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Digital signatures are an important primitive for building secure systems and are used in most real world

security protocols. However, almost all popular signature schemes are either based on the factoring as-
sumption (RSA) or the hardness of the discrete logarithm problem (DSA/ECDSA). In the case of classical

cryptanalytic advances or progress on the development of quantum computers the hardness of these closely

related problems might be seriously weakened. A potential alternative approach is the construction of sig-
nature schemes based on the hardness of certain lattices problems which are assumed to be intractable by

quantum computers. Due to significant research advancements in recent years, lattice-based schemes have

now become practical and appear to be a very viable alternative to number-theoretic cryptography. In this
paper we focus on recent developments and the current state-of-the-art in lattice-based digital signatures and

provide a comprehensive survey discussing signature schemes with respect to practicality. Additionally, we

discuss future research areas that are essential for the continued development of lattice-based cryptography.

1. INTRODUCTION

With the onset of quantum computers ever looming, the computational power it could
provide would cause instant insecurity to many of today’s universally used crypto-
graphic schemes by virtue of Shor’s [1997] algorithm. Specifically, schemes based on
the discrete-logarithm problem or number-theoretic hard problems, which subsume al-
most all public-key encryption schemes used on the Internet, including elliptic-curve
cryptography (ECC), RSA and DSA would be vulnerable. Accordingly, this has moti-
vated the era of post-quantum cryptography (PQC), which refers to the construction
of cryptographic algorithms to withstand quantum reductions. Amongst many impor-
tant areas in post-quantum research (such as multivariate, code or hash-based) lattice-
based cryptography is disputably the most auspicious. Its main advantage over other
post-quantum cryptosystems is that it allows for extended functionality and is, at the
same time, more efficient for the basic primitives of public-key encryption and digi-
tal signature schemes. Computational problems that exist within the lattice environ-
ment, such as finding the shortest vector (SVP) or finding a closest vector (CVP), are
thought to be resilient to quantum-computer attacks [Ajtai et al. 2001; Dinur et al.
2003] which imply its conjectured intractability. Such properties show promise, with
regards to security and practicability, for replacing current asymmetric schemes that
would be susceptible to attacks in a post-quantum world.

In recent years there has been a tremendous growth in lattice-based cryptography as
a research field. As a result, concepts such as functional encryption [Boneh et al. 2011],
identity-based encryption [Agrawal et al. 2010; Ducas et al. 2014], attribute-based en-
cryption [Boyen 2013], group signature schemes [Gordon et al. 2010; Camenisch et al.
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2012; Laguillaumie et al. 2013] and fully homomorphic encryption [Gentry 2009a;
2009b] are now available.

On the practical front, some constructions of public-key encryption schemes and dig-
ital signature schemes based on lattice problems are now more practical than tra-
ditional schemes based on RSA. The most recent implementation of a lattice-based
encryption scheme in hardware is shown by Roy et al. [2014] (which improves on
Pöppelmann and Güneysu [2013] and Göttert et al. [2012]) with results outperforming
those of RSA. More specifically, the implementation is an order of magnitude faster
than a comparable RSA implementation, provides a higher security level, and con-
sumes less device resources. With regards to digital signature schemes, the two most
notable hardware implementations by Güneysu et al. [2012] and Pöppelmann et al.
[2014] also show a speed improvement compared to an equivalent RSA design. Addi-
tionally, scaling the latter implementation up to security levels higher than 128 bits
has proven to incur only a moderate penalty in performance.

The first use of lattices as a cryptographic primitive is due to Ajtai [1996], propos-
ing a problem now known as the Short Integer Solution (SIS) problem. The concept
remained purely academic, due to its limited capabilities and inefficiencies, until re-
cently; lattice-based cryptography has now become available as a future alternative
to number-theoretic cryptography. Recent research allows virtually any cryptographic
primitive, such as those already discussed as well as collision resistant hash functions
and oblivious transfers, to be built on the hardness of lattice problems. Also, there has
been a transition into a particular class of lattices, predominantly ideal lattices, as a
source of computational hardness. Although the robustness of hardness assumptions
on ideal lattices, in comparison to general lattices, has not been explicitly proven, it is
generally considered that most problems relevant for cryptography still remain hard
[Langlois and Stehlé 2014; Lyubashevsky et al. 2010]. Additionally, using ideal lattices
offers a significant speed-up and reduction in key sizes for almost all cryptographic
protocols, in particular, in encryption schemes and digital signatures.

However, it will be some time before lattice-based cryptoschemes begin to replace
current public-key cryptography and their integration into practical applications needs
to be explored. For example, ECC was proposed by Miller [1986] and Koblitz [1987]
but it took 20 years until they appeared in actual security systems. And while crypt-
analysis is still an ongoing effort, the most critical issue to date with lattice-based
cryptography is its practicability, and it is clear that in order for it to replace widely
used number-theoretic primitives, its constructions must be shown to be similarly ef-
ficient on many of the embedded platforms existing in today’s digital and pervasive
environment.

This motivates the theme of this paper; evaluating digital signature schemes: an es-
sential component of a cryptosystem. Digital signature schemes have a more specific
purpose than the conventional encryption paradigm, and are used in a variety of areas;
from legal issues such as document integrity to those that support the world’s economy
through electronic commerce. This paper will concentrate on lattice-based digital sig-
nature schemes with the prevailing theme of practicality; beginning in Section 2 with
theoretical prerequisites, then in Section 3 discussing the digital signature schemes
based on lattice problems, discussing each with respect to its building blocks in Section
4. The paper will then summarise all current practical instantiations of lattice-based
digital signature schemes in Section 5, conclude in Sections 6 and in Section 7 propose
future research areas essential to the development of lattice-based cryptography.



2. PRELIMINARIES

2.1. Notation

Throughout this paper, the following notation will be used. All vectors are column
vectors, which are expressed with bold-face lower case letters, and matrices are rep-
resented by collections of column vectors, such as M = (v1,v2, . . . ,vn), and are ex-
pressed with bold-face upper case letters. All logarithms used are to the base 2, so
log2(·) = log(·). The `p-norm of a vector v is denoted as ‖v‖p, where for the Euclidean
length (p = 2) it is simplified to ‖v‖. An element x ∈ Zq is exactly the element x ∈ Z re-
duced modulo q, represented in the range [− q−12 , q−12 ]. Therefore, the operation y = Ax,
where A ∈ Zn×mq and x ∈ Zm, results in the element y ∈ Znq . For an element s chosen
uniformly at random from the set S, the notation s

$← S is used.

2.2. Discrete Gaussians and Polynomial Rings

The Gaussian distribution, with standard deviation σ ∈ R, centre c ∈ Rn, and evalu-
ated at x ∈ Rn is defined by a weight proportional to ρc,σ(x) = exp(−‖x−c‖

2

2σ2 ). When the
centre c = 0 the notation is simply ρσ(x). The centred discrete Gaussian distribution
over Zm is defined as Dm

σ = ρσ(x)/ρσ(Z)m. The polynomial ring R = Zq[x]/〈xn + 1〉 is
defined such that all elements can be represented by polynomials of degree n− 1, with
coefficients in the range [− q−12 , q−12 ], with the subset Rk consisting of all polynomials
with coefficients in the range [−k, k].

2.3. Digital Signatures

Formally, a digital signature scheme (DSS) is a tuple (KeyGen, Signsk , Verifypk )
where KeyGen(n) outputs the secret-key sk and public-key pk , Signsk (µ) takes as input
a message µ ∈M and outputs a corresponding signature σ using sk , and Verifypk (µ, σ)
takes as input the message µ and signature σ and outputs 1 if and only if (µ, σ) is a
valid message/signature pair, otherwise outputs 0. A signature scheme is complete if
∀sk, pk ← KeyGen, ∀µ ∈M and any σ ← Signsk , it produces Verifypk (µ, σ) = 1.

For a DSS to be secure, it must be proven to be existentially unforgeable under a
chosen message attack (EU-CMA) [Goldwasser et al. 1988]. Meaning that an adver-
sary wins if, given access to the verification key and signing oracle OSign (i.e. pairs
(µ1, σ1), (µ2, σ2), . . . , (µq, σq)) they are able to generate (in polynomial time) a valid sig-
nature of µ, according to Verifypk (µ, σ), given that µ was not amongst those messages
µi queried to OSign. Additionally, for a DSS in the random oracle model, where collision
resistant hash functions are used, an adversary also has access to a hash oracle OH .

