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ABSTRACT  

The biosorption process of anionic dye Alizarin Red S (ARS) and cationic dye methylene blue 

(MB) as a function of contact time, initial concentration and solution pH onto olive stone (OS) 

biomass has been investigated. Equilibrium biosorption isotherms in single and binary systems 

and kinetics in batch mode were also examined. The kinetic data of the two dyes were better 

described by the pseudo second-order model. At low concentration, ARS dye appeared to 

follow a two-step diffusion process, while MB dye followed a three-step diffusion process. The 

biosorption experimental data for ARS and MB dyes were well suited to the Redlich-Peterson 

isotherm. The maximum biosorption of ARS dye, qmax = 16.10 mg/g, was obtained at pH 3.28 

and the maximum biosorption of MB dye, qmax = 13.20 mg/g, was observed at basic pH values. 

In the binary system, it was indicated that the MB dye diffuses firstly inside the biosorbent 

particle and occupies the biosorption sites forming a monodentate complex and then the ARS 

dye enters and can only bind to untaken sites; forms a tridentate complex with OS active sites.  

Keywords: Anionic Dye; Alizarin Red S; Cationic Dye; Methylene Blue; Dyes Removal; Biosorption; 

Olive Stone. 

*Corresponding author: Dr Ahmad B. Albadarin: Ahmad.B.Albadarin@ul.ie. University of Limerick. 

Tel: +44 74 6080 5982; fax: +353 (0) 61 202568. 

mailto:Ahmad.B.Albadarin@ul.ie


2 
 

1. Introduction 

Large amounts of dye contaminated wastewater are being released yearly from leather, 

cosmetics, pharmaceutical, plastics and textile industries, and results in an impending hazard to 

human health and the ecosystem (Cao et al., 2014; Semeraro et al., 2015). The existence of such 

dyes in receiving water bodies is undesirable as they cut off sunlight and reduce photosynthetic 

activities of autotrophic organisms (Albadarin et al., 2014).  The problem is escalating because 

these dyes are stable and non-biodegradable (Gorgulu Ari and Celik, 2013); dyes are designed 

to hold colour on various materials and resist water, soap and oxidizing agents (Khataee et al., 

2013).  Consequently, the removal of dyes from industrial effluents is a challenging problem 

and it is essential to optimize dye-removal methods.  The low efficiency, high cost, and in some 

cases, the production of toxic by-products make some physical and chemical approaches such 

as filtration, coagulation, photocatalytic degradation and advanced oxidation processes 

impractical and expensive to operate (Kabbout and Taha, 2014). Biosorption has been proven 

as an effective and cheap process, especially when using biowastes and agricultural by-products 

as the biosorbent (Albadarin et al., 2011).  The search for low-cost and locally available waste 

materials for the biosorption of dyes continues and, recently, has been extensively accelerated 

(Abdolali et al., 2014; Guerrero-Coronilla et al., 2015; Guo et al., 2014; Magriotis et al., 2014; 

Wang et al., 2015).  Olive crops cover a global cultivated area of approx. 10 million hectares. 

One main by-product produced in olive oil extraction and pitted table olive manufacture is olive 

stone. In Spain during the 2009/2010 season, olive oil and table olives world production result 

in 0.17 and 2.10 million tons, respectively (The Int. Olive Coun. 2012). This by-product is 

mainly turned into bioethanol or directly burnt to produce energy (Cuevas et al., 2015; Valentina 

Hernández et al., 2014). Using raw olive stones as biosorbent is another economic and 

environmental alternative (Ronda et al., 2013). This offers the olive processing industry an 

opportunity to make valuable use of the huge quantities of olive stones generated every year. 
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Hence, olives stone (OS) was employed in this study for the biosorption of some dyes. Among 

the hazardous dyes, Alizarin Red S (ARS) and Methylene Blue (MB) are prime contaminants 

in the environment, and hence, these were selected as model dye systems.  Alizarin Red S is a 

water soluble anthraquinone dye, is used extensively in the textile industry as a staining agent. 

