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Abstract 

An experimental investigation is carried out to verify the feasibility of using an instrumented vehicle to 

detect and monitor bridge dynamic parameters. The low cost method consists of the use of a moving 

vehicle fitted with accelerometers on its axles. In the laboratory experiment, the vehicle-bridge interaction 

model consists of a scaled two-axle vehicle model crossing a simply supported steel beam. The bridge 

model also includes a scaled road surface profile. The effects of varying the vehicle model configuration 

and speed are investigated. A finite element beam model is calibrated using the experimental results and a 

novel algorithm for the identification of global bridge stiffness is validated. Using measured vehicle 

accelerations as input to the algorithm, the beam stiffness is identified with a reasonable degree of 

accuracy.  
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Introduction 

The maintenance of bridge structures in a transport network is essential in order to ensure safety, in 

addition to providing cost effective operation of the network. The need to assess and maintain the 

condition of bridge structures has influenced a considerable amount of research in the area of structural 

health monitoring (SHM) in recent years.
1-3,4

 Increasingly, bridges are being instrumented for the 

purposes of vibration based monitoring, which in general focuses on modal parameters such as frequency 

and mode shapes. A number of authors
5-7

 provide comprehensive reviews of vibration based damage 

identification and condition monitoring methods in the literature. However, the requirement for direct 

instrumentation of the bridge to enable monitoring can be a downside as it has implications related to time 

and cost, such as operational downtime, labour required for manual installation of multiple sensors and/or 

data acquisition equipment on the bridge and associated maintenance costs for these installations. 

 

This paper presents a laboratory experimental validation of an alternative method for the vibration based 

assessment of bridges. The proposed method is low cost and consists of the analysis of the dynamic 

response of a vehicle as it passes over a bridge, also referred to in the literature as an indirect monitoring 

approach
8,9

.  The vehicle is fitted with accelerometers to its axles, reducing the need for any direct 

installation of equipment on the bridge itself. As all of the data acquisition electronics are also contained 

within the vehicle which can travel at highway speeds, it allows for a so called drive-by bridge inspection 

system, enabling widespread preliminary assessment of existing bridge structures’ conditions without the 

need to stop the vehicle.  

 

The feasibility of extracting bridge dynamic parameters such as natural frequency from the dynamic 

response of an instrumented vehicle has been verified theoretically.
10-13

 Yang et al.
10

 find that the 

magnitude of the peak response in the vehicle acceleration spectra increased with vehicle speed but 
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decreases with increasing bridge damping ratio. In a study by McGetrick et al.
12

 the bridge frequency and 

changes in bridge damping are extracted from the vehicle response but they find that it is difficult to 

detect both parameters in the presence of a rough road profile. Also, frequency matching between the 

vehicle and the bridge is highlighted by both Yang et al.
10

 and González et al.
13

 as being beneficial for 

frequency detection. Yang and Chang
14

 also carry out a parametric study which indicates some of the best 

conditions for frequency detection.  

 

Drive-by inspection has also been tested in field trials and it has been found that accurate determination of 

the bridge natural frequency is feasible for low speeds and sufficiently high dynamic excitation of the 

bridge due to the influence of road roughness on the vehicle response.
15-18 

Yang and Chang
18

 make use of 

the empirical mode decomposition technique to identify the frequencies of higher modes from the vehicle 

response. 

 

Experimental investigations have been conducted to check the feasibility of the approach as part of a 

drive-by inspection system for bridge monitoring. Toshinami et al.
19 

extract the bridge frequency from the 

response of a passing vehicle in a laboratory experiment. Kim and Kawatani
20

 investigate a condition 

screening and damage detection approach which uses an inspection car for data acquisition from wireless 

sensor nodes installed on the bridge. The inspection car also acts as an actuator to the bridge. It is found 

that the approach can identify the location and severity of damage via analysis and comparison of the 

stiffness distribution throughout the bridge between intact and damaged states. Bu et al.
21

 also present a 

numerical investigation of a bridge condition assessment technique which focuses on the stiffness. Their 

approach utilises the dynamic response of a vehicle moving along a Euler-Bernoulli beam to detect 

damage in terms of stiffness reduction. They find that vehicle speed, measurement noise, road surface 

roughness and model errors do not have a significant effect on the accuracy of the damage detection.  
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In this paper, the aim is to experimentally validate a novel stiffness identification algorithm at laboratory 

scale, which uses the measured acceleration responses of the vehicle as the input. In the laboratory, a 

scaled vehicle-bridge model is used consisting of a scaled two-axle vehicle and a simply supported steel 

beam, which incorporates a scaled road surface profile. For the purposes of a complete analysis, a coupled 

Vehicle Bridge Interaction (VBI) simulation model is created in MATLAB
22

 and calibrated using the 

experimental data.  

 

Experimental setup  

Bridge model 

The scaled bridge model used in the experiment is a 5.4 m simply supported steel beam (Figure 1). The 

simple support conditions are shown in Figure 2. The beam is fitted with accelerometers and 

displacement transducers at quarter span, mid-span and three-quarter span to monitor its response in free 

vibration tests and during vehicle crossings. The beam properties obtained from the manufacturer and free 

vibration tests are given in Table 1. The frequency and damping of the beam were calculated as the mean 

of five repeated free vibration tests. The product of the beam’s modulus of elasticity, E and second 

moment of area, J, i.e., the global beam stiffness, EJ, is found by calibration in this study.  