A higher level of security is strong unforgeability; whereby given the same paradigm,
an adversary wins if they are able to generate (in polynomial time) a valid signature of
µ according to Verifypk (µ, σ) given that (µ, σ) was not amongst those (µi, σi) queried to
OSign. A DSS is described as (qSign, qH , t, ε)-strongly unforgeable if, given at most qSign
queries to the signing oracle, at most qH queries to the hash oracle and running in time
at most t; there is no adversary that succeeds with at least probability ε.

2.4. The Theory of Lattices

The general definition of a lattice is a set of points in n-dimensional space with periodic
structure. More formally, a lattice L is defined as

L = {x1b1 + x2b2 + · · ·+ xnbn | xi ∈ Z},



given n-linearly independent vectors b1, b2, . . . , bn ∈ Rm known as basis vectors. Alter-
natively, a lattice can be defined as a discrete co-compact subgroup of Rm. The rank of
a lattice is n and the dimension m. A lattice is known as full-rank when n = m.

The fundamental region of a lattice is a convex region, known as a lattice’s par-
allelepiped, that contains exactly one representative of each co-set (for a proof see
Minkowski’s theorem [Helfrich 1985]). The exact area of the fundamental region is
the area that is spanned by the basis vectors. Fundamental regions are disjoint and
collectively span the entire lattice. The determinant of a lattice defines the density of
the lattice points. Given a basis matrix B, the determinant of a lattice is defined as
det(L) = |det(B)|.

A number of different bases will generate the same lattice which motivates equiva-
lence. Two bases will generate the same lattice when any of the following occur: vectors
of the basis matrix are permuted, vectors of the basis matrix are negated or vectors are
added to integer multiples of other vectors, or more concisely: the multiplication of the
basis matrix B by any unimodular matrix U . This leads to the observation that, given
a unimodular matrix U , two bases B1 and B2 are equivalent if and only if B2 = B1U .

The minimum distance of a lattice L, also the shortest (nonzero) vector, is defined
as λ1(L) = min{‖v‖ : v ∈ L\{0}}. This is then generalised to define the kth successive
minima as:

λk(L) = min{r : dim(span(L ∩ B(r))) ≥ k},
such that the ball B(0, r) = {v : ‖v‖ ≤ r}, of radius r and centre 0, contains at least k
linearly independent vectors.

2.5. Computationally Hard Lattice Problems

Certain classes of optimisation problems for lattices, such as SVP and its inhomoge-
neous counterpart CVP, are analogous to problems in coding theory. The security of
lattice-based cryptography is based on the conjectured intractability of SVP, a prob-
lem synonymous to the minimum distance problem in coding theory. There are many
variations of SVP and the two most commonly considered in the literature are pre-
sented here. The first, SVPγ , states that given a lattice basis B, find a non-zero vector
v ∈ L(B) such that ‖v‖ ≤ γλ1(L(B)). The second, GapSVPγ , an approximate decision
version, states that given a lattice basis B and integer d, output 1 if λ1(L(B)) ≤ d
or 0 if λ1(L(B)) > γd. Clearly, both problems are more difficult when γ is small, con-
versely becoming less difficult as γ increases. Lyubashevsky and Micciancio [2009]
investigated the NP-hardness of SVP (as well as BDD) and its variants for different γ
constraints. They also provide proofs of the equivalence of the computational problems
within certain approximation factors.

Analogous to the nearest codeword problem in coding theory, the task given by CVP
is to find the closest lattice point (likewise, codeword) given a (target) vector t ∈ Rm.
More formally, CVPγ states that, given a lattice L and a vector t ∈ Rm, find a lattice
point v ∈ L such that ‖v − t‖ ≤ γd(t,L), where d(t,L) denotes the minimum distance
between an arbitrary point in a vector space and a lattice point. The approximate
decision version GapCVPγ states that, given a lattice basis B, a vector t ∈ Rm and
d ∈ R, output 1 if d(t,L) ≤ d or 0 if d(t,L) > γd. Equivalences have been shown
(most thoroughly by Micciancio [2008]) between CVP and the shortest independent
vector problem (SIVP) in their exact versions, under deterministic polynomial time
rank-preserving reductions.



2.6. Lattice-based Cryptography

Concordantly, there are problems based on the worst-case hardness of lattices which
form the foundation of cryptosystems. They are namely the learning with errors prob-
lem (LWE) and the short integer solution problem (SIS) and, as shown by Micciancio
and Peikert [2013], both assert the exceptional property that they are as hard to solve
in the average-case as they are in the worst-case of lattices problems (such as SVP or
CVP).

The SIS problem was first proposed by Ajtai [1996] as an alternative to cryptosys-
tems, such as RSA, based on the hardness of factorising large numbers. The problem
is defined as follows: given random vectors a1,a2, . . . ,am ∈ Znq , and integers n and
q, find a short non-trivial solution s1, s2, . . . , sm ∈ Zm such that s1a1 + s2a2 + · · · +
smam ≡ 0 mod q (alternatively As ≡ 0 mod q). Restricting the shortness of the solu-
tion, such that 0 ≤ ‖s‖ ≤ β < q, alters the problem from trivial to computationally
hard. Additionally, β must also be large enough to ensure a solution exists. Setting√
n log q < β < q satisfies this with Micciancio and Peikert [2013] showing β ‘nearly’

equal to q retains the hardness assumption.
The relationship this problem has to lattices is as follows. Let S be the set of all

integer solutions s = (s1, s2, . . . , sm), then S is a lattice implying the solution to the SIS
problem is simply to find a short vector in S. More formally, as shown by Micciancio and
Regev [2004; 2007], for any q > poly(n) solving SIS also implies a solution to standard
lattice problems such as the shortest independent vector problem (SIVP). Thereafter,
Langlois and Stehlé [2014] showed reductions from module-SIVP to module-SIS as
well as module-SIVP to module-LWE, the use here of module lattices bridges SIS and
LWE with their respective ring variants. Common uses of the SIS problem are shown
by Micciancio and Peikert [2013] and include one-way functions and collision-resistant
hash functions, while Lyubashevsky [2009; 2012] shows its uses for DSSs which are
discussed in the next section.

The LWE problem, first proposed by Regev [2005], has many applications but can
be predominantly attributed to uses in public-key cryptography and CCA-secure cryp-
tosystems. The definition of the problem is as follows: given some uniformly distributed
ai ∈ Znq , integers n and q, and bi ≡ 〈ai, s〉 + ei mod q, where the secret-key s is chosen
uniformly at random from Znq and each ei follow some small error distribution, find
s given access to pairs (ai, bi). The problem naturally produces two forms, namely its
search and decision variants. The search variant asks an adversary to find s ∈ Znq
given A ∈ Zn×mq and b ≡ ATs + e mod q, whereas the decision variant asks an adver-
sary to distinguish between (ai, bi) and (ai, ui) where ui is chosen uniformly at ran-
dom. Regev [2009] (with a sample preserving reduction shown by Micciancio and Mol
[2011]) shows a search-to-decision reduction, meaning that any efficient distinguisher
between LWE and uniform distributions can be used to recover the secret-key. It should
be noted that the small error distribution has been widely studied [Dwarakanath and
Galbraith 2014; Micciancio and Peikert 2013] and is chosen independently and identi-
cally from a Gaussian-like distribution. Taking the standard deviation αq, a quantum
reduction was shown by Regev [2005] whereby LWE is as hard in the average-case as
approximating lattice problems in the worst-case with an approximation factor Õ(n/α)
and αq ≥ 2

√
n. Classical reductions were shown by Peikert [2008] with an exponen-

tial modulus and by Brakerski et al. [2013] with a polynomial modulus; the latter
introducing an efficient algorithm showing hardness of LWE for worst-case instances
of standard lattice problems. Moreover, Brakerski et al. [2013] discuss the hardness of
the respective ring variants, showing a hardness proof for ring-LWE and ring-SIS with
exponential modulus under the hardness of problems on general lattices.



The relationship LWE has with known hard problems of lattices is as follows. Con-
sider the lattice L(A) = {y ∈ Zm | y ≡ As mod q} for some s ∈ Znq ; in the instances
where each ei are small, the LWE problem is asking an adversary to solve the CVP
on the lattice L(A). Inherently, the value of s is not uniquely determined, however
one value is significantly more likely than the rest, ergo LWE is a well-defined max-
imum likelihood problem. This abstraction can be extended to the decision variant of
LWE: consider again L(A) and b = As + e mod q, since b is significantly more likely
to be decoded as a lattice point than some point v ∈ Zmq chosen uniformly at random,
the decision-LWE problem can also be made equivalent to a decision bounded distance
decoding (BDD) problem, where the bound is the radius of e.

