
Optimised Multiplication Architectures for Accelerating Fully
Homomorphic Encryption

Cao, X., Moore, C., O'Neill, M., O'Sullivan, E., & Hanley, N. (2016). Optimised Multiplication Architectures for
Accelerating Fully Homomorphic Encryption. IEEE Transactions on Computers, 65(9), 2794-2806.
https://doi.org/10.1109/TC.2015.2498606

Published in:
IEEE Transactions on Computers

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Open Access
This research has been made openly available by Queen's academics and its Open Research team. We would love to hear how access to
this research benefits you. – Share your feedback with us: http://go.qub.ac.uk/oa-feedback

Download date:22. May. 2024

https://doi.org/10.1109/TC.2015.2498606
https://pure.qub.ac.uk/en/publications/78ee86e7-c937-47f1-b9af-83be32553b62

1

Optimised Multiplication Architectures for
Accelerating Fully Homomorphic Encryption

Xiaolin Cao, Ciara Moore, Student Member, IEEE , Máire O’Neill, Senior Member, IEEE ,
Elizabeth O’Sullivan, Neil Hanley

Abstract—Large integer multiplication is a major performance bottleneck in fully homomorphic encryption (FHE) schemes over the
integers. In this paper two optimised multiplier architectures for large integer multiplication are proposed. The first of these is a
low-latency hardware architecture of an integer-FFT multiplier. Secondly, the use of low Hamming weight (LHW) parameters is applied
to create a novel hardware architecture for large integer multiplication in integer-based FHE schemes. The proposed architectures are
implemented, verified and compared on the Xilinx Virtex-7 FPGA platform. Finally, the proposed implementations are employed to
evaluate the large multiplication in the encryption step of FHE over the integers. The analysis shows a speed improvement factor of up
to 26.2 for the low-latency design compared to the corresponding original integer-based FHE software implementation. When the
proposed LHW architecture is combined with the low-latency integer-FFT accelerator to evaluate a single FHE encryption operation,
the performance results show that a speed improvement by a factor of approximately 130 is possible.

Index Terms—Fully homomorphic encryption, large integer multiplication, low Hamming weight, FPGA, cryptography

F

1 INTRODUCTION

Fully homomorphic encryption (FHE), introduced in 2009
by Gentry [1], is set to be a key component of cloud-based
security and privacy-related applications (such as privacy-
preserving search, computation outsourcing and identity-
preserving banking) in the near future. However, almost
all FHE schemes, [1]–[11], reported to date face severe
efficiency and cost challenges, namely, impractical public-
key sizes and a very large computational complexity. Ex-
isting software implementations highlight this shortcoming;
for example, in a software implementation of the original
lattice-based FHE scheme by Gentry and Halevi [3], also
known as the GH scheme, the public-key sizes range from
70 Megabytes to 2.3 Gigabytes.

There have been several theoretical advancements in
the area of FHE; there are various types of FHE schemes,
such as the original lattice-based FHE scheme, integer-based
FHE and also FHE schemes based on learning with errors
(LWE) or ring learning with errors (RLWE). Furthermore,
optimisations have been introduced [6], [12], such as mod-
ulus switching and leveled FHE, which involves the use of
bounded depth circuits.

To improve the performance of FHE schemes, recently
there has been research into the hardware acceleration
of various FHE schemes [13]–[20]. The lattice-based FHE
scheme by Gentry and Halevi [3] has been implemented on
a Graphics Processing Unit (GPU) by Wang et al. and signif-
icant speed improvements are achieved [14], [16]; however,
for large security parameter levels, memory is a major

X. Cao was previously with the Centre for Secure Information Technologies
(CSIT), Queen’s University Belfast. He is now with Titan-IC Systems, Belfast.
(e-mail: xcao03@qub.ac.uk)
C. Moore, M. O’Neill, E. O’Sullivan and N. Hanley are with the Centre for Se-
cure Information Technologies (CSIT), Queen’s University Belfast, Northern
Ireland (e-mail: {cmoore50, maire.oneill, e.osullivan, n.hanley}@qub.ac.uk)

bottleneck. Moreover, the use of large hardware multipliers,
targeting FPGA and ASIC technology, to enhance the per-
formance and minimise resource usage of implementations
of the same FHE scheme [3] has also been explored [15]–
[19]. Wang et al. [17] present a 768000-bit multiplier using
the fast Fourier transform (FFT) on custom hardware. This
design offers reduced power consumption and a speed up
factor of 29 compared to CPU. Döroz et al. proposed a design
for a million bit multiplier on custom hardware [18], [19] for
use in FHE schemes. The proposed multiplier offers reduced
area usage and can multiply two million-bit integers in 7.74
ms.

In this work, we investigate the FHE scheme over the
integers, proposed by van Dijk et al. [4]. This integer-based
scheme has been extended by Coron et al. to minimise
public-key sizes [9], this extension is referred to in this work
as an abbreviation of the authors’ names, CNT. Previous
research by the authors [21]–[23] has investigated the accel-
eration of the large integer multiplication required in this
FHE scheme. The possibility of implementing the multipli-
cations required in the integer-based FHE scheme using the
embedded DSP blocks on a Xilinx Virtex-7 FPGA with the
Comba multiplication algorithm was analysed by Moore et
al [21], [22]. Also, Cao et al. [23] presented the first hardware
implementation of the encryption step in the CNT FHE
scheme, with a significant speed-up of 54.42 compared with
the corresponding software reference implementation [9].
However, its hardware cost heavily exceeded the hardware
budget of the available Xilinx Virtex-7 FPGA.

The use of low Hamming weight (LHW) parameters has
previously been employed to improve the performance of
cryptographic algorithms and implementations. The Ham-
ming weight of an integer is used to denote the number
of 1 bits in the integer in binary format. Thus, an integer
multiplication with LHW operands can be simplified to

2

a series of additions. For example, LHW exponents have
been used to accelerate modular exponentiation in RSA and
discrete logarithm cryptography [24]. NTRU cryptography
can use LHW polynomials to achieve high performance
implementations [25] and McLoone and Robshaw proposed
a low-cost GPS authentication protocol implementation for
RFID applications using a LHW challenge [26]. Coron et
al. [9] have suggested that the operand Bi in the encryp-
tion step of their FHE scheme, as outlined in Section 2,
can be instantiated as a LHW integer with a maximum
Hamming weight of 15, while the bit-length of Bi remains
unchanged [9]. To the best of the authors’ knowledge, no
FHE hardware architecture has been reported to date that
exploits LHW operands to accelerate the encryption step,
which is the objective of this paper.

In this work, optimised hardware architectures for the
cryptographic primitives in FHE over the integers are pro-
posed, specifically targeted to the FPGA platform. The re-
configurable FPGA technology lends itself to widespread
use in cryptography, as fast prototyping and testing of
designs is possible and adjustments in parameters can be
made. Moreover, Xilinx Virtex-7 FPGAs contain several DSP
slices, which offer dedicated multiplication and accumula-
tion blocks. For these reasons, FPGA technology is chosen
as the target platform rather than ASIC technology in this
work.

Optimised hardware architectures targeted for the com-
ponents within FHE schemes are essential to assess and
also to enhance the practicality of FHE schemes. FHE is
highly unpractical when hardware accelerators are not con-
sidered. In addition, prior generic cryptographic designs
of the underlying components in FHE schemes, such as
multiplication, do not consider such large parameters. De-
signing architectures to optimally accommodate the large
parameters required for sufficient security in actual deploy-
ment is widely regarded as a major challenge. This research
explores the potential performance that can be achieved
for an existing FHE scheme over the integers using FPGA
technology utilising such large parameters suggested in
current literature for maximum security levels.

More specifically, our contributions are as follows: (i) an
optimised integer-FFT multiplier architecture is proposed,
which minimises hardware resource usage and latency, in
order to accelerate the performance of an FHE scheme
over the integers; (ii) a novel hardware architecture of a
large integer multiplication using a LHW operand is pro-
posed for the same purpose. The low-latency integer-FFT
multiplier architecture and the LHW architecture are both
implemented and verified on a Xilinx Virtex-7 FPGA. These
architectures are combined, such that the LHW multiplier is
used for the multiplications and the FFT multiplier is used
for the modular reduction within the FHE encryption step.
The encryption step in the CNT FHE scheme is evaluated
for these architectures and the analysis results show that a
speed-up of approximately 130 is achieved, compared to the
reference software implementation [9].

