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ZIL: An Energy-Efficient Indoor Localization
System Using ZigBee Radio to Detect WiFi

Fingerprints
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Abstract—WiFi fingerprint-based indoor localization has re-
ceived considerable attention to enjoy higher deployment prac-
ticability, because of the ubiquitous APs (Access Points) and
WiFi-enabled smart devices. In existing WiFi-based localization
methods, smart mobile devices consume quite a lot of power
as WiFi interfaces need to be used for frequent AP scanning
during the localization process. In this work, we design an energy-
efficient indoor localization system called ZIL (ZigBee assisted
Indoor Localization) based on WiFi fingerprints via ZigBee
interference signatures. ZIL uses ZigBee interfaces to collect
mixed WiFi signals which include non-periodic WiFi data and
periodic beacon signals. However, WiFi APs cannot be identified
from these WiFi signals by ZigBee interface directly. To address
this issue, we propose a method, including RSS quantification
and normalization, to detect WiFi APs and their signal strengths
to form WiFi fingerprints from the signals collected by ZigBee
interface. We propose a novel fingerprint matching algorithm to
align a pair of fingerprints effectively. To improve the localization
accuracy, we design the KNN (K-Nearest Neighbor) classification
method with three different weighted distances and find that
the KNN algorithm with the Manhattan distance performs best.
Extensive experimental results show that ZIL implemented on
TelosB motes can achieve the localization accuracy of 87% which
is competitive compared to state-of-the-art WiFi fingerprint-
based approaches, and save energy by about 68% on average
compared to the approach based on WiFi interface.

Index Terms—ZigBee, indoor localization, energy saving, WiFi
fingerprint.

I. INTRODUCTION

Indoor localization techniques have undergone a rapid de-
velopment recently, with many innovative methods springing
up, most of which still depend on extra facilities. The in-
creasingly deployed WiFi APs (Access Points) enable users to
access Internet via wireless networks pervasively. Hence, many
existing indoor localization systems [1] [2] take advantage of
the off-the-shelf WiFi APs to estimate the locations of WiFi-
enabled devices, such as laptops, mobile phones, pads, etc.
WiFi fingerprint-based indoor localization method has become
a better choice as it requires no extra infrastructures.
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Fig. 1. The measurements of current draw of ZigBee compatible TelosB
motes and WiFi interface in scanning mode.

It is known that the energy consumption of wireless in-
terfaces has long been an essential problem for WiFi-based
indoor localization systems. To achieve real-time localization,
WiFi-enabled devices have to constantly scan the WiFi chan-
nels, resulting in high power consumption and reduced battery
runtime (e.g., mobile phones consume more than 40% of the
whole power on WiFi according to [3]). Fig. 1 illustrates the
current draw comparison of the scanning WiFi and ZigBee
interfaces on a laptop when it runs a fingerprint-based local-
ization algorithm [1]. As such, the methods in [4] [5] are pro-
posed to employ ZigBee for WiFi fingerprinting to realize high
energy efficiency and low estimation error. Although mobile
devices could save energy by avoiding excessive listening and
scanning operations of WiFi interfaces, it is still a challenge to
make proper use of ZigBee assisted WiFi-based fingerprinting
for energy saving.

In this paper, we propose a new ZigBee assisted WiFi
fingerprint-based localization system called ZIL (ZigBee as-
sisted Indoor Localization). Compared with existing systems,
our main contributions are as follows:

• We utilize the low-power 802.15.4 ZigBee wireless in-
terface (instead of 802.11 WiFi interface) to detect and
recognize WiFi APs, which significantly saves energy by
avoiding the excessive listening and scanning operations
using WiFi interfaces. Moreover, we present a method to
quantize and normalize the fingerprints.

• We design a localization module, which is composed of t-
wo parts: a novel fingerprint matching algorithm and three
variants of the KNN (K-Nearest Neighbor) algorithm to
achieve the best performance of our approach.



• We implement a fingerprint-based indoor localization
system called ZIL. Our experimental results show that
ZIL could achieve the localization accuracy of 87% and
save energy of 68% as compared to the WiFi-based
method.

The rest of the paper is organized as follows. In Section II,
literature review is provided. Section III describes the system
architecture of ZIL, while Section IV presents the detailed de-
sign of ZIL. The experimental results are shown in Section V.
Finally, we draw conclusions in Section VI.