Problems such as LWE and SIS are theoretically sound but lack some efficiency in
practice due to the need for large unstructured matrices. To alleviate this, the problems
have been considered over some polynomial ring, which yields their sister-problems
ring-LWE and ring-SIS. Adopting the problems within the ring setting produces a spe-
cial class of lattices, these being ideal lattices, which Micciancio [2007] shows amelio-
rates the impracticality of general lattices. Ideal lattices are generally considered in
the quotient ring Z[x]/f , for some monic polynomial f of degree n, where n is a power of
2, implying irreducibility over Z. Common examples of such a function f are f = xn+1
or f = xq−1 + xq−2 + · · ·+ 1 for some prime q. The ring variant of SIS, Ring-SISq,n,m,β
is defined as, given random vectors a1,a2, . . . ,am ∈ R, find a short non-trivial vector
s ∈ R such that ‖s‖∞ ≤ β and As ≡ 0 mod q. Ring-LWEq,n,m,β is defined as, given
a prime modulus q ≡ 1 mod 2n, random vectors s,a1,a2, . . . ,am, b1, b2, . . . , bm ∈ R,
where bi = ais + ei mod q (again ei following some small error distribution) find s
given access to pairs (ai, bi). The decision variant requires to distinguish between pairs
(ai, bi) and (ai,ui) where ui is chosen uniformly at random. Additionally, as shown by
Lyubashevsky et al. [2013b], sampling s from the error distribution (instead of the
uniform distribution) is shown to maintain the hardness assumption of the original
ring-LWE, which allows the secret s to be short.

The reason ideal lattices are preferred is because of their simplified representation
and subsequent smaller key-size [Micciancio 2007] as well as the applicability of num-
ber theoretic transforms, which improve operational run-times from having quadratic
to quasi-linear complexity.

3. LATTICE-BASED DIGITAL SIGNATURE SCHEMES

In this section important research on lattice-based DSSs will be presented, show-
ing how they have become practical in terms of both hardware and software imple-
mentations. DSSs based on the hardness of lattice problems generally fall into three
categories1, namely GGH/NTRUSign signatures, hash-and-sign signatures and Fiat-
Shamir signatures.

3.1. GGH and NTRUSign Signatures

The GGH [Goldreich et al. 1996] and NTRUEncrypt [Hoffstein et al. 1998] cryptosys-
tems were among the first shown to be based on the hardness of lattice problems,
specifically based on solving the approximate closest vector problem. The difference
between these schemes is that the latter can somewhat be seen as a special instan-
tiation of the former. The GGH cryptosystem included a DSS, in turn forming the

1Also note, the “vanishing trapdoor” technique by Boyen [2010], which is improved upon by Ducas and
Micciancio [2014], producing a DSS in the standard model. However, since their goal is asymptotic optimi-
sation, the practical is currently unclear and may not be competitive.



basis of NTRUSign [Hoffstein et al. 2003] which combined almost the entire design
of GGH but uses the NTRU lattices employed in NTRUEncrypt. The predecessor to
NTRUSign, NSS [Hoffstein et al. 2001], was broken by Gentry et al. [2001; 2002] and
incidently NTRUSign suffered the same fate with works by Nguyen and Regev [2009],
which shows experimental results recovering the secret-key with 400 signatures. Since
Nguyen and Regev categorically show (without perturbation) NTRUSign to be abso-
lutely insecure and [Ducas and Nguyen 2012b] even broke further countermeasures
and a version with perturbations, the descriptions will not be covered since implemen-
tation results currently do not have practical applications. However, interested readers
are referred to a survey by Buchmann et al. [2009]. Recent research such as Melchor
et al. [2014] hold some promise for the future of these DSSs, such that someday the
security and efficiency issues of NTRUSign may be amended.

3.2. Hash-and-Sign Signatures

DSSs based on the hash-and-sign paradigm follow seminal work by Diffie and Hellman
[1976]. The concept follows the criterion that a message should be hashed before being
signed. That is, to sign a message, first hash µ to some point h = H(µ), which must be
in the range of the trapdoor function f , the then acclaimed RSA being such a function.
Once the message has been hashed, it is signed σ = f−1(h) and a verification algorithm
checks that f(σ) = H(µ) to confirm whether (µ, σ) is a valid message/signature pair.
This theory became the foundation for full-domain hash (FDH) [Bellare and Rogaway
1993], with the hash function H(·) being modelled on a random oracle. Where f is a
trapdoor permutation, the scheme is shown to be existentially unforgeable under a
chosen-message attack.

The relation lattices have to hash-and-sign signatures is the intuition that a short
basis for a lattice could provide such a trapdoor function. This led to the first pro-
posal by Gentry et al. [2008] (GPV), showing a DSS based on the hardness of lattice
problems. The idea was to use preimage sampleable (trapdoor) functions (PSFs) that
somewhat behave like trapdoor permutations. The collision resistance of the trapdoor
function proposed is the basis of security for the scheme, which consequently is shown
to be as hard as SIVP or GapSVP.

As described in GPV and at a high-level, the public function fB (B being the public
basis for some lattice L) being evaluated by some random input corresponds to choos-
ing a random lattice point v ∈ L and adding some “noise” via some relatively short
error term e, giving a point y = v + e. Inverting y corresponds to decoding it to any
sufficiently close lattice point v′ ∈ L, though not necessarily v itself, whereby the noise
term is large enough that many preimages exist. Given the trapdoor basis, it is easy to
decode y using the sampling algorithm. However with only access to the public basis
matrix, it is on average a hard problem.

Thus central to the scheme is the construction of trapdoor functions, with the neces-
sary property that every output value has several preimages. Additionally, the Gaus-
sian sampling algorithm, that samples from a discrete Gaussian distribution, and the
use of modular lattices.

Using this approach, the scheme then similarly follows the generic DSS construc-
tion already seen. KeyGen outputs a personal uniformly random public-key matrix
A ∈ Zn×mq and an associated secret-key (trapdoor) matrix (with small coefficients) S ∈
Zm×m such that AS ≡ 0 mod q. Moreover, it also chooses a FDH H(·) : {0, 1}∗ → Zmq .
Signsk (µ) takes as input µ ∈ Zm and outputs a signature σ, independent of S, such
that Aσ = H(µ) mod q. Verifypk (µ,σ) returns 1 if and only if σ is in the domain and
Aσ = H(µ) mod q, or 0 otherwise. The scheme is proven to be strongly existentially



unforgeable under a chosen-message attack since it is complete, that is, for all gener-
ated keys (A,S), all messages µ and all signatures σ, Aσ = H(µ) mod q.

A more recent scheme by Micciancio and Peikert [2012] also adopts hash-and-sign,
introducing a more efficient trapdoor than the one used in GPV. Improvements to the
key generation had been made by Alwen and Peikert [2011], however more notewor-
thy were the further reductions Micciancio and Peikert [2012] made to both. Com-
paratively, their contributions affirm simplicity and speed over GPV. The public-key
from GPV is the pair (A,AS) whereas this scheme uses a public-key (A,AS + G)
for some matrix G. The trapdoor for GPV is the basis matrix A for a lattice. How-
ever, for Micciancio and Peikert’s scheme the trapdoor A is derived from a trans-
formation of the fixed, public lattice denoted by the ‘gadget’ G. Using this (fixing)
method allows for fast, parallel and even offline calculations of the inversions, which is
where many of the improvements are achieved. The scheme then follows the general
(KeyGen,Signsk ,Verifypk ) model and an interested reader should refer to Section 6.2.2
in [Micciancio and Peikert 2012] for a full description.

3.3. Fiat-Shamir Signatures

An alternative way of constructing a DSS is to first build an identification scheme of
a certain form, then converting it into a DSS by means of the Fiat-Shamir transfor-
mation [Fiat and Shamir 1986; Abdalla et al. 2002]. Identification schemes are be-
tween two parties, where one party (the prover) needs to convince the other party (the
verifier) they are whom they claim to be. The technique can be observed by consider-
ing Schnorr’s protocol [1989], a frequently used proof of knowledge protocol based on
the intractability of the discrete logarithm problem. Details of the transformation are
omitted (see Galbraith [2012] for details) but it suffices to say that the security of the
signature scheme follows if the hash function H(·) : {0, 1}∗ → {0, 1}k, for a suitable
value of k, is considered as a random oracle.