The rest of the paper is organised as follows. FHE over
the integers is introduced in Section 2. A brief description
of FFT multiplication is given in Section 3. In Section 4,
the low-latency FFT multiplier architecture is described. The
proposed LHW hardware architecture of the large multiplier

TABLE 1: Parameter sizes for encryption step (1)

Param. Sizes ϕ, Bit-length of Xi δ, Bit-length of Bi θ
Toy 150k 936 158
Small 830k 1476 572
Medium 4.2m 2016 2110
Large 19.35m 2556 7695

is described in Section 5. Section 6 details the implemen-
tation, performance and comparison of the architectures.
Finally, Section 7 concludes the paper.

2 FHE OVER THE INTEGERS

Of the previously proposed schemes that can achieve FHE,
the integer-based FHE scheme, which was originally pro-
posed by van Dijk et al. and subsequently extended by
Coron et al. [9] in 2012, has the advantage of comparatively
simpler theory, as well as the employment of a small public-
key size of no more than 10.1MB. The FHE scheme over
the integers was chosen in this research because of the
available parameter sizes for the CNT scheme and the use
of similar underlying components in other FHE schemes,
allowing the potential future transfer of this research to
other FHE schemes. Moreover, batching techniques for FHE
over the integers [10] indicate further potential gains in
efficiency. Furthermore, the use of previously mentioned
optimisations, such as leveled FHE schemes, could also
enhance performance. Indeed, there has been further recent
research into adaptations and algorithmic optimisations of
FHE over the integers to improve performance [27], [28].

This research is focused on the encryption step of the
CNT integer-based FHE scheme [9]; the encryption step
contains two central building blocks: modular reduction
and multiplication, which are used throughout other steps
and other FHE schemes. The mathematical definition of the
encryption step is given in Equation (1).

c← m+ 2r + 2

θ∑
i=1

Xi ·Bi mod X0 (1)

where c denotes the ciphertext; m ∈ {0, 1} is a 1-bit
plaintext; r is a random signed integer; X0 ∈ [0, 2ϕ), is
part of the public-key; {Bi} with 1 ≤ i ≤ θ is a random
integer sequence, and each Bi is a δ-bit integer; {Xi} with
1 ≤ i ≤ θ is the public-key sequence, and each Xi is a ϕ-
bit integer. The four groups of test parameters provided by
Coron et al. [9] are given in Table 1. For more information
on the parameter selection and for further details on the
integer-based FHE scheme, see [4], [9].

From Equation (1) and Table 1, it is easy to see that large
integer multiplications and modular reduction operations
are required in the CNT FHE scheme. The reference software
implementation uses the NTL library [29] on the Core-2 Duo
E8400 platform and it takes over 7 minutes to complete a
single bit encryption operation with large security parame-
ter sizes [9]. This result highlights the need for further op-
timisations and targeted hardware implementations before
this scheme can be considered for practical applications. In
this research, novel hardware designs incorporating the use
of a LHW parameter in the encryption step are proposed
to accelerate performance; two multipliers are presented

3

for this purpose: a low-latency multiplier for general large
integer multiplication, used in the modular reduction, and
a LHW multiplier for the multiplications required in the
encryption step, Xi · Bi, which can be seen in Equation (1).
The combination of these optimised multipliers contributes
to a significant acceleration in performance.

3 FFT MULTIPLICATION

FFT multiplication is the most commonly used method for
multiplying very large integers. Hence, this is used for
the large integer multiplications required in the modular
reduction, as mentioned in the previous section. The FFT
algorithm has been used in the majority of other hardware
architecture designs, such as [16]–[19] to implement Gentry
and Halevi’s FHE scheme [3]. However, the integration of
a LHW multiplier with an FFT multiplier targeted for the
application of FHE schemes has not previously been consid-
ered. For the application of FHE, the integer multiplication
must be exact and therefore a version of FFT multiplication,
also known as a number theoretic transform (NTT) is used.
The term FFT refers to the NTT throughout the rest of this
research.

The FFT multiplication algorithm [30], [31] involves for-
ward FFT conversion, modular pointwise multiplication,
inverse FFT conversion and finally the resolving of the
carry chain. The modulus, p, used in the FFT algorithm
is selected to be the Solinas modulus, p = 264 − 232 + 1,
and differs from the modulus X0 required in the encryption
step, defined in Equation (1). Modulus reduction and the
selection of p is discussed in Section 4.2. The FFT point
number is denoted as k, the twiddle factor is denoted as
ω and b is the base unit bit length. The adapted algorithm
of integer-FFT multiplication used for the proposed low-
latency multiplication architecture is given in Algorithm 1.

4 THE LOW- LATENCY MULTIPLICATION ARCHI-
TECTURE

The core aim of this architecture is to increase the parallel
processing ability of the FFT-multiplier design in order to
reduce the latency, with the constraint that the proposed
architecture does not exceed the hardware resource budget
of the targeted FPGA platform, a Virtex-7 XC7VX980T. This
work improves upon the previous work [23], in which
the proposed FFT multiplier design did exceed the FPGA
resource budget. The proposed low-latency hardware mul-
tiplier architecture consists of shared RAMs, an integer-
FFT module and a finite state machine (FSM) controller.
As the bit lengths involved in the multiplications of the
encryption step in the CNT FHE scheme are in the region of
a million bits, and on-chip register resource is expensive, it
is appropriate to use off-chip RAM to store the operands, x
and y, and the final product results, z. We assume that there
is sufficient off-chip memory available for the proposed
accelerator architecture to store its input operands and final
results. We believe that this is a reasonable assumption as
the accelerator could be viewed as a powerful coprocessor
device, sharing memory with the main workstation (be it a
server or PC) over a high speed PCI bus.

Algorithm 1: Proposed parallelised integer-FFT multi-
plication architecture algorithm

Input: n-bit integers x and y, base bit length b,
FFT-point k

Output: z = x× y
1: x and y are n-bit integers. Zero pad x and y to 2n bits

respectively;
2: The padded x and y are then arranged into k-element

arrays respectively, where each element is of length
b-bits;
———————-FFT CONVERSION———————

3: for i in 0 to k − 1 do
4: Yi ← FFT (yi) (mod p);
5: X0 ← FFT (x0) (mod p);
6: for j in 1 to dk2 e − 1 do
7: X2j−1 ← FFT (x2j−1) (mod p);
8: X2j ← FFT (x2j) (mod p);
9: end for;

10: end for;
————–POINTWISE MULTIPLICATION————–

11: Z0 ← X0 · Y0 (mod p);
12: for i in 1 to k − 1 do
13: for j in 1 to dk2 e − 1 do
14: Z2j−1 ← X2j−1 · Yi (mod p);
15: Z2j ← X2j · Yi (mod p);
16: end for;
17: end for;

———————IFFT CONVERSION———————
18: z0 ← IFFT (Z0);
19: for i in 1 to dk2 e − 1 do
20: z2i−1 ← IFFT (Z2i−1);
21: z2i ← IFFT (Z2i);
22: end for;

———————-ACCUMULATION———————-
23: for i in 0 to k − 1 do
24: z =

∑k−1
i=0 (zi � (i · b)), where� is the left shift

operation;
25: end for;
return z

The integer-FFT module is the core module in this
design. It is responsible for generating the multiplication
result, and its architecture is illustrated in Fig. 1. Further-
more, Algorithm 1 outlines the core steps in the module,
and can be used in conjunction with Fig. 1 to understand
the parallelism used within the design. As can be seen in
Fig. 1, two FFT modules, two IFFT modules and two point-
wise multiplications are used in parallel in this low-latency
architecture to reduce the latency of the overall design
whilst ensuring the hardware area required for the proposed
architecture remains within the limits of the target FPGA
platform. An FSM controller is responsible for distributing
the control signals to schedule the integer-FFT module, and
it also implements an iterative school-book multiplication
accumulation logic [30] to accumulate the block products
generated by the integer-FFT module.