II. RELATED WORK

Many approaches have been proposed for indoor localiza-
tion in recent years. One class of the approaches is the RF sig-
nal range-based indoor localization, including the TOA (Time-
of-Arrival) [6], TDOA (Time-Difference-of-Arrival) [7], AOA
(Angle-of-Arrival) [8], DOA (Direction-of-Arrival) [9] and
RSS (Received Signal Strength). For example, the Calamar-
i [10] designed by Kamin Whitehouse is based on the TDOA
with ultrasonic. Another class is the range-free indoor local-
ization, such as DV-Hop (Distance Vector-Hop) [11], MDS
(MultiDimensional Scaling) [12], APIT (Approximate Point-In
Triangulation Test) [13], etc. HiRLoc [14] is a high-resolution
range-free localization scheme, which determines the locations
of sensors based on the intersection of the areas covered by
the beacons transmitted by multiple reference points.

Recently, fingerprint-based localization has become more
popular. The fingerprint-based localization process includes
two main phases. The first phase, called off-line or training
phase, involves capturing and storing the signatures and fea-
tures of each reference location into a fingerprint database. The
second phase, called online or testing phase, comprises the
estimation of an unknown location by mapping the measured
fingerprint with the database. There are three key aspects
for fingerprint-based localization: fingerprint collection, fin-
gerprint selection and fingerprint matching. The first aspect
normally requires an exhaustive site survey to build an RSS
fingerprint map. Horus system [15] scans the WiFi channel
to collect fingerprints and identifies different causes for the
WiFi channel variations. Surroundsense [16] utilizes ambient
sound, light, color and WiFi signals to form identifiable fin-
gerprints for logical localization. Some researchers proposed
acoustics [17] [18] and social interaction [19] [20] as the envi-
ronment features. As for the second aspect, the existing work
like [21] propose several methods to select the fingerprints for
localization. For example, the local strongest signal points are
selected to form fingerprints; fisher criterion is used to quantify
the discrimination ability; random combination is used to
dynamically create a fingerprint matrix based on a certain
criterion. For the third aspect, Bayesian inference [22] [23],
Euclidian distance [22] [24] [25], Manhattan distance [26]
and compressive sensing [21] [27] are employed to match the
corresponding fingerprints.

Due to low-power consumption and low cost, ZigBee [28]
has been adopted for indoor localization. The products with
ZigBee interface [29] can be easily implemented and consume
little power to operate for years. Many ZigBee modules have

USB interfaces and hence can be easily connected with mobile
devices. Moreover, some cell phone manufacturers (e.g., Nokia
and Pantech&Curitel [30]) also provide smart phones with
built-in ZigBee interfaces.

Recent work has been done on the dual ZigBee-WiFi [4] [5]
to establish an efficient connection between WiFi APs and
mobile phones integrated with ZigBee interfaces. This method
has addressed the challenges of time synchronization, frequen-
cy switching and frame collisions, which could deliver high
energy efficiency, low estimation error, and real-time connec-
tivity. Xing et al. investigated the co-existence of ZigBee and
WiFi [31], and developed ZiFi [32] by utilizing Zigbee-WiFi
interferences.

To determine the identity (i.e., MAC address) of each AP,
our previous work ZiFind [33] added mappers to collect bea-
con signals via WiFi interface, recording the time information
and BSSIDs (Basic Service Set Identifiers), to match and
identify the signals measured by clients and improve the accu-
racy. However, introducing mappers inevitably complicates the
system implementation and increases the cost. In this work,
we employ ZigBee radios for WiFi fingerprint-based indoor
localization, using ZigBee interfaces on the clients to capture
beacon frames broadcasted by WiFi APs, without the mappers
designed in ZiFind. We adopt the RSS quantification and
normalization to recognize and preprocess the WiFi finger-
prints. Furthermore, we propose a fingerprint-based localiza-
tion module, which consists of a novel fingerprint matching
method and three variants of weighted KNN algorithm to
improve localization accuracy. Our extensive experimental
results show that our approach outperforms the state-of-the-art
WiFi fingerprint-based indoor localization methods in terms of
energy consumption while keeping a competitive localization
accuracy.

III. SYSTEM ARCHITECTURE

The system architecture of ZIL is shown in Fig. 2. ZIL
is based on the client-server architecture: the client could
be a WiFi-enabled mobile device equipped with a ZigBee
interface, while the server could be a desktop or a laptop,
calculating the location of the client. There are two phases for
the localization process: training and testing phases. During
the training phase, the client utilizes its ZigBee interface
to capture WiFi signals at each reference location. Fig. 3
shows the WiFi signals collected by ZigBee interfaces in a
whole day. The RSS quantification and normalization modules
process these data and generate the WiFi fingerprints of each
location. The client sends the processed fingerprints to the
server through its WiFi interface. The server stores them to
form a fingerprint database. The database will be updated to
adapt the changes of the radio environment. During the testing
phase, the client collects WiFi signals with its ZigBee interface
to form localization requests and sends them to the server
through its WiFi interface. The server receives the requests
and uses the localization module to calculate the location of
the client. The whole process will be discussed in detail in the
next section.