It is considered to be one of the most recalcitrant and durable pollutants (Sun et al., 2011).  This 

is due to its complex structures of aromatic rings that afford high optical and physicochemical 

stability (Fu et al., 2011). Methylene Blue is a cationic thiazine dye commonly used in various 

industrial applications due to its high adsorption ability. It is not regarded as highly toxic, 

though, it may cause several harmful effects, such as: difficult breathing on inhalation, gastritis, 

severe headache, painful micturition, and methemoglobinemia-like syndromes if large amounts 

are swallowed (Bhattacharyya and Sharma, 2005).  The studies dealing with the removal 

of Alizarin Red S using raw biosorbents are scarce. However, previous studies on the removal 

of ARS onto activated materials showed that adsorption processes are very promising for 

pollution control (Fu et al., 2011; Zhang et al., 2001). For instant, a small amount of gold 

nanoparticles loaded on activated carbon (0.015 g) combined with ultrasound device achieved 

a high adsorption capacity (123.4 mg/g) in 5 min (Roosta et al., 2014). On the other hand, 

methylene blue biosorption has been investigated widely though the removal mechanism in 

binary systems has not yet been clearly understood. The main objectives of this study are to 

investigate: (i) the chemistry and the mechanism of ARS and MB biosorption onto olive stone 

and the type of OS–ARS, ‒MB interfaces occurring; (ii) the biosorption equilibrium and kinetic 

experimental data required for the design and operation of column reactors; (iii) the 

simultaneous biosorption isotherm of the two dyes in binary systems.  

2. Materials and Methods 

2.1. Olive stone (OS) biomass 

The olive stones were crushed and 1000‒355 µm fraction was chosen for the characterization 
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and biosorption experiments without any pre-treatment. The biomass was washed a number of 

times with boiled water and finally with distilled water to remove any adhering dirt, and dried 

at 110 ºC for 24 hrs. Full and comprehensive characterization of OS can be found in a previous 

investigation (Blázquez et al., 2014). However, fourier transform infrared spectroscopy and 

scanning electron microscopy were employed to characterize the OS before and after ARS and 

MB biosorption. The FT-IR analyses for olive stones surfaces before and after ARS and MB 

biosorption were tested using the KBr pressed disc technique using a Perkin Elmer Spectrum 

100 within the range of 400–4000 cm−1.  For the SEM analysis, OS samples were coated with 

gold and vacuumed (5−10 min) for electron reflection prior to analysis on a JEOL-JSM 6400 

scanning microscope. The samples used for the FT-IR and SEM analysis were collected from 

the pH effect experiment (optimum pH). 

2.2. Procedures  

Alizarin Red S (342.2 g/mol) and Methylene Blue (319.8 g/mol) were purchased from Sigma 

Aldrich, UK. All chemical reagents were of analytical grades.  Synthetic dye solutions used in 

the experiments were prepared with distilled water (resistivity 18.24 Ωcm).  Concentrations 

were measured using a UV–VIS spectrophotometer (Perkin Elmer LAMBDA 25, UK) at a 

maximum wavelength λmax = 668 nm for MB (Albadarin et al., 2014).  Measurement of ARS 

concentration was carried out at λmax = 425‒514 nm (Roosta et al., 2014) to minimize the pH 

effect on ARS concentration determination. It is known that, depending on the isosbestic point, 

ARS will change colour i.e. pale yellow at pH = 2; yellow orange at pH = 3‒4.9; red at pH = 

6.2‒9 and violet at pH = 11 (Olivier Thomas and Burgess, 2007).  The experiments of ARS and 

MB biosorption from aqueous solutions were carried out in a series of 50 cm3 glass jars; samples 

were regularly shaken (mechanical shaker, GerhardT type LS 5) at 100 rpm and 20 °C for 72 

hrs to ensure reaching the equilibrium. The effect of initial solution pH on the removal of ARS 

and MB was examined in the range of 2–9, containing 25 cm3 of dye solution with Co of 110 
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mg/dm3 and biomass dosage of 5.0 g/dm3. The pH was altered using 0.1 M HCl or 0.1 M NaOH. 