We adopt an iterative method for the ordering of FFT
conversions and point-wise multiplications to maximise
resource usage in the proposed low-latency multiplication

4

MUX

0

MUX

{z2,4,···}

{x0,1,3,···}

{Z2,4,···}

{xi} {yi}

{x2,4,···}

{X0,1,3,···}

IFFT IFFT

FFT

Point -wise

multiplication

DeMUX

FFT

{X2,4,···}
{Yi }

RAM

{Yi }

M
U

X

Point -wise

multiplication

{Yi }

{Z0,1,3,···}

z=x×y

Addition recovery

{z0,1,3,···}

RAM

blocks of {xi}

RAM

blocks of {yi}

Fig. 1: The integer-FFT module architecture used in the low-
latency architecture.

architecture. The iterations are divided into two levels,
namely, an inner iteration, used to iterate the data blocks of
x, and an outer iteration, used to iterate the data blocks of
y. These iterations are outlined in Algorithm 1; for example
in the FFT conversion stage, where lines 4 to 5 describe the
outer iterations and lines 7 to 8 describe the inner iterations.
As we instantiate two FFT and two IFFT modules in the
proposed low-latency multiplication architecture, two block
products can be processed in parallel in each inner iteration
after the initial single inner iteration (see lines 14 to 15 of
Algorithm 1). Thus, when the multiplication inputs are very
large, the inputs are arranged into arrays of k elements
where k is much greater than 1, and the total inner iteration
count can be reduced to almost a half using the proposed
low-latency architecture with two parallel FFT, point-wise
multiplication and IFFT modules compared to when only
one FFT, point-wise multiplication and one IFFT module
is used and this reduces the total latency of the proposed
design.

As an example to illustrate the iterative approach taken
in the proposed low-latency multiplication architecture, Fig.
2 demonstrates the proposed block multiplication accumu-
lation logic. As the bit-lengths of multiplication operands, x
and y, are too large, which is true of multiplication required
in any FHE scheme, the multiplication cannot be completed
in a single integer-FFT multiplication step. Thus, inputs are
divided into smaller units, and the multiplication is carried
out on these smaller units. This smaller multiplication re-
quired within the integer-FFT multiplication is described in
lines 11-17 in Algorithm 1 and it is demonstrated in the

small example given in Fig. 2, where X is divided into five
data blocks from LSB to MSB, X0 to X4 and Y is divided
into two data blocks from LSB to MSB, Y0 and Y1. After the
first initial iteration, where X0× Y0 is calculated, as defined
in line 11 in Algorithm 1, in each subsequent iteration two
block products are computed, Xi × Yj with 0 ≤ i < 5 and
0 ≤ j < 2, as defined in lines 14-15 in Algorithm 1. This
can be seen in inner iteration one in Fig. 2, where X1 × Y0
and X2 × Y0 are carried out simultaneously. Thus, in this
example, the inner iteration count is reduced to 3 rather
than 5, as seen in Fig. 2. For larger inputs this reduction in
the inner iteration count reduces the overall latency of the
proposed design.

X0×Y0

X1×Y0

X2×Y0

X3×Y0

X4×Y0

X0×Y1

X1×Y1

X2×Y1

X3×Y1

X4×Y1

Inner iteration 0

Inner iteration 1
Outer iteration 0

Outer iteration 1

Inner iteration 2

Right-1/3Left-1/3

Middle-1/3

Fig. 2: The proposed block-accumulation logic used in the
low-latency architecture.

4.1 The FFT/IFFT Module

A k-point FFT requires log2k processing stages, and each
processing stage is composed of k

2 parallel butterfly mod-
ules. The use of a radix-2 fully parallel architecture for
FFT and IFFT modules is expensive in terms of hardware
resource usage [23]. Therefore, we propose the use of a serial
FFT/IFFT architecture, which still requires log2k processing
stages for a k-point FFT, but only one butterfly module
is required in each processing stage. Therefore, the total
butterfly module count can be reduced from k

2 × log2k to
4× log2k.

As there are two FFT modules in the design, and in each
clock cycle both read b-bit data blocks from the off-chip
memory in parallel, the total bit-width of two FFT RAM
data bus bit-widths is equal to 2b, and the total address bus
bit-width of the two operand read ports is log2 nx

b + log2
ny

b ,
where the input operands are x and y, and their bit-lengths
are nx and ny respectively.

The FFT processing stage architecture is illustrated in
Fig. 3. Each processing stage consists of several buffers
and one butterfly module. The buffer count of both up
and down branches in each processing stage is the same.
The IFFT processing stage architecture is similar to the
FFT with the difference that the buffer count of the FFT
processing stages decreases from k

2 to 1, but the buffer

5

count of the IFFT processing stages increases from 1 to k
2 .

In some literature, this architecture is called radix-2 multi-
path delay commutator (R2MDC) [32]. In most applications,
only one FFT module is employed for data processing, and
the decimation-in-frequency (DIF) R2MDC is commonly
used. In this paper, the decimation-in-time (DIT) R2MDC
is implemented in both the FFT and the IFFT. The difference
between the DIT and DIF in terms of hardware resource
usage and performance is minimal, thus DIT is arbitrarily
chosen in this research.

T
o
 t

h
e

n
e
x
t

st
ag

e

Buffer of k/(2
s
)

delay units

Down

Input

M
U

X Buffer of k/(2s)

delay units

R
ad

ix
-2

 B
u
tt

e
rf

ly

M
U

X

Up

Input

Fig. 3: The proposed s-th processing stage used in FFT

The proposed point-wise multiplication module re-
quired after the FFT and before the IFFT operations consists
of two parallel modular multiplication modules, which can
also be observed from Fig. 1. This improves upon a fully
parallel FFT architecture, such as previous designs [23],
requiring k point-wise multiplication modules for a k-point
FFT, this proposed design saves a large amount of hardware
resources, as the required number of modular multiplication
modules is reduced from k to 4.

4.2 Modular Reduction
Two modular reduction modules are used within the pro-
posed hardware design for the FHE encryption step: first,
the modular reduction within the FFT and IFFT modules
using the modulus p, and secondly, the final modular re-
duction step using the modulus X0. The second modular
reduction step uses the traditional Barrett reduction method,
which requires two multiplications.

The remainder of this subsection introduces the modular
reduction module used after the multiplication operation
in FFT/IFFT butterfly and point-wise multiplication mod-
ules. The selection of a modulus, p, heavily influences the
performance of the integer-FFT multiplier. Experimental
results carried out in previous work by the authors [23]
demonstrate that the multiplier incorporating the Solinas
modulus [33], 264− 232 + 1, consumes the shortest multipli-
cation time. The base bit-length, b, determines the valid data
processing rate, that is, how many bits of useful data are
processed when we perform the 64-bit modular p arithmetic.
Therefore, we choose a large value for the base unit bit
length in our design, i.e., b = 28. Larger values cause
overflow problems. Using the Solinas modulus, 128-bit mul-
tiplicands can be expressed as xi = 296a + 264b + 232c + d,
where a, b, c and d are 32-bit numbers. As 296 ≡ −1(mod p)
and 264 ≡ 232−1(mod p), the Solinas modular reduction can
be quickly computed as xi ≡ 232(b+ c)− a− b+ d(mod p).
Since the result, 232(b+c)−a−b+d, is within the range (−p,
2p), only an addition, a subtraction and a 3→ 1 multiplexer
are needed for the reduction using the Solinas prime.

4.3 The Addition-Recovery and Product-Accumulation
Modules
The addition-recovery module, shown in Fig. 4, converts
the IFFT outputs back to an integer by resolving a very long
carry chain. The product-accumulation module, shown in
Fig. 5, is used to combine the block products to form the
final multiplication results to be written to memory. As these
modules are tightly coupled together in this design, they
are described in the same section. The write/read bus bit-
width of RAM access is equal to b, because the base unit
bit-length is equal to b. For a pipelined design, each RAM
port has independent b-bit read and write buses. So the total
bit-width to the RAM read and write data ports is equal to
6b. As the read/write address range of the three adders is
equal to the whole range of the multiplication product, the
total bit-width of the read and write address bus is equal to
6log2

nx+ny

b .
The upper, middle and lower parts of Fig. 4 are re-

sponsible for computing the Right 1
3

, Middle 1
3

and Left 1
3

results respectively, and their positions are illustrated in the
example in Fig. 2. When the count of inner iterations is less
than or equal to 2, the logic can be simplified. The product
is generated with the 2b-bit advance step; thus, the product-
accumulation function in these three adders cannot catch
up with the speed of the 2b-bit advance step. Therefore, the
4th adder is required in the low-latency architecture with
2b-bit width RAM read and write buses as is illustrated in
Fig. 5. It must be noted that this module only functions
when the data block count of x ≥ 3. It starts to work in
k
2 clocks lagging behind the other 3 adders, due to the fact
that its advancing step speed is 2b-bit and so the correct
accumulation pipeline can be formed. Therefore, the scheme
guarantees that the advancing distance between the first
3 adders and the 4th adder is equal to half of the block
product. Finally, when the data block count of x is even,
k/4 clocks are needed for the 4th adder to complete the
final block product result after the first 3 adders finish their
job; when the data block count x is odd, 3k

4 clocks are
needed for the 4th adder to complete the final two block
product results after the first 3 adders finish. The 4th adder
has separate 2b-bit read and write buses. The read and
write address range is also equal to the whole range of
the multiplication product. Thus, the total data and address
bus bit-width required by the low-latency architecture is
12b+ log2

nx

b + log2
ny

b + 6log2
nx+ny

b + 2log2
nx+ny

2b .