 

The bridge model also incorporates a scaled road surface profile which the vehicle model travels along, 

shown in Figure 3. Only one profile was investigated and this was scaled based on a measured road 

profile from a 40.4 m roadway bridge studied by Kim et al.
23

. The measured profile is categorised as very 

good (Class A) according to ISO
24

. Therefore, the scaled profile is intended to be representative of that 

expected on a typical highway bridge. However, some discrepancies with the measured profile exist due 

to the idealisation of the scaled profile as a superposition of steps formed by a simple construction method 

using layered tape and plastic strips. This material was selected to avoid unexpected noise in the 
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measured signal during the moving vehicle experiment, which could be caused by interaction between the 

vehicle’s plastic wheels and the steel track.  For this particular profile, the effect of some of the larger 

irregularities on the vehicle results in a subsequent increase in the excitation of the bridge. It follows that 

the bridge’s influence on the vehicle response also increases; this factor can sometimes be beneficial for 

indirect approaches and the type of identification algorithm investigated in this paper
25

.  

 

 

Figure 1. Experimental Beam; (a) Laboratory setup (b) Elevation of setup (c) Beam cross-section (units 

in mm). 
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Figure 2. Simple support conditions of beam (a) pinned support (b) roller support (c) rollers. 

 

 

Figure 3. Experimental road profile. 

 

Table 1. Bridge model properties. 

Span Length, 

L (m) 

Material density, 

w (kg/m
3
) 

Cross sectional area, 

A (m
2
) 

First natural frequency, 

𝑓𝑏,1 (Hz) 

Damping 

Ratio, ξ 

5.4 7800 6.7 × 10
-3

 2.69 0.016 
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Vehicle Model 

A scaled two–axle vehicle model is instrumented for the experiments (Figure 4).  It is fitted with 2 

accelerometers to monitor the vehicle bounce motion; these are located at the centre of the front and rear 

axles respectively. It also includes a wireless router and data recorder which allow the acceleration data to 

be recorded remotely. The vehicle model can be adjusted to obtain different axle configurations and 

dynamic properties; the spring stiffness of the axles can be varied by changing the springs while the body 

mass can be varied using steel plates. The properties of the three vehicle model configurations chosen for 

these experiments are given in Table 2, which were determined prior to testing. The axle masses were 

obtained using weighing scales. The suspension spring stiffness was provided by the spring manufacturer 

and the suspension damping was established as the mean of  five repeated free vibration tests using the 

logarithmic decrement technique.
26

 The axle spacing and track width for all models were 0.4 m and 0.2 m 

respectively. The vehicle/bridge mass ratios were 7.6% for both vehicles V1 and V2 and 9.2% for V3, 

which were relatively high but are similar to those expected in practice for a typical 18 tonne two-axle 

truck on a short span bridge. 

 

The vehicle was propelled by a motor and pulley system (Figure 5)and its speed was maintained constant 

by an electronic controller as it crossed the bridge. An approach length was provided before and after the 

bridge span to allow for acceleration and deceleration. The entry and exit of the vehicle to the beam was 

monitored using strain sensors in order to synchronise measurements; entry and exit points appeared as 

peaks in the strain signals. The scaled vehicle speeds adopted for the experiment are 0.46 m/s, 0.93 m/s 

and 1.63 m/s represented by S1, S2 and S3 respectively. S1 to S3 give dimensionless speed parameters 

(𝛾) of 0.016, 0.032 and 0.056 respectively using equation (1).
27

 They are similar to speed parameters of 

0.015, 0.029 and 0.059 estimated using speeds of 10 km/h, 20 km/h and 40 km/h respectively for an 

existing 40.4 m bridge span with first bending mode of 2.35 Hz.  
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Figure 4. Experimental vehicle; (a) side view (b) end view showing accelerometer locations (arrows). 

 

 

Figure 5. Vehicle propulsion system (a) vehicle connection (b) motor and belt (c) pulley wheel. 

 

Table 2. Vehicle model properties. 

Vehicle Mass (kg) 
Suspension stiffness 

(N/m) 

Suspension damping  

(N s/m) 

 Axle 1 Axle 2 Axle 1 Axle 2 Axle 1 Axle 2 

V1 7.9 13.445 2680 4570 16.006 27.762 

V2 7.9 13.445 4290 7310 13.991 35.112 

V3 8.355 17.530 2700 5940 18.023 65.829 
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𝛾 =
𝑐

2𝑓𝑏,1𝐿
  (1) 

 

In equation (1), 𝛾 is the speed parameter, 𝑐 is the vehicle speed (m/s), 𝑓𝑏,1 is the first natural frequency of 

the bridge (Hz) and L is the bridge span length (m). This dimensionless parameter is important for the 

scaling of the experimental model as it is used to maintain a relationship between vehicle speed, 

frequency and span length for the 5.4 m beam which is similar to that for a 40.4 m bridge subject to real 

traffic.
23

 

 

Sensors and data acquisition electronics 

The accelerometers used for the bridge and vehicle were KYOWA AS-1GBZ1 small-capacity 

acceleration transducers with rated capacities of ±9.807m/s
2
 (±1g). The displacement transducers used for 

the bridge were CDP-25 transducers by Tokyo Sokki Kenkyjo Co. Ltd (TML) with 25 mm capacity, 

spring force of 3.4 N and sensitivity of 5 × 10
-6

 strain/mm. Three DC-104R dynamic strain recorder units 

by TML, fitted with BA104 battery packs, were used for data acquisition and power supply; two units for 

bridge sensors and one for the vehicle (Figure 4). These units stored all data on compact flash memory 

cards. DC-7630 Dynamic Strain Recorder measurement software by TML was used for monitoring, 

collection and processing of measured data from the recorders. Data recorded on the unit fitted to vehicle 

was monitored remotely during crossings via a wireless LAN connection; the recorder was connected to a 

SX-2500CG wireless Ethernet adapter by Silex Technology for this purpose (Figure 4). It should be noted 

that a scanning frequency of 100 Hz was used by the data acquisition system for all experiments. 
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Outline of experimental procedures 

The aim of the laboratory experiment is to verify that the global bridge stiffness can be extracted from the 

vehicle response. Therefore, a series of experiments are developed for this purpose and they are outlined 

briefly in this section.  