Some mobile devices with ZigBee interfaces are shown in
Fig. 4. TazTag company produced the world’s first tablet inte-
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Fig. 2. The system architecture of ZIL.

Fig. 3. WiFi signals of three APs measured by ZigBee interface in one day.

grating NFC (Near Field Communication) and ZigBee called
TazPad V2 (Fig. 4 (a)) [34]. Fig. 4 (b) shows the world’s
first mobile phone equipped with a ZigBee module [30]. We
implemented our system based on TelosB motes shown in
Fig. 4 (c).

IV. DESIGN OF ZIL

As GPS (Global Positioning System) cannot properly work
indoors, pundits have proposed many indoor localization
schemes based on WiFi fingerprinting. Due to limited battery
energy supply, frequent channel scanning for WiFi APs is
not an ideal option. In our system, we equip the client with
a ZigBee interface to collect periodic WiFi beacon signals,
which substantially reduces the energy consumption. A novel
localization module is implemented on the server to improve
the localization accuracy. In this section, we will discuss each

Fig. 4. (a) The world’s first Android tablet PC integrated with ZigBee
radio [34]. (b) The world’s first mobile phone integrated with a ZigBee
interface produced by Pantech&Curitel [30]. (c) A laptop client with a ZigBee
interface via a USB interface in our testbed.

part of our system in detail.

A. Design of Client

In our testbed, the client device (Fig. 4 (c)) is a WiFi-
enabled laptop equipped with a ZigBee interface, which con-
tinuously collects beacon frames of nearby WiFi APs. As the
ZigBee interface keeps scanning the 802.11 channels for a
certain period of time, most available APs in the vicinity can
be detected. We set the scanning time to 3s which is long
enough to thoroughly scan all the available WiFi APs. The
collected RSS samples will then be quantified and normalized
to form fingerprints for each location.

As the ZigBee interface cannot decode the beacon frames
to obtain the MAC (Media Access Control) address or BSSID
of each AP, it is impossible to directly recognize APs from the
RSS samples. Therefore we design a folding method to extract
some features from the collected RSS samples to distinguish
each AP. As shown in Fig. 2, our method consists of two steps:
the first step is the RSS quantification to concert the chaotic
RSS samples, and the second step is RSS normalization. The
RSS quantification includes the RSS shaping and the RSS
folding. The RSS shaping is to quantify the signal strength to
”0” or ”1”, and the RSS folding removes the aperiodic radio
signals (e.g., the data signals transmitted by WiFi devices) and
keeps the periodic WiFi beacon signals. The results of the RSS
folding are then normalized to obtain the real beacon frames
to form the location fingerprints. The fingerprints will then be
sent to the server through the WiFi interface.

1) RSS Quantification: The period of WiFi beacon broad-
casting is 102.4 ms (IEEE 802.11 specification), i.e., an
AP broadcasts one beacon frame every 102.4 ms. In our
experiments, we set the RSS sampling period to 122 µs, and
therefore about 839 RSS samples will be captured in each
beacon period. According to the IEEE 802.11 specification,
the time for transmitting a beacon frame is greater than 400 µs,
so our sampling scheme will not miss any beacon frame [35].

As shown in Fig. 5, the RSS samples collected by ZigBee
interface include WiFi data signals and WiFi beacon signals,
and the WiFi APs cannot be distinguished directly. We de-
signed RSS Quantification and RSS Normalization to identify
the WiFi APs from these RSS samples.

Fig. 5. A series of RSS samples collected by ZigBee interface.



We define L as the number of beacon periods for capturing
WiFi fingerprints and N as the number of RSS samples
collected in one beacon period. Then the process would
cost L * 102.4ms and collect L ∗ N RSS samples. We
group the RSS samples together and define them as a matrix
S[i][j] (i ∈ [1, N ], j ∈ [1, L]). To filter out the beacon frames
with poor signal quality, we define a threshold as −90 dBm.
We use Eq. (1) to quantify the signal strength into ”0” or ”1”.

RSSI =

{
1, for RSSI ≥ -90 dBm
0, for RSSI < -90 dBm

(1)

Then we define a matrix S∗[i][j](i ∈ [1, N ], j ∈ [1, L]) to
store the shaped RSS samples.

Then we fold the shaped RSS samples. Fig. 6 shows an
example after RSS shaping and folding, which amplifies the
beacon signals and reduces the noise. In Fig. 6, we assume that
there are five APs and the scenarios for three beacon intervals
are displayed. Then we define the PHASE of each AP as:

..
.