Lattice-based signature schemes which use the Fiat-Shamir transformation are
mainly due to research by Lyubashevsky et al. [Lyubashevsky 2009; 2012; Güneysu
et al. 2012; Abdalla et al. 2012; Bai and Galbraith 2014; Ducas et al. 2013]. The pro-
cedures in the first publication by Lyubashevsky [2009] are shown to be based on SIS,
that is, if a solution is found for the DSS then a solution is also found for SIS. The ini-
tial step taken in this scheme is to first construct a lattice-based identification scheme
whereby the challenge is treated as a polynomial in R. The security of the identifica-
tion scheme is based on the hardness of finding the approximate shortest vector in the
standard model as well as the random oracle model. The identification scheme is then
transformed into a DSS where optimisations are made to the tight parameter settings,
improving elements such as the length of the signature and making it computationally
infeasible to find collisions in the hash function family H. For a complete description
of the scheme see Section 3.2 in [Lyubashevsky 2009].

The security of the scheme is dependent on the hardness of finding collisions in
certain hash function families. An adversary who is able to forge a signature can then
use this to find a collision in a hash function chosen randomly from H, meaning that
if the DSS is not strongly unforgeable then there exists a polynomial time algorithm
that can solve SVPγ for γ = Õ(n2) in the ideal R. Therefore, forging a signature and
furthermore finding a collision in a randomly chosen h ← H is equivalent to finding
short vectors in a lattice over R, that is, the ring-SIS problem.

The subsequent improvements made by Lyubashevsky [2012] (LYU) were two-fold.
The most significant change is that of the hardness assumption used, adapting from
ring-SIS to ring-LWE, which is shown to significantly decrease the sizes of the sig-



nature and the keys, thereby improving efficiency. The second improvement is during
the signing procedure, which involves asymptotically shorter signatures. This stage
requires more complicated rejection sampling, so that the signatures are independent
from the secret-key, and sampling from the normal distribution, wherein highly ac-
curate computations are needed (see Section 4 in [Lyubashevsky 2012]). The scheme,
as in the previous scheme, is shown to be strongly unforgeable and is based on the
worst-case hardness of finding short vectors in a lattice.

The general structure of these DSSs by Lyubashevsky [2009; 2012] are as follows.
Consider the secret-key as an m × n matrix S with small coefficients, and the public-
key as the pair (A,T ) where A is an n × m matrix with entries chosen uniformly at
random from Zq and T ≡ AS mod q. Also an essential part of the scheme, as already
discussed, is the hash function, which is considered as a random oracle outputting
elements in Zm with small norms. In order to sign a message µ the signing algorithm
first chooses a random y from some discrete Gaussian distribution, then computes c =
H(Ay mod q,µ) where the (potential) signature is the pair (z, c) such that z = Sc+y,
which is sent to the verifier should it pass the rejection stage. Finally, the verification
algorithm checks that ‖z‖ is small and that c = H(Az − Tc mod q,µ). The details of
the discrete Gaussian stage and the importance of the restrictions on z will become
evident later.

In many cases (such as [Güneysu et al. 2012; Ducas et al. 2013; Bai and Galbraith
2014]) the signature is considered as (z1, z2, c), allowing the shortening of z1 or z2,
which motivates various compression techniques. The scheme by Bai and Galbraith
[2014] is based on the LWE signature scheme LYU, whereby z2 is actually omitted
from the scheme entirely. This is essentially achieved by adapting the scheme so that
proof of knowledge of the pair (s, e) for the LWE public-key (A, b = As+ e mod q) only
requires knowledge of s.

The current state-of-the-art in lattice-based DSSs is the proposed scheme by Ducas
et al. [2013] named BLISS. The main contribution of this work is the significant im-
provement in the rejection sampling stage. As a consequence, this scheme presents an
important bridge between theoretical and practical lattice-based DSSs.

To illustrate the importance of the rejection sampling stage to security, consider the
following DSS. The signer has a (short) secret-key pair s1, s2 ∈ R and a public-key pair
(a, t) where a ∈ R is chosen at random and t = as1 + s2. The signer then randomly
chooses y1,y2 ∈ Dm

σ and sends u = ay1+y2 to the verifier who returns a sparse c ∈ R.
The signer then calculates zi = yi + sic (for i ∈ {1, 2}) and sends z1, z2 to the verifier
where it is checked that ‖zi‖ are small and az1 + z2 − tc = u.

Using this scheme as it is, there is an inherent vulnerability in the values zi sent to
the verifier. As stated, yi is chosen from the distribution Dm

σ , therefore an adversary
knows the distribution of zi since they will follow the distribution of yi skewed by the
addition of sic, which is where the secret-key becomes susceptible. This can be rectified
by adapting the distribution of zi from Dm

Sc,σ so that it follows the same distribution
as yi ∼ Dm

σ . This is achieved through rejection sampling, the idea is to find a value
M such that for all (or all but a negligible) x, f(x) ≤ M · g(x). Values for x are then
drawn from g(x) and accepted with probability f(x)

M ·g(x) ≤ 1, otherwise the process is
restarted. If the previous condition is satisfied ∀x, then the method will produce exactly
the distribution f(x).

This technique can be used for the above scheme, however this imposes a slight hin-
drance. Since both distributions follow a Gaussian-like distribution, M must be quite
large (for instance in LYU, M = 7.4) to satisfy the condition Dm

σ (x) ≤ M · Dm
Sc,σ(x)

for all x, where the problem exists in the tails of the distributions. The effect of hav-
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Fig. 1: The graphs show the improvement bimodal Gaussians have to the rejection
sampling stage. The left (a) showing the LYU [Lyubashevsky 2012] scheme and the
right (b) showing the BLISS [Ducas et al. 2013] scheme. The distribution of z is shown
in blue, fixing Sc and over the space of all y in (a) and all (b,y) in (b), before the
rejection step and its decomposition as a Cartesian product. The dashed red curves
represent the scaled (1/M ) target distribution. Notice that the likeliness of acceptance
is much greater for (b) than (a).

ing a large M is that the probability of acceptance is significantly smaller, therefore
requiring more samples, incurring inefficiency. By virtue of their novel use of bimodal
Gaussians, BLISS currently show the most optimal value for this stage in Fiat-Shamir
inspired DSSs, presenting a value M = 1.6. A juxtaposition of this is shown in Fig-
ure 1, illustrating how the probability of acceptance significantly increases with the
introduction of bimodal Gaussians. Further comparing the repetition rates in other
schemes (see Table I for GLP, Table II for BLISS and given that the repetition rate in
GPV ≈ 10) it becomes evident just how significant BLISS is as a practical lattice-based
DSS.

To be able to generate the discrete bimodal Gaussian, the scheme is slightly modified
in the following way. Choose a bit b ∈ {0, 1} uniformly at random and change the
calculation of zi such that zi = yi + (−1)bsic. Therefore, zi will follow the discrete
bimodal Gaussian 1

2D
m
Sc,σ(x) +

1
2D

m
−Sc,σ(x). With some other small alterations in the

signing and verifying stages, a completely practical and secure lattice-based DSS is
achieved.

4. IMPLEMENTATION OF LATTICE-BASED SIGNATURES

In this section the implementation challenges and common building blocks necessary
to realise practical lattice-based signature schemes are examined and discussed.

4.1. On the Instantiation of GPV-Signatures

The most significant instantiation of the schemes based on GPV is the work by
Bansarkhani and Buchmann [2013], which amalgamates the scheme by Gentry et al.
[2008] with the efficient trapdoor construction proposed by Micciancio and Peikert
[2012]. Two variants are presented; a matrix version operating in the general setting
and a more efficient ring version. The matrix version incorporates the preimage sam-
pling algorithm of Micciancio and Peikert [2012] and a technique to add perturbation.



Generating the perturbation vectors is essential so that the preimages do not give any
information away about the secret-key. This is achieved by Peikert’s [2010] convolution
technique which also requires efficient square root computation. This component is the
most time consuming of the signing procedure, consuming over 60% of the overall run-
time. The ring scheme is shown to be based on the ring-LWE problem, adopting similar
constructions and discrete Gaussian sampling is optimised by adopting the inversion
transform method, rather than using rejection sampling. The actual implementation
of the ring scheme (see Table III) provides 100-bit security and uses the FLINT and
GSL libraries for basic arithmetic.

4.2. Practical Instantiations of Ideal Lattice-Based Fiat-Shamir Signatures

This section introduces the ideal lattice-based Fiat-Shamir signature schemes by
Güneysu et al. [2012] (GLP) and Ducas et al. [2013] (BLISS) in more detail, whilst
also examining the computational efficiency of each of their components. The reasons
for the discussion of GLP and BLISS and common building blocks are that both schemes
have been extensively analysed by implementers and currently offer the best trade-off
between signature and key sizes as well as security. Thus they are currently considered
to be the most practical lattice-based signature schemes.