4.4 Latency of Proposed Low-latency Architecture
For a k-point integer-FFT algorithm, each FFT/IFFT module
has log2k processing stages. Each processing stage contains
a butterfly module. Let the number of pipeline stages in
a FFT butterfly and an IFFT butterfly be NF and NIF
respectively. Then the latency of the FFT and IFFT butterfly
modules can be computed as: (NF + NIF)(log2k − 1) + 2,
where we assume addition only takes 1 clock cycle and the
total latency of the two butterflies in the 1st processing stage
of FFT and IFFT is equal to 2. As the buffer count of the FFT
module is k

2i , where i counts to the maximum number of
buffers, and the total buffer count of both the FFT and the
IFFT is the same, the latency of all of the buffers in the FFT
and IFFT modules is computed as 2

∑log2k
i=2

k
2i .

6

MUX

Right 1/ 3

addition result

Right IFFT up-output

Carry bits

of the

LSB half

block

product i

m+ 2 bits LSB b bitsMSB m+2-b bits

m bits

b bits

MUX

Right IFFT down-output

Carry bits of

the MSB

half block

product i and

the LSB half

block

product i+ 1

m+ 3 bits LSB b bitsMSB m+3-b bits

m bits

MUX

Right IFFT down-output

m bits

Left IFFT up-output

m+ 1 bits

MUX

MUX

Left IFFT down - output

Carry bits

of the

MSB half

block

product

i+1

m+ 2 bits LSB b bitsMSB m+2-b bits

m bits

b bits

RAM of

LSB half

block

product i

RAM of

MSB half

block

product

i+1

RAM of the

MSB half

block product

i and the LSB

half block

product i+ 1

Middle 1/ 3

addition result

Left 1/ 3

addition result

Fig. 4: The proposed addition-recovery module used in the
low-latency architecture

Let the pipeline stage count of the point-wise multiplica-
tion module be NPW , then the latency of generating the first
3b-bit IFFT result (one b-bit is for the Right 1

3
addition result,

the other 2b-bit is for the Middle 1
3

and Left 1
3

addition
results) can be computed as:

∆0 = 2(

log2k∑
i=2

k

2i
) + (NF +NIF)(log2k− 1) + 2 +NPW (2)

As our proposed design is a pipelined design, after the
first IFFT result is generated, an IFFT result is generated in
each subsequent clock. With the k-point IFFT, each inner it-
eration (i.e. each block product generation) requires k

2 clock
cycles. Assuming we perform a large integer multiplication,
z = x× y, let nx and ny be the bit length of the operands x
and y respectively. When the data block count is x ≤ 2, the
total inner iteration count in this case is equal to dnx

kb
2

edny
kb
2

e
where kb

2 is equal to the used data bit-length of each operand

MUX

RAM of

product

Left 1/3

addition

result

buffer

m+ 2 bits

LSB 2b bits

2b bits

Carry bits of the

LSB half block

product i

Addition result

Right 1/ 3 addition

result buffer

Carry bits
MSB m-2b bits

Fig. 5: The proposed product-accumulation module used in
the low-latency architecture

in a single block product computation. Otherwise, the total
count of inner iterations equals

dnx
kb
2

e − 1

2
× dny

kb
2

e (3)

Thus, the total clock cycle count of the first 3 adders is
equal to

∆1 =

(dnx

kb
2

edny
kb
2

e+ 1)k2 , if data block count x ≤ 2

(d
(d nx

kb
2

e−1)

2 e × dny
kb
2

e)k2 , otherwise
(4)

The latency of the 4th adder for the final product-
acumulation is

∆2 =

{
k
4 , when data block count x is even
3k
4 , otherwise

(5)

Then the total latency of z = x × y using the proposed
low-latency architecture can be estimated as ∆lowlatency =
∆0 + ∆1 + ∆2.

5 THE LOW HAMMING WEIGHT MULTIPLIER AR-
CHITECTURE

The low Hamming weight multiplier architecture is used for
the multiplication of Xi ·Bi required in the encryption step,
as defined in Equation (1). TheBi are randomly selected and
the Hamming weight (HW) is set to 15 [8]. To the best of the
authors’ knowledge, currently no such attacks utilising the
LHW property are known.

The proposed architecture of the LHW hardware multi-
plier consists of shared off-chip RAM and a LHW multiplier.
As explained in the previous section, the shared RAMs are
assumed to be off-chip, and are used to store the input
operands, and intermediate and final results. The proposed
LHW multiplier is composed of a finite state machine (FSM)
controller and a data processing unit. The FSM controller is
responsible for distributing the control signals to interface
the LHW multiplier and the shared RAM. The essence of
our proposed design for computing z = x× y is to divide x
and y into smaller blocks and to determine which blocks of

7

z block addr generator

(a counter)

RAM

of

x

0- th

concatenation

 unit

(HW-1)- th

concatenation

unit

1- th

concatenation

unit

z block datacarry bits

Pre- defined

block bit length
Reg array of

1- bit in y indices

RAM

of

z=x×y

1- bit in y addr

generator (a counter)
RAM

of

1-bit in y

indices

Fig. 6: Data Processing Unit in LHW multiplier hardware
architecture

x need to be used in the additions, depending on the 1-bit
indices of y.

The off-chip RAM is composed of three parts: RAM to
store the operand, x, RAM to store the 1-bit indices of
the LHW operand, y, and RAM to store the product, z.
The operands x and z are stored in normal binary format.
However, we propose the use of an encoded data format to
store y. More specifically, we only store the set bits in indices
of y rather than the entire binary value of y.

We assume that this pre-processing of y is carried out
prior to its storage in RAM, which is reasonable as there
is significant storage savings. The advantages of using this
encoded format for y are that we can easily employ these
1-bit indices of y in our proposed design and it provides
savings in terms of memory cost. The latter advantage does
not apply for smaller bit lengths of x and y, such as the
simple example described later in Section 5.1; however, it
will apply when the appropriate FHE parameter bit lengths
are used, such as those outlined in Table 1. The bit length
of the LHW operand, y, is bounded by 212. As the required
Hamming weight is no more than 15, the required memory
cost of an encoded y is bounded by 180 (= 12 × 15) bits,
which is much smaller than the original bit length, which
ranges from 936 to 2556 bits.

As shown in Fig. 6, the proposed data processing unit
requires two address generators, which can be conveniently
implemented using binary counters. The first counter is
used to address the RAM of 1-bit y indices and it is also used
to address the corresponding register array responsible for
storing the 1-bit index values received from the RAM. The
length of this register array is equal to the Hamming weight
of y. The second counter is used to address the RAM that
stores the multiplication product, z. For each multiplication
it increments from 0 to its maximum value per clock cycle,
and then stops. The maximum value of the second counter
is the multiplication product bit-length divided by the pre-
defined block bit-length.

An array of parallel concatenation units, equal in length
to the Hamming weight, is required in our proposed data

processing unit to construct the block processing pipeline.
Correspondingly, the parallel adder count is equal to the
Hamming weight minus 1, and the number of accumula-
tion result registers is equal to the Hamming weight. Each
concatenation unit is responsible for generating the required
concatenated-value of each inner iteration. The functionality
of the concatenation unit is discussed further in Section 5.2.

5.1 Utilising a LHW Operand to Simplify Multiplication
A simple example, as outlined in Fig. 7, is used to illustrate
how a LHW operand can be employed to simplify large-
integer multiplication.