Fig. 6. The process of RSS shaping and folding.

Pi,k =
1

M

kM∑
j=1+(k−1)M

(∆tij − b∆tij/Pmaxc × Pmax) (2)

where Pi,k (i ∈ [1, N ], k ∈ [1,K]) is the PHASE of the
i-th AP in the k-th fingerprint, Pmax is the beacon interval
(102.4ms) and ∆tij = tij − t0(i ∈ [1, N ]). tij is the time
stamp of the i-th AP in the j-th beacon interval and t0 is the
time origin. M is the number of beacon intervals, which is an
empirical constant (30 in our experiments).

Then we adopt RSS folding to remove aperiodic noise (WiFi
data signals) and keep periodic AP beacon signals denoted
by R

′

i,k ⊆ [0, 1] using Eq. (3). We fold each M (30 in our
experiments) beacon periods and obtain K = bL/Mc WiFi
fingerprints.

R
′

i,k =
1

M

kM∑
j=1+(k−1)M

S
′
[i][j] (i ∈ [1, N ], k ∈ [1,K]) (3)

R
′

i,k implies the probability of AP i appearing in the k-th
fingerprint. Then we can obtain the average real RSSI of the
i-th AP in the k-th fingerprint (Ri,k) by folding the matrix of
raw RSS samples S[i][j] using Eq. (4).

Ri,k =
1

M

kM∑
j=1+(k−1)M

S[i][j] (i ∈ [1, N ], k ∈ [1,K]) (4)

2) RSS Normalization: Not all nonzero peaks in R
′

i,k

represent real WiFi APs after the above-mentioned folding.
However, the probability that the peaks with large values are
real WiFi APs is high. Therefore we define a threshold α (an
empirical constant, 0.6 in our experiments) to filter out the
fake beacon frames, as shown in Fig. 7. Then we retain the
peaks above α and remove the rest. We term this process “RSS
normalization”.

Fig. 7. Normalizing Transition of two folded RSS series.

Formally, we define Fk = {(Pi,k, Ri,k)|i ∈ [1, N
′
], k ∈

[1,K]} as the k-th WiFi fingerprint, where Pi,k and Ri,k

are the PHASE and RSSI of the i-th AP in the k-th
fingerprint, respectively, and N

′
denotes the number of APs

after RSS normalization. The time stamp of the k-th fingerprint
is denoted by Tk which can be calculated by Eq. (5), where
ti,k is the time stamp of the i-th AP.

Tk =
1

N ′

N
′∑

i=1

ti,k (5)

Then we define F
′

k = {Fk, Tk}, which will be sent to the
fingerprint database on the server of ZIL.

B. Design of Server

The server is the core component of our system, whose
primary function is to build the fingerprint database and run the
localization module. During the training phase, the server re-
ceives and stores the labelled fingerprint data from the clients.
In the testing phase, the localization request which includes a



fingerprint (consisting of 30 beacon periods, which cost about
3s to collect) from a client is sent to the server in real time, and
processed using our proposed fingerprint matching algorithm.
Then we calculate the distance (similarity) between each pair
of fingerprints using three weighted distances. The following
sections will discuss the localization process in detail.

In the localization module, a novel fingerprint matching
algorithm is proposed to match the fingerprints from the
database with the localization request. The main idea of the
algorithm is to execute cyclic shifts to find the optimum
matching. After cyclical shifting, some locations still miss
some APs for the following two reasons: 1) The RSSI may
fold on the mistaken PHASE and form a false positive
signal; 2) Due to the signal delay and clock drift, the signals
that should be kept may have been removed in the RSS
normalization process. To address the problem, we insert some
virtual APs (their RSSIs are −129dBm in our experiments as
interference signals [36]) to make up for the missing APs.

Given two fingerprints denoted as Fa and Fb, and the
numbers of APs in Fa and Fb as Na and Nb, respectively.
We give an example of matching two fingerprints in Fig. 8.
The rationale of the cyclical shifting is to align each pair of
APs in Fa and Fb, and record the number of matched APs
in each comparison. After all comparisons, the one with the
largest number of matched APs is the best match.