The same procedures were employed to investigate the effect of contact time and biosorption 

isotherms. The initial concentrations ranging from 30 to 205 mg/dm3 for ARS and MB were 

employed for the contact time experiment.  For the biosorption isotherm studies in single and 

binary systems, Co = 5−105 mg/dm3 for ARS and MB were used. The isotherm studies in binary 

system were investigated at pH 3.4 and 7.2. ARS and MB uptake, q (mg/g), and percentage of 

removal (%) were calculated according to Eq. (1) and (2), respectively: 
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where Co and Ce are the initial and equilibrium concentrations of ARS and MB in mg/dm3, M 

is the amount of dry biomass in grams and V is the volume of the ARS/MB solution in dm3. 

 

 

 

 

 

 

 

 

 

3. Results and Discussion 

3.1. Effect of contact time and initial dye concentration  

The effect of contact time on the biosorption capacity of OS for ARS and MB was studied at 
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five different initial dye concentrations as revealed in Table 1. As expected, the biosorption 

capacity of OS increased with an increase in the initial dye concentrations.  The ARS removal 

decreased from 85% to 50% as the ARS concentration was increased from 32 to 190 mg/dm3. 

While the MB removal decreased from 75% to 40% when the dye concentration increased from 

30 to 205 mg/dm3.   Figure 1 shows that the biosorption at various concentrations is fast in the 

initial stages and steadily decreases with the progress of biosorption until the equilibrium is 

reached.  The difference in the biosorbed concentration of ARS and MB at equilibrium (qe) and 

at time t (qt) provides the key driving force to overcome all mass transfer resistances of the dye 

between the aqueous and solid phases (Liao et al., 2012).  

3.2. Kinetic modelling 

In the current study, the pseudo first-order model (Lagergren, 1898), pseudo second-order 

model (Ho and McKay, 1999), Intraparticle diffusion model (Weber and Morris, 1963) and 

Boyd kinetic model (Boyd et al., 1947a) were tested. 

3.2.1. Pseudo first- and second-order kinetic models 

The pseudo first-order model equation is given as follow: 

( )tk
et eqq 11 −−=                                                         (3)  

The pseudo second-order equation is given as; 

( ) ttqk
qk

q
e

e
t

2

2
2

1+
=                                                         (4) 

where k1 (1/min) and k2 (g/mg min) are the rate constants for first- and second-order models.   

Table 1 summarizes the parameters of the pseudo first- and second-order kinetic models for 

ARS and MB biosorption onto OS.  The highest R2 values and well closer calculated qe,cal to 

those acquired by experiments, qe,exp, confirmed that the biosorption process for both dyes is 

best described by the pseudo-second-order equation (Figure 1). The above conclusion reveals 
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that the biosorption is a chemical process and the dye uptake capacity is proportional to the 

number of active sites (Glocheux et al., 2013; Weifeng Liu et al., 2011).  Also, in Table 1, the 

nonlinear relations between the initial concentrations, Co, of the dye and the rate constant, k1, 

implies that mechanisms such as ion exchange and chelation are involved in the biosorption 

process. The decrease in rate constant, k2, of the second-order model is attributable to the 

competition between higher levels of dye molecules (Albadarin et al., 2012; Albadarin et al., 

2014). 
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3.2.2. Intraparticle diffusion model 1 