Fig. 7: Utilising a LHW operand to simplify multiplication

In this example, z = x × y, and the bit lengths of the
input operands, x and y, are equal to 29 and 10 respectively.
Thus, the bit length of the multiplication product, z, is 39.
Let the least significant bit (LSB) index of each number be 0.
Therefore, the most significant bit (MSB) indices of x and z
are 28 and 38 respectively, which can be seen in Fig. 7 (the
numbers within the blocks in Fig. 7 are used to denote the
bit indices of x and z). Next, we assume that the operand,
y, is the LHW operand, and its HW is equal to 4. Let the
four 1-bit indices in y be equal to 0, 1, 4 and 9. Therefore,
the binary format of y is 1000010011 and the product, z, is
equal to the addition of x� 0, x� 1, x� 4 and x� 9, as
shown in Fig. 7, where� represents a left shift operation.

In the computation of our proposed design, one block of
data is used as the basic processing and computation unit,
and we assume that the bit-length of one block is equal to
10. As the bit-length of y is equal to 10, and log210 ≤ 4,
each 1-bit index of y can be represented using a 4-bit binary
number. Thus, the encoded data format of y is 1001 0100
0001 0000. Moreover, the block counts of x and z are 3 =
d 2910e and 4 = d 3910e respectively, as depicted in Fig. 2. For
example, the bit-ranges of the three blocks of x are [9, 0],
[19, 10] and [28, 20] for xblock−0,1,2.

From Fig. 7, it can be seen that each block of z is equal to
the addition of four operands, which are actually four bit-
ranges of x, since x� 0, x� 1, x� 4 and x� 9 are easily
obtained from x. Assuming the product blocks of z are
computed block by block, and the computation is executed
serially, the whole multiplication process is composed of
four outer iterations and each outer iteration comprises four
inner iterations. More specifically, outer iteration-0 (that is,
the 0th block of z, zblock0 , with bit range [9, 0]) is computed
first. The result of this iteration, zblock0 , is found by adding

8

the bit-range [9, 0] of x from inner iteration-0, the bit-range
[8, 0] of x from inner iteration-1, the bit-range [5, 0] of x
from inner iteration-2 and the bit-range [0, 0] of x from inner
iteration-3. Using a similar execution flow, the other three
blocks of z, zblock1,2,3 , can be obtained. The first resultant
block, zblock0 does not consider carry bits; however, the
addition steps for zblock1,2,3 need to take account of the carry
bits from zblock0,1,2 .

5.2 The Concatenation Unit
The functionality of the concatenation unit involves accu-
rately computing the block addresses and bit-ranges of x
that are required in each product block computation. The i-
th concatenation unit takes as inputs the i-th 1-bit index of y,
the block address of z and the pre-defined block bit-length.
Upon receipt of a z block address, the corresponding MSB
and LSB indices can be calculated using a multiplication and
addition with the block bit-length. Using these indices the
required bit-range of x (before shifting left) can be calculated
by a subtraction with the i-th 1-bit index of y. Next, the block
addresses of two x blocks, denoted as the high and low
blocks, can be easily obtained by dividing with the block-bit-
length. Then, in order to find the valid bit-ranges of the two
x blocks required, the two bit indices of the whole x before
shifting and the two bit indices of the required x blocks are
subtracted, respectively. Finally, a bit shifting operation, left
shifting for the high block and right shifting for the low
block, and a concatenation are employed to produce the
required concatenated-value.

The computation of zblock2 and zblock3 in the example de-
fined in Fig. 7 will require concatenation with 0 to the left of
the valid bit-ranges of x, that is 0||x[28, 20] and 0||x[28, 26].
It can be observed that the addition operands for zblock1 do
not need concatenation with 0, as these operands use valid x
bit-ranges. This will obviously be the most common setting
in the zblock computation of the million-bit multiplication
used in the CNT FHE encryption step.

To avoid the multiplication and division becoming the
performance bottleneck of our proposed architecture, we
propose that the pre-defined block-bit-length should be an
integer to the power of 2, so that the multiplication and
division can be implemented by bit shifting operations.

5.3 Latency of Proposed LHW Architecture
In this section we analyse the RAM access bit-width and
the latency of the proposed LHW multiplier architecture.
Let the bit-length of the multiplier inputs, x and y, be nx
and ny respectively and the block bit-length be nblock. The
Hamming weight of the LHW operand, y, is denoted as
HW (y). Thus, the address bit-width of the RAM storing
y is equal to log2HW (y). As each bit index of y occupies
log2ny bits, the data bus bit-width of the y memory is equal
to log2ny . Therefore the y memory access bit-width, by , is
equal to

by = log2HW (y) + log2ny (6)

As the z RAM is accessed block by block, its data bus bit-
width is equal to nblock. Since the block count of z is equal

to nx+ny

nblock
, its address bus bit-width is equal to log2

nx+ny

nblock
.

So the RAM z access bit-width is equal to

bz = nblock + log2
nx + ny
nblock

(7)

Each concatenation unit has to access two x blocks of
nblock bits, and nx

nblock
blocks, and the number of concatena-

tion units is HW (y). Since all the units access the x RAM
in parallel, the data bus-width of the x memory is equal to
2 × HW (y) × nblock, and its address bit-width is equal to
2 ×HW (y) × log2 nx

nblock
. Therefore, the access bit-width of

the RAM storing x is

bx = 2×HW (y)× (nblock + log2
nx

nblock
) (8)

Thus, the total RAM access bit-width of the proposed archi-
tecture is

btotal = bx + by + bz (9)

The latency of the proposed architecture can be esti-
mated as follows. Assuming the pipeline stage count of
the proposed concatenation unit is N , then the time latency
until the pipeline is full is equal to

∆3 = N +HW (y) (10)

After the pipeline is full, a valid nblock-bit z block result
is generated on every clock cycle. Therefore, the latency
from the beginning of the full pipeline to the final result of
z appearing is equal to the number of blocks in the product
z, that is

∆4 =
nx + ny
nblock

(11)

Hence, the total time to complete the multiplication of
z = x × y using the proposed LHW architecture can be
estimated as

∆LHWlatency
= ∆3 + ∆4 (12)

6 IMPLEMENTATION, PERFORMANCE AND COM-
PARISON

Both of the proposed architectures are designed and ver-
ified using Verilog and implemented on a Xilinx Virtex-7
XC7VX980T FPGA device. Modelsim 6.5a was used as the
functional and post-synthesis timing simulation tool. The
synthesis tool used was Xilinx ISE Design Suite 14.4.

9

TABLE 2: Synthesis results of the proposed multiplier using
the low-latency architecture

Architecture FFT Frequency Slice Slice DSP RAM
-Point (MHz) Registers LUTs -48E1s access bit
k width

low-latency arch.

256 161.276 39643 54068 544 622
512 161.276 44599 61668 608 622
1024 161.276 49538 71060 672 622
2048 161.453 54795 83930 736 622
4096 161.453 59996 103909 800 622
8192 159.499 64765 138175 864 622

6.1 Implementation and Performance of the Low-
latency Architecture
The proposed architecture is instantiated with 256, 512,
1024, 2048, and 8192-point FFT. In our implementations,
for the small size 64-bit × 64-bit multiplication used in
FFT butterfly and point-wise multiplication, Xilinx Core
Generator is employed to automatically generate a 12 stage
pipelined multiplier using the embedded DSP48E1 multi-
pliers. The optimal pipeline stage count was found to be 17
for NF = NIF and 15 for NPW in all implementations. We
also set nx = ny = b × 2b, so the bit-length of both input
operands is more than 1 Gigabits, which is sufficient for our
simulation and verification. The total bit width of the data
and address buses in the low-latency architecture is equal to
622 bits.

The synthesis results for the implementations of the low-
latency architecture are displayed in Table 2. The proposed
8192-point implementation using the low latency architec-
ture is within the hardware resource budget of the Virtex-7
XC7VX980T: the Slice Register count is only 5%, Slice LUT
usage is no more than 22% and the DSP48E1 utilisation is
approximately 24%. The RAM access bit width of 622 bits
is non-standard. Hence multiple read and writes from RAM
per each 622-bit word may be necessary. Thus, the memory
interface controller can run in a separate clock domain and
at a higher clock frequency to allow multiple read/write
accesses per clock cycle with respect to the underlying clock
frequency of the proposed design.