 

Vehicle crossing measurements. Beam and vehicle accelerations and beam displacements are 

recorded during vehicle crossings for all vehicle models and speeds. The displacement measurements are 

used for the calibration of the VBI simulation model while the vehicle accelerations are used as input to 

the stiffness identification algorithm. An example of the vehicle accelerations obtained from a crossing 

for vehicle V1 and speed S2 is illustrated in Figure 6(a). By processing these accelerations using a fast 

Fourier transform (FFT) and plotting the corresponding power spectral density (PSD), Figure 6(b) is 

obtained. The spectral resolution is ± 0.098 Hz here.  

 

 

Figure 6. Vehicle 1 and Speed 2 (V1S2) (a) axle 1 accelerations (b) spectrum of axle 1 accelerations. 
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It can be seen from Figure 6(b) that axle 1 of the vehicle vibrates predominantly at its pitch frequency 

(3.91 Hz). It is found that the dynamic response of axle 2 (not shown here) is much less sensitive to the 

sprung mass pitch rotation of the vehicle as it has a higher axle weight than axle 1. However, a peak 

corresponding to the bridge natural frequency is also present at 2.44 Hz in Figure 6(b). This is lower than 

the frequency obtained from free vibration tests (2.69 Hz). Although the resolution of the spectrum is 

poorer here than that obtained in free vibration tests (± 0.048 Hz) due to the shorter signal length here, the 

frequency shift is too large for this to be the cause of the decrease. The decrease can be attributed to the 

coupling of the vehicle and beam during the crossing as the mass of the system increases; a number of 

researchers have observed and acknowledged similar trends
28,29

. Such variations are accounted for in the 

time-varying theoretical model via the coupling of the vehicle and bridge. 

 

Calibration of theoretical vehicle-bridge interaction model 

To allow for a comprehensive analysis of the experimental results, a VBI simulation model is created in 

MATLAB. The properties of the beam and vehicle used in this VBI model are those given in Table 1 and 

Table 2 respectively. To minimise error due to modelling approximations, an FE model updating 

procedure
30,31

 is used which minimises the differences between simulated and experimental data in an 

optimisation problem. This type of procedure has been employed in the analysis of beam and bridge 

structures, examples of which can be found in the literature.
32-34

 Here, the Cross-Entropy (CE) method of 

optimisation
35

 is used to calibrate the global beam stiffness, EJ, in the theoretical VBI model. The 

objective function used to evaluate the performance of each candidate stiffness in the optimisation is 

defined as the sum of the squared differences between the simulated and measured displacement 

responses of the beam.  
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Coupled vehicle-bridge interaction model 

The VBI is modelled as a coupled system (Figure 7) with the solution given at each time step using the 

Wilson-Theta direct integration scheme. Similar models incorporating the coupling of the vehicle and 

bridge have been employed in the literature
23, 36-38 

and a review of these and other models has been carried 

out by González.
39 

 

 

Figure 7. Coupled vehicle-bridge interaction model. 

 

Vehicle model. The vehicle model in the coupled system is represented by a 2 degree of freedom 

(DOF) half-car which crosses the bridge model at constant speed c (Figure 7).  It is a simplified vehicle 

model but it is sufficient to model the important aspects of the response of the experimental vehicle. The 

configuration of the two DOF model can be defined by coordinates 𝑦𝑠 and 𝜃𝑠, the sprung mass bounce 

displacement,  and pitch rotation respectively. The vehicle body and axle component masses are 

represented by the sprung mass, 𝑚𝑠. A combination of springs of linear stiffness 𝐾𝑖 and viscous dampers 

with damping coefficient 𝐶𝑖 represent the suspension components for the front and rear axles (𝑖 = 1,2). 
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Also, 𝐼𝑠 is the sprung mass moment of inertia and the distance of each axle to the vehicle’s centre of 

gravity (o) is given by 𝐷1 and 𝐷2.  