The pseudocode of our fingerprint matching algorithm is
illustrated in Algorithm IV.1. The time complexity of the
fingerprint matching algorithm is O(N2), where N is the
number of APs. The matching process is explained as follows:

1. Initially APa1 is aligned with APb1 and c points to APa1

in Fa, as shown in Fig. 8 (a). Fb is cyclically shifted to let d
point from the first AP to the last AP in order. Fig. 8 (b) shows
the second cyclical shifting as d points to the second AP in
Fb. In each cyclical shifting of Fb, Fa and Fb are compared
to calculate the number of matched APs. Formally, we define
a matrix H , whose elements are the number of matched APs
between the two fingerprints, as shown in Eqs. (6), (7) and
(8):

H = (hcd)Na×Nb
(6)

where c ∈ [0, Na), d ∈ [0, Nb). The number of matched APs
for each comparison is denoted as hcd which can be calculated
by,

hcd =
∑

Na−1
m=0

∑
Nb−1
n=0 S(|∆m−∆n|) (7)

S(x) =

{
1, if x < 10
0, else

(8)

where ∆m = Pm − Pc and ∆n = Pn − Pd. Pm and Pc

are the PHASE of the m-th and c-th APs in Fa, and Pn and
Pd are the PHASE of the n-th and d-th APs in Fb. If ∆m
or ∆n is smaller than 0, it should be set to ∆m + Pmax or
∆n + Pmax, where Pmax is the beacon interval (102.4ms).
We define a threshold of the PHASE difference of ∆m and
∆n as 10ms (an empirical constant) to determine whether the
m-th and n-th APs match, as shown in Eq. (8).

Algorithm IV.1 Fingerprint Matching Algorithm
Input: Fa - a fingerprint from the fingerprint database; Fb - a
fingerprint from the localization request; Na - the number of APs
in Fa, and Nb - the number of APs in Fb; {c, d} - the pointers in
Fa and Fb for cyclical shifting; {m,n} - the pointers in Fa and Fb

for comparing APs in each cyclical shifting; H - the matrix whose
elements are the number of matched APs between Fa and Fb.
Output: The matched sequence of Fa and Fb.

1: for all c ∈ [0, Na) do
2: for all d ∈ [0, Nb) do
3: for all m ∈ [0, Na) do
4: for all n ∈ [0, Nb) do
5: if (∆m = Pm − Pc) < 0 then
6: ∆m = ∆m + Pmax

7: end if
8: if (∆n = Pn − Pd) < 0 then
9: ∆n = ∆n + Pmax

10: end if
11: if |∆m−∆n| < 10 then
12: hcd+ = 1
13: end if
14: end for
15: end for
16: H ← hcd

17: end for
18: end for
19: (c, d)← argmax{H}
20: for all m ∈ [0, Na) do
21: for all n ∈ [0, Nb) do
22: if (∆m = Pm − Pi) < 0 then
23: ∆m = ∆m + Pmax

24: end if
25: if (∆n = Pn − Pj) < 0 then
26: ∆n = ∆n + Pmax

27: end if
28: if ∆m−∆n > 10 then
29: insert the PHASE of n to Fa with R = −129
30: else if ∆n−∆m > 10 then
31: insert the PHASE of m to Fb with R = −129
32: end if
33: end for
34: end for
35: return

2. When the APs in Fb have finished all the Nb cyclical
shiftings, c points to the second AP in Fa. In each cyclical
shifting of Fa, Fb is cyclically shifted for Nb times and the
number of matched APs is calculated as done in step 1. After
a total of Na ∗Nb cyclical shiftings, we find the largest value
from H and the corresponding c and d, which indicate the
best match of the two fingerprints, as shown in Fig. 8 (c).

3. As some APs in Fa (or Fb) are missing the corresponding
APs in Fb (or Fa), we insert some virtual APs (their RSSIs are
−129dBm in our experiments as interference signals [36]) to
make up for the missing APs for the purpose of comparison,
as shown in Fig. 8 (d).

After obtaining the matched fingerprints, we need to cal-
culate the distance (similarity) between a pair of fingerprints.
There exist a number of methods for computing the distance
between a pair of fingerprints. In this work, we select the
following three methods to evaluate our approach: weighted
Euclidian distance, weighted Manhattan distance and relative
entropy, and their calculation formulas are shown in Eqs. (11),
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Fig. 8. An example of matching two fingerprints. (a) Two raw fingerprints
before matching. (b) Alignment after one cyclic shift. (c) The best match
between the two fingerprints. (d) The insertions of the missing APs.

(12) and (14), respectively.
KNN has been widely used in indoor localization [33] [26].