4.2.1. GLP. The instantiation based on ideal-lattices by Güneysu et al. [2012] (GLP)
follows the signature scheme of Lyubashevsky [2012] and specifically targets reconfig-
urable hardware and constrained devices. This is done by favouring uniformly random
distributed noise over Gaussian noise for secret-keys and masking values, and by bas-
ing the hardness assumption on an ‘aggressive’ version of the decisional ring-LWE
problem. This assumption is called the Decisional Compact Knapsack (DCKq,n) prob-
lem, whereby an adversary must distinguish between the uniform distribution over
R×R and the distribution (a,as1 + s2), where a $← R and s1, s2

$← R1. However, the
aggressive compression is a source of insecurity and in the full version of [Ducas et al.
2013] it has been shown that the security of the scheme is around 80-bits instead of
the 100-bits claimed by Güneysu et al. [2012].

For reference, Figure 2 shows the full description of the KeyGen, Sign and Verify
algorithms of GLP and parameters are given in Table I with key and signature sizes
being listed in Table III. The secret-keys of the scheme are the random polynomials
s1, s2 and the public-key is (a, t), where a $← R and t ← as1 + s2. To sign a message
µ, two ‘masking’ polynomials y1,y2

$← Rk are chosen uniformly at random and c ←
H(ay1+y2, µ)

(1) is computed where ay1+y2 is the most expensive operation during the
signing procedure. Note that the hash function is only evaluated on the “higher order”
bits2 of the coefficients of the input, denoted by the (1) notation. The actual signature
z1, z2 is computed as zi ← sic+ yi where the polynomial c is generated from 160-bits
of the output of the random oracle (instantiated as a hash function) and just contains
32 coefficients which are ±1. Since c, s1 and s2 are small and contain a lot of zeros
(i.e., they are sparse) no modular reduction modulo q is necessary when computing s1c
and s2c. But before sending the signature, the low-cost rejection sampling step must
be performed where the signature is only sent if and only if z1, z2 ∈ Rk−32. There
the parameter k, which first appears in line 1 of the signing algorithm, controls the
trade-off between the security and the runtime of the scheme. The smaller k is, the
more secure the scheme becomes (and the shorter the signatures get), but the time to
sign will increase. The Compress(az1 − tc, z2, q, k − 32) function is the reason for the
relatively short signatures as a large amount of z2 is removed (the scheme also works

2In this context, higher-order bits means roughly the most significant bits.



Table I: The GLP [Güneysu et al. 2012] Signature Scheme Parameters.

Name of the scheme GLP-I GLP-II

Security 80-bits ≥ 256-bits
(n, q) (512, 8383489) (1024, 16760833)

k 214 215

Repetition rate 7 7

Algorithm KeyGen()
1: Return (pk = (a, t), sk = (s1, s2)) where a $← R, s1, s2

$← R1 and t← as1 + s2

Alg. Sign(µ,a, s1, s2)
1: y1,y2

$← Rk
2: c← H

(
(ay1 + y2)

(1), µ
)

3: z1 ← s1c+ y1, z2 ← s2c+ y2
4: if z1 or z2 /∈ Rk−32, then go to step 1
5: z′2 ← Compress (az1−tc, z2, q, k−32)
6: if z′2 = ⊥, then go to step 1
7: Return (z1, z′2, c)

Alg. Verify(µ, z1, z′2, c,a, t)
1: Accept iff
z1, z

′
2 ∈ Rk−32 and

c = H
(
(az1 + z

′
2 − tc)(1), µ

)

Fig. 2: The GLP Signature Scheme.

without the compression). It encodes the carries that would have been caused by z2
into z′2 and ensures correctness so that (ay1 + y2)

(1) = (az1 + z
′
2tc)

(1).

The GLP scheme has currently been implemented on reconfigurable hardware
[Güneysu et al. 2012], CPUs [Güneysu et al. 2013] and microcontrollers [Boorghany
and Jalili 2014] (see Section 5 for further discussions).

4.2.2. BLISS. The most efficient instantiation of the BLISS signature scheme [Ducas
et al. 2013] is based on ideal-lattices [Lyubashevsky et al. 2010; 2013a] with the BLISS
KeyGen, Sign and Verify algorithms given in Figure 3. Parameters are listed in Ta-
ble II and key and signature sizes are given in Table III.

The generation of keys involves uniform sampling of two small, sparse polynomials
f and g, computation of the rejection condition Nκ(S), and the computation of f−1.
Inverting f makes KeyGen significantly more complex, particularly in comparison to
the equivalent stage in GLP.

For the signing stage, two polynomials y1,y2 are sampled from the discrete Gaussian
distribution Dn

σ (instead of uniformly random as in GLP). Sampling from a Gaussian
distribution is computationally very expensive due to the complex operations (such as
calculation of the exponential function) or large tables [Dwarakanath and Galbraith
2014]. Section 4.3.2 describes the ongoing research in this area. The calculation of u
is simplified since the computation of ay1 is performed in an FFT-enabled ring using
modulus q, instead of 2q. The d most significant bits of u are then hashed with the
message µ with the output being interpreted as a polynomial c. Such as in GLP, c is
also sparse and small but generated differently and more efficiently from the output of
the hash function. The polynomial c is then multiplied by the secret-key polynomials
s1, s2, where the polynomials y1,y2 are used to ‘mask’ the secret-key inside of the
signature. Rejection sampling is then performed so that no information is leaked about



Table II: The BLISS [Ducas et al. 2013] Signature Scheme Parameters.

Name of the scheme BLISS-I BLISS-II BLISS-III BLISS-IV

Security 128-bits 128-bits 160-bits 192-bits
(n, q) (512,12289) (512,12289) (512,12289) (512,12289)

Secret-key densities δ1, δ2 0.3 , 0 0.3 , 0 0.42 , 0.03 0.45, 0.06
Gaussian std. dev. σ 215.73 107.86 250.54 271.93
Dropped bits d in z2 10 10 9 8

Verif. thresholds B2, B∞ 12872, 2100 11074, 1563 10206,1760 9901, 1613

Repetition rate 1.6 7.4 2.8 5.2

Algorithm KeyGen()
1: Choose f , g as uniform polynomials with exactly d1 = dδ1ne entries in
{±1} and d2 = dδ2ne entries in {±2}

2: S = (s1, s2)
t ← (f , 2g + 1)t

3: Compute rejection condition Nκ(S) that accepts approx. 25% of all keys
4: aq = (2g + 1)/f mod q (restart if f is not invertible)
5: Return (pk = A, sk = S) where A = (a1 = 2aq, q − 2) mod 2q

Alg. Sign(µ,A,S)
1: y1,y2 ← DZn,σ

2: u = ζ · a1 · y1 + y2 mod 2q
3: c← H(bued mod p, µ)
4: Choose a random bit b
5: z1 ← y1 + (−1)bs1c
6: z2 ← y2 + (−1)bs2c
7: Continue with probability

1
/(

M exp
(
−‖Sc‖2

2σ2

)
cosh

(
〈z,Sc〉
σ2

))
otherwise restart

8: z†2 ← (bued − bu− z2ed) mod p

9: Return (z1, z
†
2, c)

Alg. Verify(µ,A,(z1,z†2,c))
1: if ‖(z1|2d · z†2)‖2 > B2 then reject
2: if ‖(z1|2d · z†2)‖∞ > B∞ then reject
3: Accept iff
c = H

(⌊
ζ · a1 · z1 + ζ · q · c

⌉
d
+z†2 mod p, µ)

Fig. 3: The Bimodal Lattice Signature Scheme [Ducas et al. 2013].

the secret-key, whereby Sign may restart. The signature z2 is then compressed and
(z1, z

†
2, c) is returned.

The verification stage first validates the Euclidean and infinity norms of the signa-
ture, then the input to the hash function is reconstructed and it is checked whether
the corresponding hash output matches c from the signature. It should be evident
from this description that the most costly computational components to BLISS are the
dense polynomial multiplication, discrete Gaussian sampling, and sparse multiplica-
tion stages [Pöppelmann et al. 2014].

4.3. Building Blocks

GLP and BLISS have been introduced as the most promising proposals for lattice-based
signatures. Before the full performances of published implementations are compared
in Section 5, research on common building blocks used in GLP or BLISS are examined.
The reasons are that these building blocks as essential for the understanding of the



performance of the signature schemes and that they could also be used as a basis for
the implementation of existing or new Fiat-Shamir style lattice-based signatures (e.g.
a ring instantiation of [Bai and Galbraith 2014]).