TABLE 3: Multiplication operand bit-length required in
Equation (1) for multiplication (Type-I) and modular reduc-
tion (Type-II)

Type I: Multiplication Type II: Modular Reduction
Group Operand 1 Operand 2 Group Operand 1 Operand 2

δ ϕ δ + θ ϕ
Toy I 936 150k Toy II 1094 150k
Small I 1476 830k Small II 2048 830k
Medium I 2016 4.2m Medium II 4126 4.2m
Large I 2556 19.35m Large II 10251 19.35m

The parameters for the multiplications required in
Equation (1) for the multiplication-accumulation operation
(Type-I) and also within the modular reduction operation
(Type-II) are defined in Table 3. We note the unbalanced
input operand bit-lengths in the CNT multiplication for the
multiplication-accumulation operation required in Equation
(1). Thus, we must carefully compare and choose the suit-
able FFT-point value. Table 4 gives the latency and simu-
lated running times of the multiplications required in the
encryption step, defined in Equation (1) for the integer-
based FHE scheme [9]. It can be observed from this table that

a larger point FFT does not always represent a better perfor-
mance. For the Large-II group, 1024-point or larger point
FFT are the best choice as they consume the least time; for
the Medium-II group, 512-point or larger is recommended
and for the other groups, the 256-point or 512-point FFT
implementations are the best candidates.

It is assumed that there is only one hardware multiplier,
and the accumulation operation

∑θ
i=1Xi × Bi and the

Barrett reduction operation (·)modX0 serially call the same
multiplier. The total running time can be determined by
the sum of the accumulation time and Barrett reduction
time. The accumulation time is equal to the product of a
single multiplication time of Type-I, listed in Table 4, and
the accumulation iteration count, θ, listed in Table 1. The
Barrett reduction time is equal to twice the multiplication
time of Type-II, which is listed in Table 4. For example, when
the Toy group is implemented using a 256-point FFT design,
a single multiplication time of Type-I equals 0.021 ms and
a single multiplication time of Type-II is 0.021 ms. Thus the
encryption time is 0.021× 158 + 0.021× 2 = 3.36 ms.

6.2 Implementation and Performance of Low Hamming
Weight Architecture

In the proposed LHW architecture there are two important
parameters, the block bit-length, nblock and the Hamming
weight, HW(y). In our experiment nblock is set to 64, 128
and 256, and HW(y) is set to 15. Three groups of experi-
mental results are obtained and presented in Table 5. The
hardware resource usage of the proposed LHW architecture
is dominated by the number of concatenation units, which
is dependent on the value of HW(y). The frequency of the
designs decrease with the increase in block bit-length, since
the adder carry chain is the performance bottleneck. The
RAM access bit-widths given in Table 5 can be calculated
using Equation (9), defined in Section 5.3.

TABLE 5: Synthesis results of the proposed LHW architec-
ture

Block Hamming Number Number Frequency RAM
bit Weight of Slice of Slice (MHz) access bit

length Weight Registers LUTs width
64 15 7553 20330 321.97 2589
128 15 11294 41883 252.27 4542
256 15 18929 82711 175.68 8479

Table 6 illustrates the required latency and simulated
run time of the CNT FHE multiplication, Xi × Bi outlined
in Equation (1). From Table 6, it can be observed that the
latency trend of the CNT multiplication is dominated by
the block bit-length, that is, the latency of the designs with
a larger block size (256 and 128) is almost half that of
the designs with a smaller block size (64). However, the
frequency decreases with the increase in the size of the
designs. From a time-cost perspective, the designs with a
block size of 256 appear to be the best candidates in our
implementations.

Recalling Equation (1), the accumulation,
∑θ
i=1Xi ×Bi,

has no particular LHW property, and therefore the LHW
multiplier cannot be used for the multiplications required
within the modular reduction, mod X0. Thus we adopt

10

TABLE 4: The latency (clock cycle count) and timings (milliseconds) of a CNT multiplication with the proposed low-latency
multipliers, types (I) and (II)

FFT-point Toy I Small I Medium I Large I
k Latency Time Latency Time Latency Time Latency Time

256 3451 0.021 15611 0.097 75771 0.470 346299 2.147
512 3997 0.025 16157 0.100 76317 0.473 346909 2.151
1024 5183 0.032 17215 0.107 77375 0.480 347967 2.156
2048 7521 0.047 19297 0.120 79713 0.494 350049 2.168
4096 11651 0.072 23939 0.148 84355 0.522 354691 2.197
8192 20901 0.131 33189 0.208 92581 0.580 362917 2.275
FFT-point Toy II Small II Medium II Large II

k Latency Time Latency Time Latency Time Latency Time
256 3451 0.021 15611 0.097 150779 0.935 1037371 6.432
512 3997 0.025 16157 0.100 76317 0.473 692509 4.294
1024 5183 0.032 17215 0.107 77375 0.480 347967 2.158
2048 7521 0.047 19297 0.120 79713 0.494 350049 2.168
4096 11651 0.072 23939 0.148 84355 0.522 354691 2.197
8192 20901 0.131 33189 0.208 92581 0.580 362917 2.275

TABLE 6: Latency (clock cycle count) and Time (milliseconds) of a CNT multiplication using the LHW architecture

Design Toy Small Medium Large
Block bit length Hamming Latency Time Latency Time Latency Time Latency Time

Weight
64 15 2386 0.007 13019 0.04 65684 0.204 302411 0.939
128 15 1207 0.005 6523 0.026 32856 0.130 151219 0.599
256 15 617 0.004 3275 0.019 16442 0.094 75623 0.43

the low-latency integer-FFT multiplier, proposed in Section
4, as this work does not exceed the resource budget of
a Xilinx Virtex-7 FPGA. The time needed to perform a
single CNT FHE encryption operation can be calculated by
firstly, summing the time serially spent on calling the LHW
multiplier to complete

∑θ
i=1Xi × Bi and secondly, calling

the low-latency integer-FFT multiplier to complete mod X0.

Table 7 lists the encryption step performance results
using the combination of the LHW multiplier and the
low-latency integer-FFT multiplier. Alternative multiplica-
tion methods could also be used in place of integer-FFT
multiplication for low-area designs in future work. The
number of DSP48E1s is equal to that required by the integer-
FFT multiplier, as the LHW multiplier does not require
DSP48E1 resources. The RAM access bit-width is equal to
that needed in the LHW multiplier, as the two multipliers
are assumed to be serially scheduled. Therefore, the RAM
access interface can be shared between them and the cost
of the RAM access bit-width for the LHW multiplier is
greater. The total running time can be determined by the
sum of the accumulation time and modular reduction time.
The accumulation time is equal to the product of a single
multiplication time, which is listed in Table 6, and the accu-
mulation iteration count, θ, listed in Table 1. The modular
reduction adopts the Barrett reduction solution [34], and
its time is equal to twice the time required for the low-
latency integer-FFT multiplication. For example, in Table 10,
when the Toy group is implemented using the proposed
LHW multiplier with a single multiplication time of 0.00357
ms and the 256-point integer-FFT implementation with a
single multiplication time of 0.021 ms, the encryption time
is 0.00357×158 + 0.021×2 = 0.607 ms. The timings for the
other groups in Table 7 can be similarly determined.

6.3 Comparison of Proposed Architectures

Table 8 compares the performance of a single multiplication
in CNT FHE encryption. It can be found that the LHW
design with the Hamming weight of 15 runs approximately
5 times faster than the proposed low-latency design.

TABLE 8: The time (milliseconds) comparison of a single
multiplication in CNT FHE

Group Toy Small Medium Large
LHW Design 0.00357 0.0189 0.0943 0.434
Low-Latency Design 0.021 0.100 0.473 2.156

The hardware resource cost of the encryption step in
CNT FHE for the large parameter sizes for the known im-
plementations is compared in Table 9. To the best of the au-
thors’ knowledge, there are no other implementations of the
encryption step of this scheme on hardware, except those
mentioned in Table 9. It can be seen that although the pro-
posed implementation combines both the LHW multiplier
and the integer-FFT multiplier, its resource cost (i.e. number
of Slice registers, Slice LUTs and DSP48E1s) is still much
smaller than in prior work [22], [23], and is much smaller
than the available resource budget of a Xilinx Virtex-7
FPGA. However, the RAM access bit-width of the proposed
implementation does exceed the available input/output pin
count of a Xilinx Virtex-7 FPGA. Therefore, in this work the
pre-synthesis results rather than the post-synthesis results
are presented. This issue can be relieved by adding RAM
buffers between off-chip RAMs and the on-chip accelerator,
and it will be investigated in future work. As previously
mentioned, to ensure sufficiently fast read/write operations,
the memory access controller can run in a separate clock
domain and at a higher clock speed than the underlying
design on the FPGA.