However, all features are treated equally in KNN, which
leads to that the influence of key features may be submerged
in other non-contributing features (curse of dimensionality)
and hence the accuracy of KNN is low. For example, the
APs with stronger RSSI should be treated as being more
important than those with weaker RSSI , as they are not
equally important [37] [38]. In this work, we propose a
weighted method to assign different weights based on the
importance of features. To assign a weight to each AP, we
define the correlation coefficient between AP u and AP v as
αu,v in Eq. (9) to construct the correlation coefficient matrix
A. Let Ru denote the vector which consists of all the RSS
instances of AP u in the fingerprint database; Cov(Ru, Rv) is
the covariance and D(a) is the variance of a. Then, αu,v can
be calculated by,

αu,v =
Cov(Ru, Rv)√
D(Ru) ∗D(Rv)

(9)

After calculating the correlation coefficient matrix A, we
define the weight of AP u as wu in Eq. (10), where Au =
{αu,1, αu,2, . . . , αu,n} is the u-th row vector of A. If the
correlation between AP u and other APs is higher, which
indicates that AP u brings more redundant information, the
weight of AP u is lower.

After calculating the weight of each AP, we can calculate
three different distances between two fingerprints Fa and Fb

using Eqs. (11), (12) and (14) as the input of KNN. The time

complexity of the KNN algorithm is O(K), where K is the
size of training set.

wu =
1

Au ·AT
u

(10)

dEuclidian(Fa, Fb) =

√√√√ N ′∑
u=1

wu × (Ru,a −Ru,b)2 (11)

dManhattan(Fa, Fb) =

N
′∑

u=1

wu × |Ru,a −Ru,b| (12)

The relative entropy DKL(P ||Q) is also called KL
(Kullback-Leibler) divergence. It is actually a non-symmetric
measurement of the information lost in approximating between
two probability distributions P and Q, whose theoretical basis
is the Fisher information [39]. If P equals Q, their relative
entropy is 0. Thus we use it as a distance measurement. As
the vectors in the relative entropy should meet the conditions
that the sum of elements of a vector should be equal to 1 and
each element should be greater than 0, the folded RSSI series
can be compressed in a simple step. For example, a folded
RSSI series (0.3, 0.8, 0.2, 0.7, 0.4, 0.6) can be compressed to
(0.1, 0.267, 0.067, 0.233, 0.133, 0.2) in proportion, making the
sum of elements equal to 1. Although it is often regarded as
a metric or a distance, the relative entropy is not a true metric
as it is not symmetric: the relative entropy from P to Q is
generally not the same as the one from Q to P . We construct
the fuzzy relative entropy [40] as Eq. (13) and use Eq. (14)
to calculate the symmetric relative entropy.

EKL(Fa||Fb) =

N
′∑

u=1

wu × [R
′

u,a ln
R

′

u,a

R′
u,a

2 +
R

′
u,b

2

+(1−R
′

u,a) ln
R

′

u,a

1− R′
u,a

2 − R
′
u,b

2

]

(13)

DKL(Fa||Fb) = EKL(Fa||Fb) + EKL(Fb||Fa) (14)

V. EXPERIMENTATION

A. Experimental Setup

We develop our system on TelosB motes, and conduct
extensive experiments at the tenth floor of New Main Building
in Beihang University. The area of the floor is about 1,600
square meter, with 50 rooms in total and we use 28 of those
rooms for our experimentation. The size of each room is about
3.75 by 8 m2. There are more than 100 APs deployed in the
building. Both the client and the server of ZIL are built on
Lenovo ThinkPad laptops, where the client is also equipped
with a TelosB mote. The laptops are running on Ubuntu with
Linux kernel version 3.2.0-35.

The client scans at least 11,000 times (3s per time) and
collects about 275,000,000 RSS samples in each room during
the training phase. The beacon interval is 102.4ms, and we



fold every 30 periods to form a fingerprint, which costs 3s
to collect about 25,000 RSS samples. So a total of 308,000
fingerprint samples in the 28 rooms form the training set.
We divide fingerprint samples into two parts in the following
experiments: the training and testing data sets. WiFi channels
1, 6 and 11 are commonly used, and in our site survey we find
that most of WiFi APs operate on channel 6. So the channel
of ZigBee is set to 17, which can fully overlap with WiFi
channel 6 [41] [42]. In fact, our approach does not require to
detect all the WiFi APs, though the more APs are obtained,
the better results can our approach have.

In our site survey, there are, on average, 20 APs that can
be detected in each room. The client and the server also
turn on their WiFi interfaces, in case of data transmitting
between them. After RSS quantification and normalization, the
fingerprints are sent to the server from clients through WiFi
interfaces.