 

The equations of motion of the vehicle are obtained by imposing equilibrium of all forces and moments 

acting on the vehicle and expressing them in terms of the coordinates 

 

 𝑚𝑠𝑦̈𝑠 + 𝐹𝑡,1 + 𝐹𝑡,2 = 0  (2) 

 

𝐼𝑠𝜃̈𝑠 + 𝐷1𝐹𝑡,1 − 𝐷2𝐹𝑡,2 = 0  (3) 

 

where 𝐹𝑡,𝑖 is the dynamic interaction force between the vehicle and bridge at wheel 𝑖 

 

𝐹𝑡,𝑖 = 𝐾𝑖(𝑦𝑠 − (−1)
𝑖𝐷𝑖𝜃𝑠  −  𝑤𝑣,𝑖)  +  𝐶𝑖(𝑦̇𝑠 − (−1)

𝑖𝐷𝑖𝜃̇𝑠  −  𝑤̇𝑣,𝑖);  𝑖 = 1,2 (4) 

 

where 𝑤𝑣,𝑖 is the total displacement under wheel 𝑖. This parameter can be defined in terms of the road 

profile elevation and bridge displacement under wheel i: 𝑟𝑖 and 𝑤𝑏,𝑖 respectively as 

 

𝑤𝑣,𝑖 = 𝑤𝑏,𝑖 + 𝑟𝑖;    𝑖 = 1,2  (5) 

 

The experimental road profile heights 𝑟𝑖  are used for this model (Figure 3). Due to the stepped nature of 

the profile, difficulties can be anticipated in the theoretical model relating to the interaction force 

transmitted via the vehicle dashpots (Figure 7) as infinite velocities can occur. However, in reality, 

infinite velocities are avoided as the vehicle wheels do not experience point contact but contact over a 

portion of the wheel surface. Therefore, to avoid infinite velocities in the model, the wheel contact patch 
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of the vehicle in the experiment is simulated by applying a moving average filter to the profile heights 

over a distance of 0.006 m, which corresponds to one-fifth of the diameter of the wheel. As sprung mass 

acceleration measurements are recorded above the suspension of each axle in the experiment (Figure 

4(b)), the relationship between the coordinates of the vehicle and the measurements is defined by the 

following equation 

 

𝑦̈𝑠,𝑖 = 𝑦̈𝑠 − (−1)
𝑖𝐷𝑖𝜃̈𝑠 ;  𝑖 = 1,2  (6) 

 

The vehicle system defined by equations (2) and (3) can also be written for the purpose of coupling with 

the bridge model as 

 

𝐌𝐯𝐲̈𝐯 + 𝐂𝐯𝐲̇𝐯 + 𝐊𝐯𝐲𝐯 = 𝐟𝐯  (7) 

 

where 𝐌𝐯, 𝐂𝐯, and 𝐊𝐯 are, respectively, the mass, damping and stiffness matrices of the vehicle while 𝐟𝐯 

is the time varying force vector applied to the vehicle and 𝐲𝐯 = {𝑦𝑠, 𝜃𝑠}
T
 is the displacement vector of the 

vehicle. Expressions for these matrices and vectors are given in Appendix 1. 

 

The experimental properties given in Table 2 for the three vehicle models are used in conjunction with 

𝐌𝐯  and 𝐊𝐯  to carry out modal analysis on the theoretical model. The frequencies obtained from this 

analysis are given in Table 3. The mean frequencies obtained from vehicle acceleration spectra of five 

free vibration tests for each experimental vehicle model are also given in Table 3 for comparison; the 

standard deviations of the five free vibration tests are given in parentheses. The theoretical bounce 

frequencies match those of the experimental model very well. The pitch frequencies do not provide quite 

as good a match. This can be attributed to differences between the mathematical (2-D) and real physical 
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models e.g. the pulley system, and measurement errors derived from the dominance of the body bounce 

frequency in free vibration tests which reduces the visibility of the identified pitch frequency peak in the 

vehicle acceleration spectrum. Such errors may reduce the accuracy of the stiffness identification 

algorithm thus the positive results presented in this paper indicate the strength of the algorithm. 

 

 Table 3. Vehicle model frequencies from modal analysis. 

Vehicle 
Body Bounce (Hz) Body Pitch (Hz)  

Theoretical Experiment Mean Theoretical Experiment Mean 

V1 2.93 2.93 (± 0) 3.92 4.24 (± 0.11) 

V2 3.71 3.62 (± 0) 4.96 5.35 (± 0.22) 

V3 2.91 2.91 (± 0) 3.72 3.62 (± 0.20) 

 

Bridge model. The bridge is represented by a simply supported FE beam model (Figure 7) of total span 

length L. It consists of 8 discretised beam elements with 4 degrees of freedom which have constant mass 

per unit length, µ, modulus of elasticity E and second moment of area J. However, to maintain continuity 

of displacement and slope between elements, neighbouring beam elements have common displacement 

and rotation at shared nodes. In addition, boundary conditions are applied by constraining the nodal 

displacement to zero at each end node. Thus, the beam has 16 degrees of freedom in total. The response 

of the beam model to a series of moving time-varying forces is given by the system of equations 

 

𝐌𝐛𝐰̈𝐛 + 𝐂𝐛𝐰̇𝐛 + 𝐊𝐛𝐰𝐛 = 𝐍𝐛 𝐟𝐢𝐧𝐭  (8) 

 

where 𝐌𝐛 , 𝐂𝐛  and 𝐊𝐛  are (n × n) global mass, damping and stiffness matrices of the beam model 

respectively, 𝐰𝐛 , 𝐰̇𝐛 and 𝐰̈𝐛 are the (n × 1) global vectors of nodal bridge displacements and rotations, 
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their velocities and accelerations respectively, and 𝐍𝐛𝐟𝐢𝐧𝐭 
is the (n × 1) global vector of forces applied to 

the bridge nodes. Here, the parameter n = 18; this consists ofthe total number of degrees of freedom of the 

bridge (16) plus the two constrained nodal displacements at each end of the beam. The total interaction 

force between the vehicle and the bridge is described using the (nf   × 1) vector 

 

𝐟𝐢𝐧𝐭 = {
𝑃1 + 𝐹𝑡,1
𝑃2 + 𝐹𝑡,2

}  
(9) 