The intraparticle diffusion model was employed in order to distinguish the different resistances 2 

to diffusion of ARS and MB onto olive stone. The model links the pollutant adsorbed at a given 3 

time with the time t following the Equation (5): 4 

didit Ctkq += 5.0
                                                 (5) 5 

kdi, the intraparticle diffusion rate is constant and expressed in mg/g.h0.5 where i represents the 6 

diffusion phase number; Cdi is proportional to the boundary layer thickness. 7 

It can be seen in Table 2 that MB diffuses faster than ARS at low and high concentration. The 8 

plot of qt versus t0.5 is linear when the intraparticle diffusion is the main resistance step in the 9 

experimental conditions. In this study, several regions were observed for the diffusion of ARS 10 

and MB in the porous olive stone materials; none of the plots passed through the origin (Cdi ≠ 11 

0) (see supplementary data: SD1).  The values of intercept increased when the initial dye 12 

concentration was increased; Cdi values give an idea about the boundary layer thickness; the larger the 13 

intercept, the greater is the boundary layer effect (values not shown here). The presence of different 14 

linear regions in the plot of qt versus t0.5 implies that the intraparticles diffusion is not the only 15 

operative mechanism and that the biosorption kinetics of dyes on OS was controlled by both 16 

surface and intraparticle diffusion processes. At low concentration, the difference is more 17 

obvious and MB followed a three-step diffusion process while ARS seems to follow a two-step 18 

diffusion process. The difference in diffusion steps may be related to the molecular mass i.e. 19 

the higher the molecular mass, the slower the rate of diffusion. The higher charge density of 20 

MB compared to ARS enables a faster diffusion in OS biomass. In terms of diffusion 21 

parameters, the difference between ARS and MB biosorption is clearly observed for the first 22 

intraparticle diffusion step. The diffusion coefficients for MB biosorption are more than double 23 

those for ARS biosorption (Table 2). The correlating coefficients, R2, reported in Table 2 for 24 

the intraparticle diffusion kinetic model are generally lower than that of the pseudo second-25 
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order kinetic for the biosorption of ARS and MB onto OS. These findings further confirm that 26 

the pseudo second-order mechanism is dominant and the overall rate of biosorption process is 27 

controlled by several portions. 28 

3.2.3. Boyd kinetic model 29 

The Boyd kinetic model was employed to confirm the actual rate-controlling step involved in 30 

the ARS and MB biosorption onto the OS.  The Boyd kinetic equations are defined as (Boyd 31 

et al., 1947b): 32 

)exp(61 2 BtF −





−=
π

;      where F = q t/qe              (6)  33 

)1ln(4977.0 FtB −−−=×                                          (7) 34 

If a plot Bt versus t is a straight line passing through the origin, it indicates a particle diffusion 35 

mechanism; contrarily, film-diffusion or chemical reaction control the adsorption rate.  The 36 

plots (not shown here) revealed that the experimental data for both dyes do not follow the Boyd 37 

model and therefore particle diffusion does not control the rate of the biosorption process. Once 38 

again, this suggests that film-diffusion or chemical reaction controls the rate of biosorption.  39 

The biosorption systems were, in general, controlled by chemisorption including valence forces 40 

as covalent bonds/ion exchange between the adsorbent and dye molecules until the surface 41 

active sites were fully occupied. After that, dye molecules diffused into the biosorbent for 42 

further interactions (Tavlieva et al., 2013). 43 

3.3. pH effect 44 

The solution pH plays a significant role in the chemistry of both the OS biomass and dye 45 

molecules, and has a major effect on electrostatic charges that are imparted by ionized dye 46 

molecules.  As illustrated in Figure 2, the removal of ARS and MB from aqueous solution is 47 

greatly dependent on the pH of the solution, and various functional groups such as hydroxyl, 48 

carbonyl and amine groups distributed on the surface of OS were affected by the solution pH 49 
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(Blázquez et al., 2014).   At pH above 5, the amount of ARS biosorption decreases noticeably 50 

following a typical anionic adsorption behaviour (Silvina Pirillo et al., 2009). For the anionic 51 

dye, ARS, the adsorption capacity decreased from 14.31 to 0.662 mg/g when the pH increased 52 

from 3.28 to 8.16. This is predominantly attributed to the deprotonation of the biosorbent 53 

surface and the presence of excess OH‒ ions competing with ARS molecules, which exist 54 

mainly in a monoanionic form (Olivier Thomas and Burgess, 2007).  On the other hand, 55 

opposite trends were observed for cationic dye, MB. The amount of MB biosorbed increased 56 

with an increase in the pH of the MB solution; the maximum adsorption capacity of MB was 57 