B. Accuracy and Energy Consumption with ZigBee Interface

Our testbed environment, containing 28 rooms, is complex
enough as it contains a patio, corners and walking people.
All these factors, adding reflection and diffraction, make the
localization accuracies varied. The room-level localization
accuracy is defined as the ratio of the number of correctly
localized rooms to that of all localized rooms. Fig. 9 shows
the layout of our experiment site, where each room is labeled
with the corresponding localization accuracy based on 500
localization requests sent by the client in each room. The range
of localization accuracy is from 60% to 100%. The accuracies
of four out of the 28 rooms are above 90%, and those of
another four rooms are between 70% and 80%. The accuracies
of 78% of the 28 rooms are above 80%. Only two rooms have
accuracies between 60% and 70%. On average, the accuracy
of ZIL can reach 87% and the incorrectly estimated locations
are usually close to the rooms where the client is actually
located.

Accuracy of Each Room: 60%-70% 70%-80% 80%-90% 90%-100%
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Fig. 9. The layout of our testing environment.

In this work, to accurately measure energy consumption of
ZigBee and WiFi interfaces, we use a multimeter to directly
measure the current draw of the TelosB mote and WiFi
interface while they are working on capturing beacon frames,
as shown in Fig. 10 (a). The galvanometer and voltmeter of
the multimeter measure the current draw and voltage from the
USB interface to get the power of ZigBee or WiFi interface

at a time. Then the energy consumption of ZigBee or WiFi
interface in a period of time can be calculated by discrete inte-
gration of successive sampling power values. Fig. 10 (b) shows
the localization accuracy and energy consumption of a WiFi-
based fingerprint method and ZIL with different localization
scanning times. In comparison, ZIL is slightly inferior to the
WiFi-based method in terms of accuracy as the fingerprints of
the ZigBee interface are noisier. However, the ZigBee interface
reduces energy consumption by about 68% as compared with
the WiFi interface, which motivates us to use ZigBee in indoor
localization.

(a) Energy measurement (b) Energy consumption

Fig. 10. Localization accuracies and energy consumption of the WiFi and
Zigbee-based localization systems with different localization scanning times.

C. Performance of Different Distance Metrics

We adopt the following five metrics to evaluate the localiza-
tion accuracy of our approach: Euclidian-W-KNN, Manhattan-
W-KNN, KL-W-KNN, R-KNN [33] and naive Bayesian [3].
The distances of Euclidian-W-KNN, Manhattan-W-KNN and
KL-W-KNN are calculated by Eqs. (11), (12) and (14), re-
spectively.

We set k in KNN to 500 and select ten rooms for com-
parison. We randomly select 500 fingerprints out of the total
11,000 fingerprints as the testing set of each room, while the
remaining 10,500 fingerprints are used for the training set. As
shown in Fig. 11, the accuracies for rooms 1024, 1030 and
1049 are higher, above 80% in most cases. The performance
of KL-W-KNN fluctuates more dramatically, reaching 97% in
room 1030, but dropping below 40% in room 1044. By ana-
lyzing accuracy variances, Manhattan-W-KNN is more stable
than the other two metrics, and can achieve the accuracy of
about 87% on average. Manhattan-W-KNN performs close to
R-KNN and 9% higher than Bayesian, on average. Moreover,
the accuracy variance of R-KNN is the smallest (0.0012),
compared with Manhattan-W-KNN (0.0036) and Bayesian
(0.0039).

D. Impact of k in KNN Algorithms

In this subsection, we will investigate the impact of the
parameter k on KNN. The range of k is set from 100 to 1000
during the experiment. We select ten rooms to conduct this
experiment, and the results are shown in Fig. 12. The accu-
racies of rooms 1024 and 1030, as shown in Fig. 12 (a) and
(c), are relatively stable and high. This is because these two



Fig. 11. Localization accuracies of 10 rooms using Euclidian-W-KNN, KL-W-
KNN, Manhattan-W-KNN, R-KNN and Bayesian (95% confidence interval).

rooms are relatively independent and the distances between
the rooms and other rooms are large enough to diminish the
interference.

It is apparent from Fig. 12 that for all the rooms, the local-
ization accuracy of Manhattan-W-KNN fluctuates the least and
does not fall drastically, which makes it the best choice among
the three metrics. The localization accuracy of Euclidian-W-
KNN is lower than Manhattan-W-KNN and varies significantly
with the increase of k. KL-W-KNN performs well in rooms
1024, 1047 and 1049, but performs badly in rooms 1038, 1044
and 1046. Overall, Manhattan-W-KNN is the best choice for
our system.

Based on the data of the selected ten rooms, we compute
the average accuracies of the five algorithms. We randomly
select 500 fingerprint samples to form the testing set and
the remaining samples constitute the training set. The exper-
imental results are displayed in Fig. 13. When k is smaller
than 250, Manhattan-W-KNN performs best among all the five
algorithms. When k is greater than 250, R-KNN is the best
method.