 

where 𝑃𝑖  is the static load of axle 𝑖 . 𝐍𝐛  is an (n × nf) location matrix that distributes the nf applied 

interaction forces on beam elements to equivalent forces acting on the nodes; for this half-car model, nf  = 

2. The details of this matrix are given in Appendix 1. This location matrix can be used to calculate the 

bridge displacement under each wheel, 𝑤𝑏,𝑖, in equation (5) using 

 

{
𝑤𝑏,1
𝑤𝑏,2

} = 𝐍𝐛
T𝐰𝐛  

(10) 

 

Damping ratios of the experimental bridge calculated from free vibration tests were similar for the first 

two modes thus considering these modes,
40

 Rayleigh damping is adopted here to model the damping of 

the experimental beam using  

 

𝐂𝐛 =   𝐌𝐛 +  𝐊𝐛  (11) 

 

where  and  are constants. The damping ratio ξ is assumed to be the same for the first two modes and  

and  are obtained from  = 2 ξ12/(1+2) and  = 2 ξ/(1+2) where 1 and 2 are the first two 

natural frequencies of the bridge.
26 
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Coupling of the vehicle – bridge interaction system. The vehicle and bridge systems are coupled 

at the contact point of the wheel via the interaction force 𝐟𝐢𝐧𝐭. Equations (7) and (8) are combined to form 

the coupled system of equations as 

 

𝐌𝐠𝐮̈ + 𝐂𝐠𝐮̇ + 𝐊𝐠𝐮 = 𝐟  (12) 

 

where 𝐌𝐠 is the combined system mass matrix, 𝐂𝐠 and 𝐊𝐠 are coupled time-varying system damping and 

stiffness matrices respectively and 𝐟 is the system force vector (see Appendix 1). Also, 𝐮 = {𝐲𝐯, 𝐰𝐛}
𝐓 is 

the displacement vector of the system. Equation (12) is solved using the Wilson-Theta integration 

scheme
41,42

 using the optimal value of the parameter θ = 1.42 (correct to 3 significant figures) for 

unconditional stability.
43 

 

Calibration using Cross Entropy Optimisation 

As the vehicle model has been calibrated prior to experimental testing, the focus of the calibration 

presented here is on the properties of the prismatic beam, specifically its stiffness, EJ (N m
2
). The value 

provided by the manufacturer is EJdesign = 115,400 N m
2
. However, due to the installation of displacement 

transducers to take measurements, it is expected that the apparent or effective stiffness of the beam during 

the experiment will be higher as the CDP-25 transducers provide some resistance to displacement. It must 

also be noted that there can be a difference between the static modulus of elasticity (obtained from static 

tests) and dynamic modulus of elasticity (obtained from dynamic or free vibration tests). Previous 

research has shown that a structure may react with a higher modulus to a dynamic load than to a static one. 

These differences have been found to be up to 20% and higher in bridge structures.
44

 Therefore it is 

necessary to calibrate the theoretical model to take account of this increase.
30
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The CE method of optimisation
35

 has been implemented by Walsh and González
45

 to determine the 

stiffness distribution throughout a FE beam model from its response to a static load. The CE method is an 

optimisation approach which employs Monte Carlo simulation to generate populations of trial solutions 

which converge to a single optimal solution. The process involves two main stages; (1) Generation of a 

random sample of data (e.g. in this paper, candidate stiffness values) and (2) Updating of the mechanism 

of random data generation to produce an improved sample in the next generation. An advantage of this 

approach is its relative ease of implementation while it is insensitive to local optima.
46,47

  

 

In this paper, the approach of Walsh and González
45

 is adapted to determine the global stiffness value for 

the FE beam model which gives the best fit between theoretical static and measured quasi-static beam 

displacements. Hence, the optimisation problem is formulated as a least squares minimisation of the 

difference, over Nj time steps, between these displacements at quarter span, mid-span and three-quarter 

span of the beam. The objective function is given below in equation (13), where tj is the jth time step and 

xk is the kth measurement location on the beam. The theoretical static displacement responses of the 

beam, 𝑤𝑠𝑡𝑎𝑡𝑖𝑐,𝑠𝑖𝑚, are simulated by solving the coupled system described by equation (12) with the mass 

and damping matrices set to zero. A low pass filter is applied to the measured displacements at 1 Hz to 

obtain the measured quasi-static responses, 𝑤𝑠𝑡𝑎𝑡𝑖𝑐,𝑜𝑏𝑠 . The CE method is used to obtain the optimal 

global beam stiffness values for all vehicle models and speeds investigated in the experiment. A constant 

stiffness distribution throughout the beam is assumed.  

 

𝑂(𝐸𝐽) = ∑∑(𝑤𝑠𝑡𝑎𝑡𝑖𝑐,𝑜𝑏𝑠(𝑥𝑘 , 𝑡𝑗) − 𝑤𝑠𝑡𝑎𝑡𝑖𝑐,𝑠𝑖𝑚(𝑥𝑘 , 𝑡𝑗, 𝐸𝐽))
2

𝑁𝑗

𝑗=1

3

𝑘=1

 

 

(13) 
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The results of the optimisation for all vehicles and speeds are given in Table 4. These values are used for 

the calibrated beam in simulations using the coupled VBI model. On average, these values exceed the 

design stiffness, EJdesign, by approximately 17%. The standard deviation of these values is approximately 

1% of the mean. Table 4 also shows that the optimal stiffness value decreases with increasing vehicle 

speed. Although this variation is small, it can be attributed to two related factors; vehicle speed and the 

length of time the vehicle is on the beam. For different vehicle speeds, unfiltered dynamic effects in 

measured responses between 0-1 Hz vary and influence this decrease. At higher speeds, the vehicle is on 

the beam for a shorter length of time. This in turn decreases the length of time within which the 

displacement transducers can influence the beam displacement. This effect manifests itself as a slight 

decrease in stiffness with increasing speed. The optimal stiffness value also varies depending on the 

vehicle model used, illustrating the importance of calibrating the theoretical model for all variations of 

this experimental setup. 

