number of
iterations required for the convergence of Algorithms 1,
2, 3, and 4, respectively.

Fig. 4 plots the optimized max-min user rate versus the
total available bandwidth B. We solve NOMA problem
(8), DPC problem (9), OMA-1 problem (10), and OMA-2
problem (11) using Algorithms 1, 2, 3, and 4, respectively.
As expected, the optimized rate increases with an increase
in the total available bandwidth B. Fig. 4 shows that the
performance of NOMA is quite closer to that of the DPC
while clearly better than that of the OMA counterparts.
Moreover, we observe that the performance gap between
the NOMA and OMA-1 increases with an increase in the
available bandwidth B.

Fig. 5 plots the optimized max-min user rates of the
proposed Algorithms 1-4 versus the noise power density
σ2. As expected, the optimized rate decreases with an
increase in the noise power density σ2. Fig. 5 again shows
the same trend that the NOMA and DPC clearly outperform
the OMA counterparts. In addition, the performance gap
between the NOMA and OMA-1 decreases as the noise
power density σ2 increases.

Figs. 6 and 7 plot the optimized values of UAV altitude
and antenna beamwidth, respectively, after solving all the
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Fig. 4. Optimized max-min user rate versus total available bandwidth
B, for the noise power density σ2 = −174 dBm/Hz.
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Fig. 5. Optimized max-min user rate versus noise power density σ2,
where the available bandwidth is set to B = 15 MHz.
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√
θ versus total available band-

width B, where the noise power density is set to σ2 = −174 dBm/Hz.

problems using Algorithms 1, 2, 3, and 4. Figs. 6 and 7
show that there is minor change in the optimized values
of the UAV altitude and antenna beamwidth for different
values of the total available bandwidth B. This is an inter-
esting and desirable result since the UAV is not required
to move much if the bandwidth quota changes.

Fig. 8 plots the optimized max-min rates of the proposed
Algorithms 1-4 versus the path-loss exponent, α. This
results has been simulated since some recent studies [30],
[31] adopt higher values of path-loss exponent for UAV
communication. Fig. 5 shows an interesting and promising
result that for higher values of path-loss exponent, the
performance gap between the NOMA and DPC vanishes,
while they clearly outperform the OMA counterparts. On
the other hand, as expected, the optimized rate for all the
algorithms decreases with an increase in α.

B. Comparison with the Sub-optimal Schemes

Fig. 9 plots the optimized max-min user rate for sub-
optimal strategy where only power and bandwidth are
optimized under fixed altitude

√
h and fixed antenna

beamwidth
√
θ, such that the constraint (1) is satisfied.

Again, the bandwidth is set to B = 15 MHz. Fig. 9(a)
assumes

√
h = 100 m while Fig. 9(b) assumes

√
h = 200

m. That is, in Fig. 9, we solve the NOMA problem (8),
the DPC problem (9), and the OMA-1 problem (10), for
given fixed altitude

√
h and fixed antenna beamwidth

√
θ,

i.e., in the absence of constraint (1). Thus, this sub-optimal
scheme requires solving only for the optimal power p
and optimal bandwidth allocation τττ . The optimized max-
min rates are clearly smaller than the optimized rates as
obtained by the proposed optimal Algorithms 1-3, which
are shown by the black bar at the left of each group in
Fig. 9. This is because Algorithms 1-4 jointly optimize all
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Fig. 8. Optimized max-min user rate versus the path-loss exponent, α.

the parameters. In addition, this justifies the desirability of
optimizing UAV-BS altitude and antenna beamwidth. Note
that the Fig. 9 does not plot results for OMA-2 (Alg.
4) because it performs quite poorly than the other three
algorithms.

Fig. 10 plots the max-min user rate obtained by another
sub-optimal scheme, which assumes fixed power p and
fixed bandwidth τττ allocation and solves to find the optimal
UAV altitude

√
h and optimal antenna beamwidth

√
θ.