To further investigate the impact of k in Manhattan-W-KNN
and R-KNN, we adopt FP (False Positive) and FN (False
Negative) rates as the evaluation metrics. We randomly select
1,000 fingerprints out of the total 11,000 fingerprints as the
testing set of each room, while the remaining fingerprints are
used for the training set. We repeat for ten times of cross-
validation to estimate the FP and FN rates of Manhattan-W-
KNN and R-KNN for each k value. The results are shown in
Figs. 14 and 15, where k ranges from 450 to 700 at a step of
50.

When k is large, both Manhattan-W-KNN and R-KNN need
to consider more distant instances in the training set when
calculating the location. The distant instances usually contain
more noisy data than near instances. However, when k is too
small, the noise in near instances may be a decisive factor
to estimate the location. Therefore, it is possible for us to
determine the k value with which the algorithms could perform
best.

As shown in Figs. 14 and 15, the best/worst/AV G curves
represent the minimum/maximum/averaged FP and FN rates
in all the testing rooms, respectively. In Fig. 14, the best, worst

(a) 1024 (b) 1028

(c) 1030 (d) 1036

(e) 1038 (f) 1039

(g) 1044 (h) 1046

(i) 1047 (j) 1049

Fig. 12. Impact of k on three KNN variants for the ten selected rooms.

and average FP rates of Manhattan-W-KNN are below 0.67%,
4.1% and 2.1%, respectively. The best, worst and average FP
rates of R-KNN are below 1.2%, 3.5% and 1.6%, respectively.
We notice that the performance of the two algorithms do not
fluctuate much with the increase of k from 450 to 700, and



Fig. 13. Average localization accuracies of the five algorithms.

Fig. 14. FP rates of Manhattan-W-KNN and R-KNN in different rooms.

Fig. 15. FN rates of Manhattan-W-KNN and R-KNN in different rooms.

both of them perform best at about k = 550.
A similar pattern is shown in Fig. 15. We can observe

that the worst FN rate of Manhattan-W-KNN deteriorates
significantly when k is larger than 600. Overall, both of them
perform best when k ranges from 550 to 650.

E. Accuracy Over Time

In this subsection, we investigate the localization accuracy
of ZIL in one day. As shown in Fig. 3, RSS signals do not
fluctuate much between 00:00 am and 9:00 am, whereas during
working hours, the signals change significantly due to the
large amount of WiFi data transmissions. We evaluate the
localization accuracy in rooms 1049 and 1047 for 24 hours

consecutively, and the results are shown in Fig. 16. The result
shows that the accuracy increases from 00:00 am to 08:00 am,
from 86% to 98%, and reaches its peak value (98%) at 08:00
am for room 1049. The accuracy starts to drop from 08:00 am
to 10:00 pm continuously with the increase of WiFi traffic.
The solid line is the average accuracy of these two rooms.

Fig. 16. Accuracies for rooms 1047 and 1049 in one day.

F. Impact of Training Set Size

Generally, KNN can have a satisfying accuracy when the
training size is sufficient. In most cases, a larger training set
will lead to a higher accuracy since the impact of random
errors in the training set decreases. However, it is a labor
intensive job to collect a large training data set. Besides,
the computational cost will increase with the increase of
the training data size for the KNN algorithm. Therefore, the
training data size should be properly determined. We adopt
Manhattan-W-KNN and R-KNN to investigate the relation
between the impact of training set size and the localization
accuracy in this experiment.

We test Manhattan-W-KNN and R-KNN with ten different
sizes of training sets which are selected from the original
training set containing about 308,000 fingerprint samples, and
the experimental results are shown in Fig. 17. As shown in
Fig. 17, the localization accuracies increase quickly when the
size of the training set increases from 600 to 4,810, and after
that both of them can achieve stable and high localization
accuracies.

Fig. 17. Impact of training set size on Manhattan-W-KNN and R-KNN.



VI. CONCLUSIONS

In this paper, we designed ZIL, an indoor localization
system using low-power ZigBee radio to detect and identify
WiFi fingerprints, which delivers significant energy-saving and
competitive localization accuracy according to our experiments
in an office building. We designed RSS quantification and
normalization schemes to recognize WiFi beacon frames and
form a fingerprint database, and proposed a novel fingerprint
matching algorithm to align two fingerprints. We designed
the KNN algorithm with three weighted distances to evaluate
the accuracy of ZIL and found that the weighted Manhattan
distance has the best performance. Saving about 68% energy
on average compared with the method using WiFi interfaces,
our approach can provide users the localization accuracy of
87%, which outperforms existing work, such as ZiFind and
the Bayesian classification method.
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