 

 

Table 4. Results of CE method for calibration of beam stiffness. 

 Optimal Stiffness Values  × 10
5 
(N m

2
) 

Vehicle Speed 

 S1 S2 S3 

V1 1.370 1.343 1.336 

V2 1.359 1.350 1.341 

V3 1.374 1.364 1.356 
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Drive-by Stiffness Identification 

The experimental investigation includes the validation of a novel algorithm which aims to identify the 

stiffness of a bridge from vehicle acceleration measurements. In this section, the global beam stiffness is 

found from vehicle acceleration signals only, without recourse to the bridge responses used in the 

calibration of the VBI model. The idealisation of the experimental vehicle as a two degree of freedom 

system in the coupled VBI model with both degrees of freedom measured results in a well-conditioned 

problem. Therefore, elements of a similar algorithm employed by González et al.
25

 for the purpose of 

bridge damping identification are incorporated to take account of this idealisation. The details of the 

algorithm are summarised briefly here. The target bridge stiffness values to be identified by the algorithm 

in the experiment are those found by calibration and given in Table 4. 

 

The stiffness identification algorithm involves a sequential procedure comprising of six main steps and 

these are outlined in Figure 8. The measured vehicle accelerations from the experiment are used as input 

to the algorithm. Firstly, the acceleration vector 𝐲̈𝐯  of equation (7) is obtained by converting the 

acceleration measurements  𝑦̈𝑠,𝑖  for axle 𝑖 (= 1,2) to sprung mass bounce 𝜃̈𝑠  and pitch accelerations 𝑦̈𝑠 

using equation (6). The velocity and displacement vectors of equation (7), 𝐲̇𝐯 = {𝑦̇𝑠, 𝜃̇𝑠}
T and 𝐲𝐯 =

 {𝑦𝑠, 𝜃𝑠}
T respectively, are obtained by integrating the accelerations with respect to time. 

 

The second step involves calculating the vector of total contact forces, 𝐟𝐢𝐧𝐭 . Equations (2) and (3), which 

relate to equation (7), are solved as a pair of simultaneous equations to obtain the dynamic forces 𝐹𝑡,𝑖 

while the static loads 𝑃𝑖  are known from prior measurement, allowing  𝐟𝐢𝐧𝐭  to be established from 

equation (9). The total displacements under each wheel, 𝑤𝑣,𝑖, are calculated in the third step by solving 

equation (4) as a 1st order differential equation in 𝑤𝑣,𝑖 using the Runge-Kutta method. A linear correction 

is applied to the displacements 𝑤𝑣,𝑖 to minimise any low frequency drift error arising from the integration 
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of accelerations. The correction technique employed is described by González et al.
25

 and is based on the 

true bridge displacement being zero at the entrance and the exit to the bridge, i.e., at 0 m and 5.4 m 

respectively. 

 

In the fourth step, the total contact forces, 𝐟𝐢𝐧𝐭 , obtained in the second step, are applied directly to the FE 

beam model described earlier (Figure 7). An initial estimate of the stiffness, EJest, is given to the beam to 

obtain the displacement vector  𝐰𝐛 due to the moving loads in  𝐟𝐢𝐧𝐭  (equation (8)). Then, the displacement 

response of the beam, 𝑤𝑏,𝑖 , under each force is calculated using equation (10). This process is repeated for 

stiffness estimates ranging from 1 × 10
3
 to 9 × 10

8
 N m

2
 in steps of 0.1. These estimates can be 

represented by (a × 10
b
) N m

2
 where a ranges from 1 to 9 in steps of 0.1. As Table 4 shows that the ‘true’ 

stiffness values fall between 1.3 × 10
5
 N m

2
 and 1.4 × 10

5
 N m

2
, the step is reduced to 0.01 between these 

values for a. The power b ranges from 3 to 8 in steps of 1. This gives a total of 540 stiffness estimates for 

the beam, which in turn provides 540 estimates of 𝑤𝑏,𝑖 for wheel 𝑖. 

 

In the fifth step, equation (5) is rearranged to obtain road profile height estimates, 𝑟𝑒𝑠𝑡,𝑖, under each wheel 

by subtracting 𝑤𝑏,𝑖 (step 4) from the total displacements 𝑤𝑣,𝑖 (step 3) giving 

 

𝑟𝑒𝑠𝑡,𝑖 = 𝑤𝑣,𝑖 − 𝑤𝑏,𝑖 ;   𝑖 =  1,2  (14) 

 

Here, a band pass filter (with lower and upper cut-off frequencies of 2 and 10 Hz respectively) is also 

applied to the profile estimates, 𝑟𝑒𝑠𝑡,𝑖 . This removes bridge static displacements which, after linear 

correction, still suffer from accumulated errors due a large integration drift. Importantly, the use of this 

band pass filter to remove low frequency errors does not affect the algorithm accuracy as the vibration of 

the first mode of the bridge, related to its stiffness, remains. 
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The bridge stiffness is identified in the final sixth step. As the wheels follow each other along the same 

wheel path, the profile estimates under each wheel (  𝑟𝑒𝑠𝑡,1 and 𝑟𝑒𝑠𝑡,2) should be equal for the correct 

stiffness value. A least squares error minimisation process is used to identify the optimal stiffness value 

from the range of estimates investigated. It consists of a summation over all measurements in time, t. The 

optimal solution is identified as the stiffness estimate which provides the minimum least squares error 

between the profile estimates under each wheel (equation (15)).  