4.3.1. Polynomial Multiplication. Comparable to point multiplication for ECC and expo-
nentiation for RSA, polynomial multiplication is the basic operation in ideal lattice-
based cryptography and thus subject of various optimisation efforts. While addition
and subtraction in Zq[x]/〈xn + 1〉 are easy to realise with O(n) primitive operations in
Zq, polynomial multiplication is much more complicated3. When computing the prod-
uct c = a·b in Zq[x]/〈xn + 1〉 the trick that xn ≡ −1 can be used for instant reduction
mod 〈xn + 1〉. This leads to the obvious schoolbook approach

ab =

n−1∑
i=0

n−1∑
j=0

(−1)b
i+j
n ca[i]b[j]xi+j mod n mod q,

which generally requires n2 multiplications and (n − 1)2 additions or subtractions.
Schoolbook multiplication can either be performed row-wise, column-wise, or using a
hybrid approach [Gura et al. 2004]. For row-wise multiplication, a multiplicand b[j] is
fixed and the row, i.e., the inner products c[i+ j mod n] = c[i+ j mod n]+(−1)b

i+j
n ca[i]·

b[j] mod q for i, j ∈ {0, . . . , n − 1} are computed. Once a row is completed, the next
b[j+1] is fixed. Another approach is column-wise multiplication, where partial products
are used to sum up columns of c. Thus, for column ` it is then necessary to compute
c[`] =

∑n−1
i=0 (−1)

1−bn+`−i
n ca[i]b[n+ `− i mod n] mod q.

A first attempt to implement GLP on reconfigurable hardware was shown by
Güneysu et al. [2012] where an array of fast schoolbook multipliers were used to com-
pute ay1 + y2. The idea was that schoolbook multipliers are simple to realise and that
they can profit from different operand sizes as a $← R and y $← Rk. When imple-
mented they basically consist of a block memory (BRAM), a DSP for multiplication,
and a reduction circuit and can thus run within a separate and high-frequency clock
domain. However, the number of required multipliers is quite large for high-speed re-
quirements (see also [Pöppelmann and Güneysu 2012] for instantiations of schoolbook
multipliers for different parameters n and q).

In the case where polynomials are sparse (polynomials with a lot of zero coefficients
like c from GLP or BLISS), or have only many small coefficients (e.g., just -1/0/1 coef-
ficients like s1, s2 of GLP and BLISS), or both, schoolbook multiplication is an option.
Güneysu et al. [2012] adopt column-wise multiplication to allow immediate rejection of
out of bound z coefficients (z1 or z2 /∈ Rk−32). Pöppelmann et al. [2014] further optimise
and parallelise the column-wise schoolbook multiplier. Even though row-wise multipli-
cation would allow to profit from the sparsity of both operands (s1, s2, c), more memory
accesses would be necessary to add and store inner products. As all memory beyond
dual-port RAMs are extremely expensive this also prevents efficient configurable par-
allelisation. As a consequence, the implementation consists of a configurable number
of cores C which perform column-wise multiplication. Each core stores the secret-key
(either s1 or s2) efficiently in a distributed RAM and accumulates inner products in a
small multiply-accumulate unit. Positions of c are fed simultaneously into the cores.
Note also that exploiting the spareness of polynomials already played a role in im-
plementations of the NTRU public-key encryption schemes (see [Kamal and Youssef
2009]).

3Note that for encryption and signature schemes the number of polynomial coefficients n is usually in
the range 256 to 1024 (see Table I and Table II).



In order to achieve higher speed for polynomial-multiplication, namely quasi-linear
runtime with O(n log n) multiplications in Zq, the Fast Fourier Transform (FFT) or
more specifically the Number Theoretic Transform (NTT) [Nussbaumer 1980; Winkler
1996; Blahut 2010] can be used to implement the negative wrapped convolution. The
NTT is defined in a finite field or ring for a given primitive n-th root of unity ω and
exists if n is a power of two and q is a prime satisfying q ≡ 1 mod 2n4. The generic
forward NTTω(a) of a sequence {a[0], ..,a[n− 1]} to {A[0], . . . ,A[n− 1]} with elements
in Zq and length n is defined as A[i] =

∑n−1
j=0 a[j]ω

ij mod q, i = 0, 1, . . . , n − 1 with the
inverse NTT−1ω (A) using ω−1 instead of ω [Winkler 1996]. Thus the reduction by xn+1
is basically for free and it is possible to work with a transform length equal to the num-
ber of polynomial coefficients. The NTT itself can be implemented using the common
Cooley–Tukey radix-2 decimation-in-time approach [Cormen et al. 2009; Blahut 2010]
where the main component is the butterfly structure computing a′ = a+ωl ·b mod q and
b′ = a−ωl ·b mod q for l ∈ [0, n/2−1]. Naturally, the NTT has been studied before it has
been applied to lattice-based cryptography with early works like McClellan [1976]. A
recent example is Emeliyanenko [2009] where the author provides an implementation
of polynomial multiplication on graphics hardware (GPUs). An FPGA implementation
of the NTT for polynomial multiplication is described by Cheng et al. [2005].

The first work [Göttert et al. 2012] proposing a polynomial multiplier specifically
targeting lattice-based cryptography used the multiplier to implement an ideal lattice-
based encryption scheme [Lindner and Peikert 2011]. They compute every stage of the
NTT in parallel and thus achieve high throughput, but as a consequence their design
requires a large amount of device resources. An iterative approach to polynomial multi-
plication was proposed by Pöppelmann and Güneysu [2012] with the goal of achieving
a reasonable area consumption and still high speed. Reasons for better area utilisa-
tion compared to [Göttert et al. 2012] are that multiplication in Zq is performed using
an embedded multiplier (DSP) and block memory (BRAM) to store polynomials. In this
case the block memory access patterns become an issue, as the pipelined NTT butterfly
requires two read operations from the memory and two write operations into the mem-
ory for best utilisation. As common Xilinx BRAMs have only two ports, a polynomial
is stored in two BRAMs where all coefficients with an equal parity address are placed
into one BRAM and all coefficients with unequal parity into another BRAM to prevent
access conflicts and thus four ports. The twiddle factors (ω, ψ) required for the trans-
formation are stored in a table and not computed on-the-fly. Pöppelmann and Güneysu
[2013] use the multiplier of Pöppelmann and Güneysu [2012] as a basis for a microcode
engine/reconfigurable processor which also supports addition, subtraction, and random
sampling of polynomials and allows the programmer fine-grained access to instruc-
tions realising the NTT like NTT() realising the forward NTT, INTT() for the backward
NTT and PW MUL() for point-wise addition. Improvements to the stand-alone poly-
nomial multiplier design of Pöppelmann and Güneysu [2012] were proposed by Aysu
et al. [2013] with similar performance, but a reduction of up to 67% of occupied slices
and 80% of used BRAMs. This was achieved by better memory organisation and con-
catenated storage of multiple coefficients in one memory address. The required powers
of ω and ψ were generated on-the-fly in an efficient manner and the design can be
configured to use one (2DSP) or two dedicated multipliers (3DSP). A parallel FFT mul-
tiplier (n = 64 and q = 257) targeting the lattice-based hash function by Lyubashevsky
et al. [2008] (SWIFFT) was provided by Györfi et al. [2013] but no larger parameter
sets, relevant for signature schemes, were evaluated. A microcode engine with a sim-
ilar instruction set used by Pöppelmann and Güneysu [2013] and further improved

4The NTT can also be defined for composite moduli, but we only consider the prime case in this survey.



multiplier was introduced by Roy et al. [2014] to realise lattice-based encryption. The
address generation of the NTT algorithm was rearranged and thus repeated multi-
plications to generated twiddle factors were eliminated and pre-computation like the
multiplication with powers of ψ were avoided. Moreover, more efficient memory usage
further reduced the amount of required BRAMs. Thus, this design currently represents
the state-of-the-art for polynomial multiplication for ideal lattice-based cryptography.
An optimisation of an NTT multiplier for larger parameter sets supporting somewhat
homomorphic cryptography can be found in work by Chen et al. [2014]. Their design
goal is high speed and low latency which is achieved by using two processing elements
(PE), two additional integer modular multipliers and a very regular constant geometry
NTT/FFT algorithm (see Pease [1968]).