11.35 mg/g, observed at pH 7.2.  The point of zero charge of the olive stone biomass has been 58 

previously determined as 5.17 (Ronda et al., 2013). Therefore, these trends could also be well 59 

explained by the electrostatic interaction between the negatively charged surfaces of the 60 

biosorbent, at pH > pHPZC, and the cationic dye (Galán et al., 2013). The results are in 61 

agreement with previous studies in which maximum biosorption of anionic dyes were observed 62 

at pH below 5, and the optimal removal of cationic dyes reported at basic pH values (Peng et 63 

al., 2014). It is worth noting that during/after dyes biosorption, the pH of the dye solution 64 

changed and this is a strong indication of a dye‒hydrogen ion exchange and complexation 65 

processes. The amount of dye biosorbed, mmol/g, was calculated and compared to the number 66 

of H+ ions released/adsorbed. The molar ratio of the biosorbed dye to released/adsorbed H+ 67 

ions was 2.926 and 1.014 for ARS and MB, respectively.  68 

3.4. Isotherm experiments  69 

3.4.1. Single systems 70 

Figure 3 shows the equilibrium isotherms of ARS and MB dyes onto OS biosorbent. Langmuir, 71 

Freundlich, Redlich-Peterson and Temkin isotherms were applied to the experimental data 72 

using non-linear regression in SigmaPlot Version 11 and the summary of the fits is presented 73 

in Table 3. The data demonstrates that the Langmuir (R2 = 0.995) isotherm is the best model 74 
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for describing the biosorption of MB onto OS.  For the ARS and MB dye, the Redlich-Peterson 75 

isotherm (R2 = 0.994 and R2 = 0.998) gives the best description of the experimental data 76 

(Temkin and Levich, 1946). For MB biosorption, the value of β obtained using the Redlich-77 

Peterson isotherm was close to unity (1.101), indicating that the isotherm is approaching the 78 

Langmuir rather than the Freundlich isotherm from (Redlich and Peterson, 1959).  Also, the 79 

good fit of MB experimental equilibrium data to the Langmuir isotherm indicates the 80 

monolayer coverage and chemisorption of MB onto OS.  According to Table 3, the olive stone 81 

has the monolayer Langmuir biosorption capacities of 16.10 and 13.20 mg/g for ARS and MB, 82 

respectively. At the high Co values used in this study, ion exchange sites and functional groups 83 

are more significant than the surface area (0.16 m2/g (Blázquez et al., 2014)) for biosorption, 84 

where chemical precipitation of the dye anions/ cations may play a dominant role in the dye 85 

removal. This may explain the high biosorption capacities despite the relatively small surface 86 

area of OS. The value of 1/n obtained from the Freundlich isotherm for ARS was 0.457 and 87 

0.426 for MB, which shows that the biosorption of ARS and MB onto OS is favourable 88 

(Albadarin et al., 2012).  The slightly higher value of KF  for ARS dye indicates that OS 89 

possesses a higher biosorption capacity for ARS compared to MB dye.  Table 4 provides a 90 

comparison between the biosorption capacities of ARS and MB dyes with earlier studies (Ai et 91 

al., 2011; Albadarin et al., 2014; Banat et al., 2003; Fu et al., 2011; Ghaedi et al., 2011; Gürses 92 

et al., 2006; Janoš et al., 2003; Wu et al., 2004). Keeping in mind that the olive stone used here 93 

is cheap, was used without any treatment and required very little preparation, the biosorption 94 