 

𝑟𝑒𝑟𝑟𝑜𝑟 =∑(𝑟𝑒𝑠𝑡,1 − 𝑟𝑒𝑠𝑡,2)
2
 

𝑡

  (15) 
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Figure 8. Bridge stiffness identification algorithm 

 

Results and discussion  

Figure 9 shows the least squares error between profile estimates under the wheels (𝑟𝑒𝑠𝑡,𝑖) (equation (15)) 

for vehicle V1 and speed S1, on a log-log scale. The minimum error can be seen to occur as a local 

minimum in the region of the true stiffness value. Figure 10(a) and (c) show the total measured axle 
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contact forces for vehicle V1 and speed S2 which are used in the algorithm. The corresponding forces 

predicted by the coupled VBI model are also plotted while the frequency spectra of all forces are included 

in Figure 10(b) and (d) for comparison and show that there is a reasonable match between them.  

 

 

 

Figure 9. Least squares error, 𝑟𝑒𝑟𝑟𝑜𝑟 , versus global stiffness estimates (EJest ) for V1 and S1. Target 

stiffness value is 1.37 × 10
5
 N m

2
. 
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Figure 10. Contact forces 𝐟𝐢𝐧𝐭 and their spectra calculated from experiment and predicted using coupled 

VBI model for vehicle V1 and speed S2. (a) Axle 1 forces (b) Axle 1 force spectrum (c) Axle 2 forces (d) 

Axle 2 force spectrum. 

 

Table 5 shows the identified global stiffness values from the algorithm for all vehicles and speeds tested. 

The percentage errors are given in Table 6, corresponding to the error between the identified stiffness 

values and those obtained from calibration in Table 4. For each case, the crossings are repeated five times 

to test the repeatability of the method with the mean values given in Table 5. The standard deviations of 

the identified values from the five tests are also given in Table 6 as percentages of the mean values. The 

results show that the algorithm detects the correct stiffness value accurately; within 5% error for vehicles 

V2 and V3 at all speeds and for vehicle V1 at speeds S1 and S2. The test for vehicle V1 and speed S3 

gives the least accurate prediction with an error of 7.2%. Aside from this case, the algorithm is not very 

sensitive to the selection of speed. A strength of this algorithm is its repeatability, which can be seen from 

Table 6, with the average standard deviation being 5.22%. 
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Table 5. Identified bridge stiffness values. 

 Beam Stiffness, EJidentified , × 10
5 
(N m

2
) 

Vehicle Speed 

 S1 S2 S3 

V1 1.314 1.342 1.240 

V2 1.382 1.284 1.312 

V3 1.406 1.408 1.306 

 

 

Table 6. Percentage errors and standard deviations of identified stiffness values.  

 Percentage Error (%)  Standard deviation (%) 

Vehicle Speed 

 S1 S2 S3  S1 S2 S3 

V1 -4.10 -0.07 -7.20  1.15 3.96 7.21 

V2 1.69 -4.89 -2.16  9.20 6.27 5.56 

V3 2.33 3.23 -3.69  4.31 4.09 5.24 

 

Overall, these are promising results illustrating the potential of implementing the stiffness identification 

algorithm as part of a drive-by bridge inspection system. In practice, the accuracy of the algorithm will 

depend on the existence of an FE model of the bridge and vehicle. It follows that model calibration forms 

an important part of this approach. Also, although vehicle speed has been highlighted in the literature as 

being important for the detection of bridge dynamic parameters from the vehicle response, it is not a 

critical parameter when estimating bridge stiffness using this algorithm. 
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It is also important to note that the experiment was operated under controlled conditions in a laboratory; it 

was not exposed to changes in environmental or operational effects such as temperature, humidity, wind 

and other traffic loads. In reality at full scale, stiffness-related bridge frequency variations due to such 

effects are typically observed to be of the order of 5-10% but can exceed this, while damage may cause 

relatively smaller variations
48-51

. Therefore, although the percentage errors observed for the experimental 

results are quite low in this paper, the conditions under which this algorithm could be implemented for 

damage detection may be limited in practice by environmental and operational factors, such as traffic and 

temperature in particular. As this method is aimed at short to medium span bridges, the probability of 

other traffic on the bridge can be small. However, in general it may be necessary to incorporate models 

which remove or reduce the influence of these factors
3,48,52

.  

 

Conclusions 

This paper presents the laboratory experimental validation of an algorithm for the identification of global 

bridge stiffness from a vehicle response. For the purpose of the validation, a coupled vehicle-bridge 

interaction model is calibrated using the Cross-Entropy method of optimisation. The calibrated stiffness 

of the beam is found to be higher than the value provided by the manufacturer.  