Particularly, we opt for equal power and equal bandwidth
allocation, such that, equal power allocation implies pk =
P/K, ∀ k, while equal bandwidth for the NOMA and
DPC mean τk = 1/(K/2), ∀ k ∈ {1, . . . ,K/2} and
equal bandwidth allocation for OMA-1 means τk = 1/K,
∀ k ∈ {1, . . . ,K}. Fig. 10 shows that optimal schemes
(Algorithms 1, 2, and 3 plotted with solid lines) clearly
outperform the respective sub-optimal schemes (plotted
with dashed lines). Fig. 10 shows that the sub-optimal
NOMA and the sub-optimal DPC perform quite poorly,
and even deliver a worse rate than the sub-optimal OMA-
1. This is because wise power allocation is necessary for
the NOMA and DPC, whereas, the sub-optimal NOMA
and the sub-optimal DPC in Fig. 10 assume equal power
allocation, which worsen their achievable rate.

V. CONCLUSIONS

In this paper, we have considered a UAV-enabled com-
munication network which serves a large number of users
by employing NOMA. We have formulated the max-min
rate optimization problem under total power, total band-
width, UAV altitude, and antenna beamwidth constraints.
The formulated max-min rate objective function is non-
convex in the optimization variables, i.e., the UAV’s flying
altitude, transmit antenna beamwidth, power allocation and
bandwidth allocation for multiple users. We have developed
a path-following algorithm to solve the formulated prob-
lem. In addition, we have also formulated OMA and DPC-

based max-min rate optimization problems and developed
respective path-following algorithms to solve them. Finally,
our numerical results show that NOMA outperforms OMA
and achieves rates similar to those achieved by DPC.
Moreover, we have observed a clear rate gain by jointly
optimizing all the parameters (power, bandwidth, UAV
altitude, and antennas beamwidth), when compared to the
case of optimizing subset of these parameters, which con-
firms the desirability of their joint optimization. Physical
layer security for UAV-enabled communication is an very
important issue and is under our study.

APPENDIX A
PROOF OF LEMMA 1

For the convex function f(x, y, t) , ln(1 + 1/xy)1/t

[40], one has the following inequality for every x > 0,
y > 0, t > 0, x̄ > 0, ȳ > 0 and t̄ > 0:

ln(1 + 1/xy)

t
= f(x, y, t)

≥ f(x̄, ȳ, t̄) + 〈∇f(x̄, ȳ, t̄), (x, y, t)− (x̄, ȳ, t̄)〉

=
2 ln(1 + 1/x̄ȳ)

t̄
+

1

t̄(1 + x̄ȳ)
(2− x/x̄− y/ȳ)

− ln(1 + 1/x̄ȳ)

t̄2
t (46)

Therefore, by setting τ = 1/t and τ̄ = 1/t̄, we can achieve
the following inequality.

τ ln

(
1 +

1

xy

)
≥ 2τ̄ ln

(
1 +

1

x̄ȳ

)
+
τ̄ (2− x/x̄− y/ȳ)

1 + x̄ȳ

− τ̄2 ln(1 + 1/x̄ȳ)

τ

APPENDIX B
PROOF OF PROPOSITION 1

The convex function f(x) can be approximated by the
following lower bound at x = x(κ),

f(x) ≥ f(x(κ)) +∇xf(x(κ))(x− x(κ)) (47)

and concave function g(x) can be approximated by the
following upper bound at x = x(κ),

g(x) ≤ g(x(κ)) +∇xg(x(κ))(x− x(κ)) (48)

where ∇xf(x(κ)) is the gradient of function f(x) with
respect to its variable x and evaluated at x = x(κ).

Using (47), the convex tangent function can be approx-
imated by

tan
√
θ ≥ tan

√
θ(κ) +

√
θ −
√
θ(κ)

(cos
√
θ(κ))2

(49)

From (49), we can achieve (32a) or equivalently (32b) in
Proposition 1.
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Fig. 9. Comparison of max-min user rate obtained by optimizing only power and bandwidth under fixed altitude
√
h and fixed antenna beamwidth√

θ (satisfying (1)) with the max-min rate achieved by optimizing all the parameters jointly by proposed Algorithms (shown by black bar at the left
of each group). Subfig. (a) assumes

√
h = 100 m and subfig. (b) assumes

√
h = 200 m.
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Fig. 10. Comparison of the optimized max-min user rate obtained under
fixed power p and fixed bandwidth τττ allocation (equal power and equal
bandwidth allocation) with the optimized max-min rate achieved by the
proposed algorithms.

Next, using (48), the concave function
√
h can be

approximated by

√
h ≤

√
h(κ)

2
+

h

2
√
h(κ)

(50)

Using (50) in (32b), we can achieve the final expression
(32c) in Proposition 1.
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