capacities for ARS and MB onto OS are very similar to those of alternative materials from 95 

earlier investigations.  96 

3.4.2. Binary systems 97 

The ARS and MB dyes used in this study have very similar isotherms; ARS and MB structures 98 

contain three benzene rings in a linear structure with no side chain. Ignoring the molecular 99 
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charge, this suggests that in the case of competitive biosorption between the dyes, the process 100 

can be considered as a single-component biosorption of a pseudo-component with properties 101 

between the properties of the real components (Wouter Delée et al., 1998).  Hence, the next 102 

step of the present work was to discuss the simultaneous biosorption isotherm of two dyes at 103 

their optimum pH (3.4 and 7.2).  104 

The amount of dye biosorbed was determined and compared to that for the single system so as 105 

to investigate the competitive character of the interaction between the two dyes. In Figure 4, 106 

the curve for the binary dye solution at pH = 7.2 is almost identical to the sum of the curves for 107 

the single-components. The above observations reveal that there is very limited competition 108 

between the two components examined here.  However, this competition can be detected and 109 

this explains why the total adsorbed quantity of single-dyes is larger than a mixture of the two 110 

components with the same concentration.  This demonstrates that there is an abundant number 111 

of active sites by which the two dyes can be sequestrated and for which they will, to some 112 

extent, compete for if co-existing in a multicomponent systems.   113 

Furthermore, it can be concluded that when in the binary system (pH = 7.2), the MB dye is first 114 

to penetrate the biosorbent particle and to occupy the biosorption sites. Then, the ARS dye 115 

enters and can only bind to untaken sites in an irreversible equilibrium scenario (George Z. 116 

Kyzas et al., 2013) (Figure 4). If the above assumption is correct, the MB positive molecules 117 

may influence the biosorption of ARS negative molecules by providing a positively charged 118 

phase and consequently decreasing the repulsion between the ARS molecules and enhance the 119 

biosorption affinity. The binary system at pH = 3.4 seems to lower the amount of dyes 120 

biosorbed. This can be due to the high completion between the hydrogen ions and the MB 121 

molecules. However, this needs further investigation and will be considered for future work.  122 

3.5. FT-IR and SEM analysis  123 

Olive stone is a lignocellulosic material, with hemicellulose, cellulose and lignin as main 124 
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components.  The FT-IR spectrum for OS biomass in Figure 5 is very similar to those reported 125 

for other biomasses such as tea waste and date stone (Albadarin et al., 2013). Peaks were 126 

detected around 3430 and 2920 cm–1 and can be attributed to –NH2, –OH groups and –CH 127 

stretching, respectively.  Whereas >C=O stretching vibration, symmetric bending of CH3, –128 

OCH3 in ethers, secondary amine group,  esters such as CH3–CO–O– and –SO3 of 129 

hemicelluloses were observed between 1750 and 1047 cm–1. The FT-IR spectra in Figure 6 130 

shows changes in surface properties and functional groups of the OS biomass after the 131 

biosorption of ARS and MB, confirmed by the change in the peak heights and shifts of 132 

functional group bands due to dyes biosorption.  133 

The difference in the absorbance reading from 1 hour to 72 hours, although negative for ARS 134 

but positive for MB, is very similar, indicating that almost the same number of dye molecules 135 

are attached to the olive stone surface.  The shifts and shape-changes occurring in the –OH 136 

stretching band at 3430 cm–1 shows that the dye is attached to the oxygen atoms creating 137 

monodentate, bidentate or tridentate bonds and replacing the water molecules (Benjamin and 138 

Leckie, 1981). This conclusion is in agreement with the previous findings for the molar ratio 139 

between the biosorbed dye and H+ released or adsorbed in section 3.3 and confirms that ARS 140 

formed a tridentate complex whereas MB formed a monodentate complex with OS sites.  141 

The topography of the olive stone before and after biosorption of ARS and MB are shown in 142 