 

Using the experimental data, it is found that for 8 of the 9 vehicle-speed combinations, the algorithm 

identifies the correct value of stiffness within a 5% margin of error while the average standard deviation 

of the stiffness estimates is 5.2%. In practice, the repeatability of the method and its insensitivity to speed 

are advantages. It is also acknowledged that in practice, preliminary calibration of an FE model of the 

bridge will be required and environmental and operational effects will need to be considered. 
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The results experimentally verify the feasibility of identifying the bridge stiffness from the acceleration 

measurements of a moving vehicle for the scenarios investigated. Although a number of difficulties are 

likely to arise in the field due to modelling inaccuracies, the results of this validation suggest that an 

instrumented vehicle has the potential to be implemented as a low cost method for the periodic 

monitoring of the stiffness of short to medium span bridges as part of a drive-by inspection system. 
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Appendix 1 

𝐌𝐯 = [
𝑚𝑠 0
0 𝐼𝑠

] 

𝐂𝐯 = [
𝐶1 + 𝐶2 𝐷1𝐶1 − 𝐷2𝐶2

𝐷1𝐶1 − 𝐷2𝐶2 𝐷1
2𝐶1 + 𝐷2

2𝐶2
] 

𝐊𝐯 = [
𝐾1 + 𝐾2 𝐷1𝐾1 − 𝐷2𝐾2

𝐷1𝐾1 − 𝐷2𝐾2 𝐷1
2𝐾1 + 𝐷2

2𝐾2
] 
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𝐟𝐯 =

{
 
 

 
 ∑(𝐾𝑖

2

𝑖=1

𝑤𝑣,𝑖 +  𝐶𝑖𝑤̇𝑣,𝑖)

−∑(−1)𝑖𝐷𝑖(𝐾𝑖

2

𝑖=1

𝑤𝑣,𝑖 +  𝐶𝑖𝑤̇𝑣,𝑖)
}
 
 

 
 

 

𝐌𝐠 = [
𝐌𝐯 0
0 𝐌𝐛

], 𝐂𝐠 = [
𝐂𝐯 𝐂𝐯𝐛
𝐂𝐛𝐯 𝐂𝐛 + 𝐂𝐛𝐛

], 𝐊𝐠 = [
𝐊𝐯 𝐊𝐯𝐛
𝐊𝐛𝐯 𝐊𝐛 + 𝐊𝐛𝐛

] 

𝐂𝐛𝐯 = [−𝐍𝐛 [
𝐶1 𝐷1𝐶1
𝐶2 −𝐷2𝐶2

]]
𝑛 × 2

, 𝐂𝐯𝐛 = 𝐂𝐛𝐯
T 

𝐊𝐛𝐯 = [−𝐍𝐛 [
𝐾1 𝐷1𝐾1
𝐾2 −𝐷2𝐾2

]]
𝒏 × 𝟐

, 𝐊𝐯𝐛 = 𝐊𝐛𝐯
𝐓 

𝐂𝐛𝐛 = [𝐍𝐛 [𝐍𝐛 [
𝐶1 0
0 𝐶2

]]
𝑇

]
𝑛 × 𝑛

 

𝐊𝐛𝐛 = [𝐍𝐛 [𝐍𝐛 [
𝐾1 0
0 𝐾2

]]
𝑇

]
𝑛 × 𝑛

 

𝐟 =

{
 
 
 

 
 
 ∑(𝐾𝑖

2

𝑖=1

𝑟𝑖 + 𝐶𝑖𝑟̇𝑖)

−∑(−1)𝑖𝐷𝑖(𝐾𝑖

2

𝑖=1

𝑟𝑖 + 𝐶𝑖𝑟̇𝑖)

𝐍𝐛 {
𝑃1 − 𝐾1𝑟1 − 𝐶1𝑟̇1
𝑃2 − 𝐾2𝑟2 − 𝐶2𝑟̇2

}
}
 
 
 

 
 
 

(𝑛 + 2) × 1

 

𝐍𝐛 = [

0 0
𝑁1 0
0 𝑁2
0 0

]

𝑛 × 2

 

 

The location matrix 𝐍𝐛 contains zero entries everywhere except the locations of the coordinates which 

correspond to the nodal displacements and rotations of the beam elements that the vehicle is in contact 

with. It should be noted that entries corresponding to the boundary conditions are also zero. The 

Hermitian shape function 𝑁𝑖 for the 𝑖th interaction force located on an element 𝑗 can be written in global 

coordinates as: 
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𝑁𝑖 = 

{
 
 
 
 
 

 
 
 
 
 1 − 3 (

𝑥𝑖 − (𝑗 − 1)𝑙

𝑙
)

2

+ 2 (
𝑥𝑖 − (𝑗 − 1)𝑙

𝑙
)

3

(𝑥𝑖 − (𝑗 − 1)𝑙) −
2(𝑥𝑖 − (𝑗 − 1)𝑙)

2

𝑙
+
(𝑥𝑖 − (𝑗 − 1)𝑙)

3

𝑙2

3 (
𝑥𝑖 − (𝑗 − 1)𝑙

𝑙
)

2

− 2 (
𝑥𝑖 − (𝑗 − 1)𝑙

𝑙
)

3

 

−
(𝑥𝑖 − (𝑗 − 1)𝑙)

2

𝑙
+
(𝑥𝑖 − (𝑗 − 1)𝑙)

3

𝑙2 }
 
 
 
 
 

 
 
 
 
 

 

where 𝑙 is the length of the beam element and (𝑗 − 1)𝑙 ≤ 𝑥𝑖 ≤ 𝑗𝑙. 
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