11

TABLE 7: Hardware cost and time (milliseconds) of CNT encryption with LHW multiplier and Barrett reduction

Params Implementation Time Number of Number of Number of RAM access
Slice Regs Slice LUTs DSP48E1s bit width

Toy LHW + 256-point FFT 0.597 58572 136779 544 8479
Small LHW + 256-point FFT 10.857 58572 136779 544 8479
Medium LHW + 512-point FFT 198.422 63528 144379 608 8479
Large LHW + 1024-point FFT 3316.696 68467 153771 672 8479

TABLE 9: The hardware resource cost comparison for large
parameter sizes

Design Frequency Number Number Number RAM access
(MHz) of Slice of Slice of bit

Registers LUTs DSP48E1s width
LHW design 175.68 (mult)

161.276 (mod red) 68467 153771 672 8479
Low-latency 161.276 49538 71060 672 622
Prior design 166.450 1122826 954737 18496 >896
using FFT [23]
Prior design 197.758 542979 365315 1536 >192
using Comba [22]

A comparison of the running times of the CNT FHE en-
cryption primitive using the proposed architectures is given
in Table 10. Again, to the best of the authors’ knowledge, all
of the implementations of integer-based FHE schemes are
included in Table 10. As there are few previous implemen-
tations of this scheme on hardware, results are compared
with the original benchmark software implementation [9].
Compared to the corresponding CNT software implementa-
tion [9] on the Intel Core2 Duo E8400 PC, it can be seen that
the proposed FPGA implementation with LHW parameters
achieves a speed improvement factor of 131.14 for the large
parameter group. This table also shows that our proposed
LHW implementation requires significantly less than the
running time of prior work [22], [23] whilst requiring fewer
hardware resources.

TABLE 10: The average running time comparison of the
proposed FHE encryption designs

Group Toy Small Medium Large
LHW design 0.0006s 0.011s 0.198s 3.317s
Low-latency design 0.00336 s 0.05566s 0.9990s 16.595s
Prior design 0.000739s 0.0132s 0.4772s 7.994s
using FFT [23]
Prior design 0.006s 0.114s 2.018s 32.744s
using Comba [22]
Benchmark software 0.05s 1.0s 21s 7min 15s
design [9]

6.4 Discussion and Summary of Previous Hardware
Designs for FHE
As previously mentioned in Section 1, there have been
several implementations of the Gentry and Halevi FHE
scheme [3] on various platforms and with different opti-
misation goals; however due to the differences between
these schemes and their associated parameter sizes, it is
misleading to directly compare the performance of these
implementations to our implementation of the integer-based
FHE scheme. However, to highlight the developments in
this field, Table 11 gives a summary of the hardware designs
of FHE schemes to date. Table 11 also presents the timing

results for the encryption step for several schemes and
thus highlights that the proposed combined LHW and NTT
multiplier performs comparably to, or indeed, better than
hardware designs of other existing FHE schemes. However,
it must be noted that this table does not compare the area
resource usage of these designs, as the platforms differ
greatly. Other work has also looked at the homomorphic
evaluation of the block ciphers, AES and Prince using GPUs
[20].

TABLE 11: Summary of hardware designs for FHE encryp-
tion

Design Scheme Platform Encrypt - small
security level

FHE [14] GH C2050 GPU 0.22s
FHE [16] GH C2050 GPU 0.0063s
FHE [16] GH GTX 690 GPU 0.0062s
FHE [18], [19] GH ASIC (90 nm) 2.09s
Our LHW FHE CNT Virtex-7 FPGA 0.011s
encryption step

TABLE 12: Summary of hardware multipliers for FHE

Design Platform Multiplier Multiplier
Size (bits) Timings

FHE [14] C2050 GPU 16384×16384 12.718ms
FHE [16] GPU 16384×16384 8.835ms
Multiplier [17] ASIC (90 nm) 768000×768000 0.206ms
Multiplier [18], [19] ASIC (90 nm) 1179648×1179648 7.74ms
Our FFT multiplier Virtex-7 FPGA 19350000×2556 2.156ms
Our LHW multiplier Virtex-7 FPGA 19350000×2556 0.434ms

Several researchers [15], [17], [18] have taken a similar
approach to this research and target the large integer mul-
tiplier building block. Table 12 shows existing multiplier
designs targeted for FHE schemes. It can be seen that our
large multiplier design for FHE over the integers performs
comparably to that of other multiplier designs. It must be
observed that the multipliers included in Table 12 are mainly
targeted towards the GH FHE scheme, except the multipli-
ers proposed in this research. Thus, the multiplier size varies
greatly between designs and thus, a direct comparison of
these designs is unfair. Other research has included the
design of a polynomial multiplier [35] for RLWE and SHE
encryption targeting the Spartan-6 FPGA platform, where
2040 polynomial multiplications per second are possible for
a 4096-bit multiplier. In general, it can be noticed that, whilst
great progress has been made in this area, there is still a
need for further research to increase the performance of FHE
schemes so that they are practical for real time applications.

12

7 CONCLUSION

In this paper, novel large integer multiplier hardware ar-
chitectures using both FFT and low Hamming weight de-
signs are proposed. Firstly, a serial integer-FFT multiplier
architecture is proposed with the features of lower hardware
cost and reduced latency. Secondly, a novel low Hamming
weight (LHW) multiplier hardware architecture is proposed.
Both architectures are implemented on a Xilinx Virtex-7
FPGA platform to accelerate the encryption primitive in
a fully homomorphic encryption (FHE) scheme over the
integers. Experimental results show that the proposed LHW
design is approximately 5 times faster than the integer-
FFT hardware accelerator on the Xilinx FPGA for a single
multiplication required in the FHE scheme. Moreover, when
the proposed LHW design is combined with the low-latency
integer-FFT design to perform he encryption step, a signifi-
cant speed up factor of up to 131.14 is achieved, compared
to the corresponding benchmark software implementation
on a Core-2 Duo E8400 PC. It is clear that FHE over the
integers is not yet practical but this research highlights the
importance of considering hardware acceleration optimisa-
tion techniques in helping to advance the research towards
real-time practical performance.

REFERENCES

[1] C. Gentry, “A fully homomorphic encryption scheme,” Ph.D.
dissertation, Stanford University, 2009.

[2] ——, “Fully homomorphic encryption using ideal lattices,” in
STOC, 2009, pp. 169–178.

[3] C. Gentry and S. Halevi, “Implementing Gentry’s fully-
homomorphic encryption scheme,” in EUROCRYPT, 2011, pp.
129–148.

[4] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully
homomorphic encryption over the integers,” in EUROCRYPT,
2010, pp. 24–43.

[5] N. P. Smart and F. Vercauteren, “Fully homomorphic encryption
with relatively small key and ciphertext sizes,” in Public Key
Cryptography, 2010, pp. 420–443.

[6] Z. Brakerski and V. Vaikuntanathan, “Efficient fully homomorphic
encryption from (standard) LWE,” in FOCS, 2011, pp. 97–106.

[7] ——, “Fully homomorphic encryption from ring-LWE and secu-
rity for key dependent messages,” in CRYPTO, 2011, pp. 505–524.

[8] J.-S. Coron, A. Mandal, D. Naccache, and M. Tibouchi, “Fully
homomorphic encryption over the integers with shorter public
keys,” in CRYPTO, 2011, pp. 487–504.

[9] J.-S. Coron, D. Naccache, and M. Tibouchi, “Public key compres-
sion and modulus switching for fully homomorphic encryption
over the integers,” in EUROCRYPT, 2012, pp. 446–464.

[10] J. H. Cheon, J.-S. Coron, J. Kim, M. S. Lee, T. Lepoint, M. Tibouchi,
and A. Yun, “Batch fully homomorphic encryption over the inte-
gers,” in EUROCRYPT, 2013, pp. 315–335.

[11] C. Gentry, S. Halevi, and N. P. Smart, “Homomorphic evaluation
of the AES circuit,” IACR Cryptology ePrint Archive, vol. 2012, p. 99,
2012.

[12] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “Fully homomor-
phic encryption without bootstrapping,” Electronic Colloquium on
Computational Complexity (ECCC), vol. 18, p. 111, 2011.

[13] D. Cousins, K. Rohloff, C. Peikert, and R. E. Schantz, “An update
on SIPHER (scalable implementation of primitives for homomor-
phic encRyption),” in HPEC, 2012, pp. 1–5.