Figure 6. It is clear that the OS surface is non-homogeneous and rough with some visible pores 143 

and fibre-like structures.  These surface characteristics will provide an increase in the uptake 144 

capacity of dye solution.  After the biosorption of ARS and MB dyes, the OS surface is 145 

smoother indicating that the dyes were densely and homogeneously adhered to the surface of 146 

OS. 147 

4. Conclusions  148 

Raw biomass of olive stones was proven useful for biosorption of Alizarin Red S and 149 
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Methylene Blue dyes. The biosorption reactions were shown to be dependent on pH, initial dye 150 

concentration and contact time. The kinetic of the biosorption process was well described by 151 

the pseudo-second order model. From the diffusion models, it was concluded that film-152 

diffusion or chemical reaction controls the rate of biosorption.  Process mechanisms, namely 153 

ion exchange and chelation, were involved in the biosorption. ARS maximum capacity was 154 

found at pH = 2, whereas MB maximum capacity was obtained at pH = 7.2. it can be concluded 155 

that ARS and MB formed tridentate and monodentate complexes, respectively, with OS sites. 156 

FT-IR analysis confirmed the interactions between olive stone biosorbent surface and ARS and 157 

MB dye molecules. 158 
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Figure 1: The fitting of pseudo first- (continuous line), second-order (short-dash line) models.   295 

 296 
Figure 2: Biosorption of Alizarin Red S (ARS) and Methylene Blue (MB) onto olives stone as a function of pH. Experimental conditions: Co = 110 mg/dm3; 297 
volume 25 cm3; biosorbent dosage 5.0 g/dm3; and shaking speed 100 rpm for 72 hrs. 298 
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 306 
 307 
 308 
Figure 3: Non-linear forms of biosorption isotherm plots for ARS and MB biosorption onto OS.  309 
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 313 
 314 
 315 
Figure 4: Comparison between total Ce vs total qe at various pH for ARS and MB biosorption in single and binary mixture: (qe = qe,ARS + qe,MB) and (Ce = 316 
Ce,ARS + Ce,MB) and proposed irreversible equilibrium scenario for the biosorption of ARS and MB onto OS in binary system.  317 
 318 
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 320 
 321 
Figure 5: Fourier transform infrared (FT-IR) spectroscopy spectra of -unloaded olive stone (OS) and Alizarin Red S- (ARS‒OS) and Methylene Blue-loaded 322 
olive stone (MB‒OS). 323 
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Figure 6: Scanning electron microscopy of unloaded olive stone and ARS- and MB-loaded olive stone. 331 
 332 
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Table 1: Pseudo first-order and pseudo second-order model constants for ARS and MB 334 
biosorption onto olive stone. 335 

 Co   Pseudo first-order model Pseudo second-order model 

  qe,exp 

(mg/g) 

qe,cal 

(mg/g) 

k1  

(1/min) 

R2 qe,cal 

(mg/g) 

k2
 

(g/mg min) 

R2 

 

 

ARS 

32 (mg/dm3) 5.531 5.008 0.008 0.987 5.363 1.80 × 103 0.992 

53 (mg/dm3) 8.942 7.669 0.007 0.819 8.030 1.70 × 103 0.910 

87 (mg/dm3) 13.66 12.15 0.008 0.973 13.14 0.90 × 103 0.986 

125 (mg/dm3) 15.81 15.00 0.004 0.991 16.21 0.40 × 103 0.997 

190 (mg/dm3) 19.06 17.61 0.009 0.959 18.78 0.30 × 103 0.986 

 

 