Targeting desktop CPUs, Güneysu et al. [2013] provide an optimised software imple-
mentation of the GLP signature scheme and also implement the NTT. The implemen-
tation is optimised for Intel’s Sandy Bridge and Ivy Bridge in particular and targets
the Advanced Vector Extensions (AVX) providing support for Single Instruction, Mul-
tiple Data (SIMD) operations. The C-implementation features storing of parameters in
NTT representation, lazy reduction and representation of 512-coefficient polynomials
as a 512 double-precision array of floating-point values. By utilising the AVX instruc-
tion set, that implementation can perform up to 4 multiplications and 4 additions of
coefficients in each cycle from which also the NTT profits. Works such as those by
Oder et al. [2014] and Boorghany and Jalili [2014] also use the NTT as building block
but do not provide specific optimisations besides pre-computation and optimisation in
assembly. Some optimisations of the implementation of the NTT on the Cortex-M4F
microcontroller were recently proposed by Clercq et al. [2014] which mainly address
parallelization, reduction of load and stores, as well as rearranging of the NTT algo-
rithm as proposed in Roy et al. [2014].

4.3.2. Sampling. Sampling from the one dimensional discrete Gaussian distribution
DZ,σ is an important building blocks for BLISS and other signature schemes but also
a source of inefficiency in concrete implementations and thus the reason why GLP
relies on uniform noise. The distribution Dσ is defined such that a value x ∈ Z is sam-
pled from Dσ with the probability ρσ(x)/ρσ(Z) where ρσ(x) = exp (−x

2

2σ2 ) and ρσ(Z) =∑∞
k=−∞ ρσ(k). Conceptually, the simplest algorithm to sample from a Gaussian distri-

bution is rejection sampling. One chooses a uniformly random u ∈ {−τσ, ..., τσ} (in
this case τ is denoted as a tail-cut) and accepts with a probability proportional to
exp(−x2/2σ2). However, a straightforward implementation would require the costly
computation of the exp(·) function with high precision λ ≈ 128-bits, a large number of
random bits, and still result in ≈ 10 trials per sample. See [Weiden et al. 2013] for an
implementation in software and some optimisations in [Ducas and Nguyen 2012a].

However, the approach can be optimised in order to reduce the amount of rejections.
In the scheme by Ducas et al. [2013], the authors also make use of Bernoulli distributed
variables. A Bernoulli distributed variable Bc outputs one with a probability of c ∈ [0, 1]
and zero otherwise. Sampling from this distribution is easy by lazily evaluation if y < c
for a uniformly random y ∈ [0, 1) and pre-computed c. The general idea (for more de-
tails see [Ducas et al. 2013]) of the proposed sampler is to reduce the probability of
rejections by sampling first from an intermediate and easily sampleable distribution,
called the binary Gaussian distribution, and then from the target distribution. The re-
jection rate is thus decreased to ≈ 1.47 (compared to 10 for classical rejection sampling)
and no computations of the exponentiation function exp(·) or large pre-computed ta-
bles are necessary. The required table is small and just grows logarithmically. It has
been implemented without using the binary Gaussian distribution by Pöppelmann and



Güneysu [2014] for the small standard deviation necessary for lattice-based public-key
encryption. A full implementation of the sampler in hardware can be found in the full
version of [Pöppelmann et al. 2014] and a microcontroller implementation of BLISS is
provided by Oder et al. [2014]. Boorghany et al. [2014] and Boorghany and Jalili [2014]
implement GLP and BLISS as identification protocols on constrained devices using the
CDT and Bernoulli sampling.

Another interesting approach to reduce the performance impact of rejections is the
discrete Ziggurat [Buchmann et al. 2013]. The algorithm requires the computation of
m same-area rectangles with the left corners on the y-axis and the right corners on the
graph of the probability distribution function. The entire area under the graph is then
covered by rectangles and a rectangle Ri can efficiently be stored by just storing the
coordinates (xi, yi) of the lower right corner. To sample a value, a rectangle Ri is first
sampled uniformly at random. The next step is to uniformly choose a value x within
the sampled rectangle. If this x value is smaller or equal to the x coordinate of the
previous rectangle, x is accepted, because all points (xj , yj) ∈ Ri with xj ≤ xi−1 defini-
tively lie within the area covered by the graph. Otherwise, one has to sample a value
y and compute the exp(·) function to determine whether a value gets rejected or ac-
cepted [Oder et al. 2014]. The biggest disadvantage of the Ziggurat algorithm seems to
be the necessity to perform regular rejection sampling (although infrequently). How-
ever, Buchmann et al. [2013] show that the performance in software is good compared
to other algorithms and also on microcontrollers [Oder et al. 2014] the performance im-
pact of rejections is acceptable. As of yet, there are no published results for hardware
implementations, but an instantiation might require a special purpose circuit for the
rejection sampling (probably computing exponentiations up to a high precision) which
is supposed to be very costly in terms of area consumption.

Rejections can be avoided completely by using table based samplers. One option
is the Knuth-Yao algorithm [Dwarakanath and Galbraith 2014] which constructs a
binary tree from the probability matrix and then a random walk is used to sample an
element. The probability matrix consists of the binary expansion of the probabilities
of all x ∈ [0, τσ] ignoring leading zero digits. The matrix determines a rooted binary
tree with internal nodes that always have two successors, as well as terminal leaves.
The leaves are labelled with the value that is returned if this leaf is reached during
the random walk through the tree. The number of leaves at level n is equal to the
number of 1’s in column n of the probability matrix (starting with column 0). The row
in which a 1 appears is used as label for one of the leaves. All remaining nodes become
internal nodes with two successors that get labelled the same way. An implementation
of the Knuth-Yao algorithm on reconfigurable hardware for small standard deviations
is given by Roy et al. [2013] (see [Roy et al. 2014] for an extended version) and for
microcontrollers by Oder et al. [2014] and Clercq et al. [2014].

Another rejection-less method to sample from a Gaussian distribution is the cumu-
lative distribution table (CDT) [Peikert 2010]. For this method, a table of cumulative
probabilities pz = Pr(x 6 z : x← Dσ) are computed for integers z ∈ [−τσ, ..., τσ] with a
precision of λ-bits. For a uniformly random value x chosen from the interval [0, 1), the
integer y ∈ Z is then returned for which it holds that pz−1 ≤ x < pz. The comparisons
can be performed efficiently without using floating point numbers and in a lazy man-
ner. The CDT approach is compared to other software samplers by Buchmann et al.
[2013] and also used in the software implementation of BLISS [Ducas et al. 2013]. The
performance of the sampler and the whole BLISS scheme is very good and supported
by optimisations, like and usage of a set of guide tables to narrow the search radius of
the binary search to find the x for which it holds that pz−1 ≤ x < pz. The disadvantage
of the CDT approach is clearly large tables which are acceptable in software but too



expensive for a hardware implementation. This problem is addressed by Pöppelmann
et al. [2014], where an optimised floating point representation and Kullback-Leibler
divergence is used to further reduce the table size. The most significant improvement
is an application of the Gaussian convolution lemma which states that, under some
smoothness condition for x1, x2 ← DZ,σ′ , the value x = x1 + k2x2 is distributed ac-
cording to D√σ′2+kσ′2 . Thus the size of the pre-computed table is massively reduced, as
instead of a sampler for σ ≈ 215, two samples from σ′ ≈ 19.3 are needed for k = 11.
Also, the impact on speed is not too high, as the guide tables further reduce the num-
ber of required comparisons due to the smaller σ′. Compared with an implementation
of the Bernoulli sampling, the CDT requires roughly half of the device resources for
comparable throughput. It should further be noted that the usage of the convolution
lemma is not restricted to the CDT sampler, and evaluation of the impact for others
samplers is not available. However, for the CDT sampler it seems particularly suitable
as the table size was reduced while still maintaining high speed.

5. SUMMARY AND EVALUATION

In this section a summary is provided of implementation results for practical lattice-
based signature schemes and also results for classical schemes from the litera-
ture. As discussed in Section 3.1, there are currently no practical instantiations
of the GGH [Goldreich et al. 1996] signature schemes and implementations of
NTRUSign [Hoffstein et al. 2003] like [Driessen et al. 2008] are vulnerable to crypt-
analysis, so they will not be consider further. Lattice-based schemes investigated here
for which implementation results are available are GPV [Gentry et al. 2008; Mic-
ciancio and Peikert 2012], LYU [Lyubashevsky 2012], GLP [Güneysu et al. 2012] and
BLISS [Ducas et al. 2013]. For a quick overview, all schemes considered for evaluation;
their secret-key, public-key and signatures sizes as well as available software (CPU)
results are summarised in Table III, however since these benchmarks are not all on
the same platform they are not all directly comparable (similarly in Table IV). The
fastest scheme with regard to signing and also with the smallest signature (5.6 kb)
is currently BLISS (implemented in plain C) due to the low amount of rejections, fast
Gaussian sampling using a large CDT table, and small parameters for n and q. The
structural disadvantage of GLP (more rejections, larger n and q) is almost compensated
by the optimised implementation by Güneysu et al. [2013] using assembly optimisation
and vectorisation (i.e. AVX extensions). As verification almost only requires polynomial
multiplication, the vectorised GLP implementation is twice as fast as BLISS.