[14] W. Wang, Y. Hu, L. Chen, X. Huang, and B. Sunar, “Accelerating
fully homomorphic encryption using GPU,” in HPEC, 2012, pp.
1–5.

[15] W. Wang and X. Huang, “FPGA implementation of a large-number
multiplier for fully homomorphic encryption,” in ISCAS, 2013, pp.
2589–2592.

[16] W. Wang, Y. Hu, L. Chen, X. Huang, and B. Sunar, “Exploring the
feasibility of fully homomorphic encryption,” IEEE Transactions on
Computers, vol. 99, no. PrePrints, p. 1, 2013.

[17] W. Wang, X. Huang, N. Emmart, and C. C. Weems, “VLSI design
of a large-number multiplier for fully homomorphic encryption,”
IEEE Trans. VLSI Syst., vol. 22, no. 9, pp. 1879–1887, 2014.

[18] Y. Doröz, E. Öztürk, and B. Sunar, “Evaluating the hardware per-
formance of a million-bit multiplier,” in 16th Euromicro Conference
on Digital System Design (DSD), 2013.

[19] ——, “A million-bit multiplier architecture for fully homomorphic
encryption,” Microprocessors and Microsystems, 2014.

[20] W. Dai, Y. Dorz, and B. Sunar, “Accelerating NTRU based homo-
morphic encryption using GPUs,” in HPEC, 2014, pp. 1–6.

[21] C. Moore, N. Hanley, J. McAllister, M. O’Neill, E. O’Sullivan, and
X. Cao, “Targeting FPGA DSP slices for a large integer multiplier
for integer based FHE,” in Financial Cryptography and Data Security
- FC 2013 Workshops, USEC and WAHC 2013, Okinawa, Japan, April
1, 2013, Revised Selected Papers, 2013, pp. 226–237.

[22] C. Moore, M. O’Neill, N. Hanley, and E. O’Sullivan, “Accelerating
integer-based fully homomorphic encryption using comba
multiplication,” in 2014 IEEE Workshop on Signal Processing
Systems, SiPS 2014, Belfast, United Kingdom, October 20-22, 2014.
IEEE, 2014, pp. 62–67. [Online]. Available: http://ieeexplore.ieee.
org/xpl/mostRecentIssue.jsp?punumber=6973465

[23] X. Cao, C. Moore, M. O’Neill, N. Hanley, and E. O’Sullivan,
“High speed fully homomorphic encryption over the integers,”
in Workshop on Applied Homomorphic Cryptography, 2014.

[24] J. Hoffstein and J. H. Silverman, “Random small hamming weight
products with applications to cryptography,” Discrete Applied
Mathematics, vol. 130, no. 1, pp. 37–49, 2003.

[25] ——, “Optimizations for NTRU,” in Public-Key Cryptography and
Computational Number Theory. Proceedings of the International Confer-
ence organized by the Stefan Banach International Mathematical Center
Warsaw, K. Alster, J. Urbanowicz, and H. C. Williams, Eds. De
Gruyter, 2000, pp. 77 – 88.

[26] M. McLoone and M. J. B. Robshaw, “New architectures for low-
cost public key cryptography on RFID tags,” in ISCAS, 2007, pp.
1827–1830.

[27] J. H. Cheon and D. Stehlé, “Fully homomophic encryption over
the integers revisited,” in Advances in Cryptology - EUROCRYPT
2015 - 34th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015,
Proceedings, Part I, 2015, pp. 513–536.

[28] K. Nuida and K. Kurosawa, “(batch) fully homomorphic encryp-
tion over integers for non-binary message spaces,” in Advances in
Cryptology - EUROCRYPT 2015 - 34th Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Sofia,
Bulgaria, April 26-30, 2015, Proceedings, Part I, 2015, pp. 537–555.

[29] V. Shoup. (2014) A Library for doing Number Theory. [Online].
Available: www.shoup.net/ntl/

[30] A. Schönhage and V. Strassen, “Schnelle multiplikation großer
zahlen,” Computing, vol. 7, no. 3-4, pp. 281–292, 1971.

[31] N. Emmart and C. C. Weems, “High precision integer multipli-
cation with a GPU using Strassen’s algorithm with multiple FFT
sizes,” Parallel Processing Letters, vol. 21, no. 3, pp. 359–375, 2011.

[32] C. Cheng and K. K. Parhi, “High-throughput VLSI architecture for
FFT computation,” IEEE Trans. on Circuits and Systems, vol. 54-II,
no. 10, pp. 863–867, 2007.

[33] J. A. Solinas, “Generalized Mersenne numbers,” University of
Waterloo, Faculty of Mathematics, Tech. Rep., CORR99-39.

[34] P. Barrett, “Implementing the Rivest, Shamir and Adleman public
key encryption algorithm on a standard digital signal processor,”
in CRYPTO, 1986, pp. 311–323.

[35] T. Pöppelmann and T. Güneysu, “Towards efficient arithmetic
for lattice-based cryptography on reconfigurable hardware,” in
LATINCRYPT, 2012, pp. 139–158.

13

Xiaolin Cao received his Master’s degree in
Electronics Information and Engineering in In-
stitute of Microelectronics of Chinese Science
Academy in 2009, Beijing, China. He received
the Ph.D. degree from the School of Electronics,
Electronic Engineering and Computer Science
at Queen’s University Belfast in 2012. He con-
tributed to this work during his post-doctorate
research period at CSIT at Queen’s. His re-
search interests include cryptographic protocol
designs and hardware implementations for RFID

and homomorphic encryption. He currently works at Titan-IC Systems
in Belfast.

Ciara Moore received first-class honours in
the BSc. degree in Mathematics with Ex-
tended Studies in Germany at Queen’s Univer-
sity Belfast in 2011. She is currently a Ph.D.
student in the School of Electronics, Electronic
Engineering and Computer Science at Queen’s
University Belfast. Her research interests include
hardware cryptographic designs for homomor-
phic encryption and lattice-based cryptography.

Máire O’Neill (M’03-SM’11) received the M.Eng.
degree with distinction and the Ph.D. degree
in electrical and electronic engineering from
Queen’s University Belfast, Belfast, U.K., in 1999
and 2002, respectively. She is currently a Chair
of Information Security at Queen’s and previ-
ously held an EPSRC Leadership fellowship
from 2008 to 2015. and a UK Royal Academy
of Engineering research fellowship from 2003
to 2008. She has authored two research books
and has more than 115 peer-reviewed confer-

ence and journal publications. Her research interests include hard-
ware cryptographic architectures, lightweight cryptography, side channel
analysis, physical unclonable functions, post-quantum cryptography and
quantum-dot cellular automata circuit design. She is an IEEE Circuits
and Systems for Communications Technical committee member and
was Treasurer of the Executive Committee of the IEEE UKRI Section,
2008 to 2009. She has received numerous awards for her research and
in 2014 she was awarded a Royal Academy of Engineering Silver Medal,
which recognises outstanding personal contribution by an early or mid-
career engineer that has resulted in successful market exploitation.

Elizabeth O’Sullivan is a Lecturer in CSIT’s
Data Security Systems group in Queen’s Uni-
versity Belfast. She leads research into software
security architectures. She holds a PhD in The-
oretical and Computational Physics (QUB). She
has spent almost 10 years working with industry.
She designed embedded software security ar-
chitectures and protocols, which were licensed
to LG-CNS for Electric Vehicle charging infras-
tructures. She gained extensive experience with
Latens Systems Ltd., (Pace UK) in designing

and implementing large scale key management systems, secure server
infrastructures, security protocols and cryptographic algorithms for em-
bedded platforms. She was the SAP Research UK lead in an FP7
European project on next generation platforms for cloud based infras-
tructures. She has developed Intellectual Property for Digital Theatre
Systems Inc., in the area of signal processing. She is co-investigator
of a number of ongoing cyber-security related grants in the UK and
collaborative projects with South Korean researchers.

Neil Hanley received first-class honours in the
BEng. degree, and the Ph.D. degree in electri-
cal and electronic Engineering from University
College Cork, Cork, Ireland, in 2006 and 2014
respectively. He is currently a Research Fellow
in Queen’s University Belfast. His research in-
terests include secure hardware architectures
for post-quantum cryptography, physically un-
clonable functions and their applications, and
securing embedded systems from side-channel
attacks.