MB 

29 (mg/dm3) 4.381 3.878 0.074 0.974 4.117 0.023 0.982 

60 (mg/dm3) 8.750 7.588 0.117 0.967 7.938 0.021 0.978 

95 (mg/dm3) 11.70 10.26 0.053 0.970 11.03 0.006 0.991 

137 (mg/dm3) 13.01 12.77 0.094 0.990 13.33 0.001 0.996 

205 (mg/dm3) 16.30 15.43 0.059 0.974 16.50 0.001 0.975 

 336 

 337 

 338 

 339 

 340 

 341 

 342 

 343 

 344 

 345 

 346 

 347 
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 348 

Table 2: Intraparticle diffusion model parameters for the different diffusion phase 349 

 Co Intraparticle diffusion coefficients in mg/g.h0.5 

  kd1 R2 kd2 R2 kd3 R2 

ARS 

32 (mg/dm3) 0.280 0.990 0.017 0.671 ‒ ‒ 

53 (mg/dm3) 0.159 0.870 0.025 0.971 ‒ ‒ 

87 (mg/dm3) 0.802 0.963 0.054 0.960 ‒ ‒ 

125 (mg/dm3) 0.557 0.892 0.703 0.979 0.046 0.868 

190 (mg/dm3) 2.969 0.874 0.697 0.981 0.031 0.727 

MB 

29 (mg/dm3) 1.039 0.979 0.046 0.893 0.003 0.991 

60 (mg/dm3) 2.224 0.990 0.089 0.973 0.051 1.000 

95 (mg/dm3) 1.315 0.953 0.193 0.777 0.070 0.907 

137 (mg/dm3) 4.353 0.987 0.883 0.990 0.013 0.510 

205 (mg/dm3) 0.463 1.000 10.09 0.982 0.118 0.606 

 350 

 351 

 352 

 353 

 354 

 355 
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 358 

 359 

 360 
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Table 3: The Langmuir, Freundlich, Redlich-Peterson and Temkin parameters and correlation 361 

coefficients for ARS and MB dyes biosorption onto olive stone. 362 

Model Parameters ARS MB 

Langmuir isotherm 

e

e
e bC

bCq
q

+
=

1
max  

qmax (mg/g) 16.10 13.20 

b (dm3/mg) 0.112 0.115 

Radj
2 0.988 0.995 

Freundlich isotherm 

n
eFe CKq /1=  

KF (mg/g (dm3/mg)1/n) 2.529 2.262 

1/n 0.457 0.426 

Radj
2 0.944 0.959 

Redlich-Peterson isotherm 

β
eR

eR
e Ca

CK
q

+
=

1
 

KR (dm3/mg) 1.273 1.306 

aR ((dm3/mg)1/β) 0.016 0.063 

Β 1.407 1.101 

Radj
2 0.994 0.998 

Temkin isotherm 

eT
T

e CA
b
RTq ln=  

AT (dm3/g) 

bT 

Radj
2 

1.163 

706.7 

0.992 

1.342 

899.3 

0.995 

 363 

 364 

 365 

 366 

 367 
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 369 

 370 
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Table 4: Comparison of Langmuir biosorption capacities of ARS and MB with results from previous 371 

studies. 372 

Material Adsorbate Reference 

ARS [mg/g] MB [mg/g]  
Olive Stone      16.01 13.20 This work 

Teawaste & Dolomite          ‒ 150.0 (Albadarin et al., 2014) 

Clay         ‒ 58.20 (Gürses et al., 2006) 

Activated clay modified 

by iron oxide 

     32.70 ‒ (Fu et al., 2011) 

Silica  11.21 (Janoš et al., 2003) 

M-MCCNT  48.08 (Ai et al., 2011) 

MMT/CoFe2O4 

composite 

 97.75 (Ai et al., 2011) 

Raw date pits  27.27 (Banat et al., 2003) 

Activate Date pits  80.29 (Banat et al., 2003) 

Porous Xerogels     8.30 mmol/kg ‒ (Wu et al., 2004) 

MWCNT     161.3 ‒ (Ghaedi et al., 2011) 

 373 

  374 
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 379 
Figure S1: Intraparticle diffusion model (time0.5 vs qe plots) for ARS and MB biosorption onto OS.  380 
 381 
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