Thus in the future, it is expected that improvements regarding BLISS as the vectori-
sation ideas of Güneysu et al. [2013] could also be applied. Moreover, for the signing
procedure of BLISS, the impact of higher security levels on performance is moderate
as n and q stay the same, with the significant changes being in the Gaussian sam-
pler and number of rejections. As Gaussian sampling is not needed for verification, the
runtime of verification is basically independent of the security level. The LYU imple-
mentation by Weiden et al. [2013] is not competitive, mainly due to larger parameters
and also because the implementation uses slow rejection sampling and relies on the
NTL library for basic arithmetic. For GPV [Gentry et al. 2008], initial outputs and
key sizes were many megabits long and even with improvements by Bansarkhani and
Buchmann [2013], signature and key sizes are still large in practice, around 250 kb
for security of around 100-bits. With the improvements proposed by Micciancio and
Peikert [2012], their scheme alleviates the sizes of the signatures and keys to roughly
100 kb, a drastic improvement over GPV; however for practical applications this is still
significantly large and the implementation cannot compete with GLP or BLISS.



Table III: A summary of lattice-based DSSs and schemes based on classical assump-
tions. Most results are taken from Ducas et al. [2013] and were benchmarked on an
Intel Core i7 at 3.4 GHz, 32GB RAM with openssl 1.0.1c. The GLP-I [Güneysu et al.
2013] (Intel Core i5-3210M), LYU [Weiden et al. 2013], GPV [Bansarkhani and Buch-
mann 2013] (both originally AMD Opteron 2.3 GHz) performance has been scaled to
3.4 GHz based on cycle counts.

Scheme Security Sign. Size sk Size pk Size Sign./s Ver./s

GPV 100-bits 240 kb 191 kb 300 kb 48 370
LYU 100-bits 103 kb 103 kb 65 kb 36 260
GLP-I 80-bits 9.5 kb 2 kb 12 kb 5300 75500
BLISS-I 128-bits 5.6 kb 2 kb 7 kb 8000 33000
BLISS-II 128-bits 5 kb 2 kb 7 kb 2000 33000
BLISS-III 160-bits 6 kb 3 kb 7 kb 5000 32000
BLISS-IV 192-bits 6.5 kb 3 kb 7 kb 2500 31000

RSA-2048 112-bits 2 kb 2 kb 2 kb 800 27000
RSA-4096 128-bits 4 kb 4 kb 4 kb 100 7500
ECDSA-256 128-bits 0.5 kb 0.25 kb 0.25 kb 9500 2500
ECDSA-384 192-bits 0.75 kb 0.37 kb 0.37 kb 5000 100

Regarding those implementations on constrained devices or microcontrollers; Oder
et al. [2014] target an ARM Cortex-M4F microcontroller, which compares different
samplers (Bernoulli, Knuth-Yao and Discrete Ziggurat) and running at 168 MHz; the
device produces 28 signing, 167 verification and 0.46 key generation operations per
second. Boorghany et al. [2014] and Boorghany and Jalili [2014] provide an implemen-
tation of GLP and BLISS used as identification scheme on 8-bit architectures (Atmega
and ATxmega), showing that lattice-based DSSs perform well even on very constrained
devices. The Gaussian sampler is based on the CDT and the table currently fills a
large part of the flash. However, the techniques of Pöppelmann et al. [2014] should
be directly applicable to reduce the table size with a hopefully moderate impact on
runtime. As the signature schemes are implemented as identification schemes their
runtimes are not discussed.

For reconfigurable hardware, results are available for GLP and BLISS and are sum-
marised in Table IV. While the speed of the GLP implementation, with roughly 1000
signing and verification operations per second, is good in comparison with classical
schemes, the implementation in [Güneysu et al. 2012] and particularly the usage of
schoolbook multiplication is suboptimal given works on fast multiplication like [Roy
et al. 2014]. The BLISS implementation by Pöppelmann et al. [2014] uses the NTT
multiplier proposed by Pöppelmann and Güneysu [2012] and achieves high through-
put for signing and verification. The resource consumption is also reasonable and the
design fits on low-cost Spartan-6 devices. Usage of the improved NTT multiplier design
by Roy et al. [2014] might even give a further reduction of the resource consumption.
For BLISS, two variants are given; one implementing the improved CDT approach and
another one using the Bernoulli techniques of Ducas et al. [2013].

6. CONCLUSION

In this paper, motivations for the future development of cryptography in a post-
quantum world, specifically developments in lattice-based cryptography, are discussed.
Furthering this, introductions are given to the theory of lattices, lattice-based cryptog-



Table IV: A summary of hardware instantiations of DSSs on Virtex-5(V5) and Spartan-
6 (S6), comparing those based on lattice problems (GLP [Güneysu et al. 2012] and
BLISS-I [Pöppelmann et al. 2014]) with those of RSA and ECDSA (results taken from
Pöppelmann et al. [2014]).

Scheme Security Description Device Resources Ops/s

GLP-I (Sign) 80-bits q = 8383489, n = 512 S6 LX16 7,465 LUT/ 8,993 FF/
28 DSP/ 29.5 BRAM18

931

GLP-I (Ver) 80-bits q = 8383489, n = 512 S6 LX16 6,225 LUT/ 6,663 FF/
8 DSP/ 15 BRAM18

998

BLISS-I (Sign) 128-bits CDT sampler S6 LX25 7,491 LUT/ 7,033 FF/
6 DSP/ 7.5 BRAM18

7,958

BLISS-I (Sign) 128-bits Bernoulli sampler S6 LX25 9,029 LUT/ 8,562 FF/
8 DSP/ 6.5 BRAM18

8,081

BLISS-I (Ver) 128-bits - S6 LX25 5,275 LUT/ 4,488 FF/
3 DSP/ 4.5 BRAM18

14,438

RSA (Sign) 103-bits RSA-2048; private key V5 LX30 3,237 LS/ 17 DSPs 89

ECDSA (Sign) 128-bits Full ECDSA; secp256r1 V5 LX110 32,299 LUT/FF pairs 139

ECDSA (Ver) 128-bits Full ECDSA; secp256r1 V5 LX110 32,299 LUT/FF pairs 110

raphy and digital signature schemes so that a thorough survey of lattice-based digital
signature schemes can be presented.

With respect to the digital signature schemes, the first shown to be based on the
hardness of lattice problems are the GGH/NTRUSign signatures and known not to be
secure hence their exclusion from formal description. The next class of schemes, hash-
and-sign signatures, once held promise for practical instantiations but have recently
departed from inclusion in future research. This is mainly due to the signatures show-
ing almost complete infeasibility for applications on constrained devices, a feature that
is clearly essential given the diversity and scope of future technology.

With the addition of more favourable results shown by Fiat-Shamir signatures, it is
no surprise that this has significantly shifted the research focus, giving predominance
to the more modernised schemes in this area, such as BLISS. Due to the very excit-
ing results shown in recent instantiations of BLISS on FPGAs by Pöppelmann et al.
[2014] (≈ 8000 signatures per second) and on microcontrollers by Oder et al. [2014]
(28 signatures per second), in both instances outperforming RSA and ECC for compa-
rable security levels, lattice-based digital signature schemes are now at a stage to be
considered for real-world applications.

7. FUTURE WORK

Based on the survey of DSSs conducted in this paper, the main area of future research
for lattice-based DSSs seems to be the optimisation and implementation of schemes
based on the Fiat-Shamir model. Specifically BLISS, which shows very good perfor-
mance and is thus a candidate for integration into other constrained systems and de-
vices like smart cards and microcontrollers [Boorghany and Jalili 2014]. Integrating
the scheme with respect to highly-optimised software is also a possible area for future
work (similar to [Güneysu et al. 2013]).

An interesting area of future research would be to evaluate the practical implications
of the compression algorithms by Bai and Galbraith [2014] or optimisations to BLISS



by Ducas [2014]. Moreover, it is not clear whether theoretical improvements to GPV-
based schemes can make them competitive.

Additionally, further research is needed into the parameters (and security analyses)
of these schemes. This would build upon research such as [Rückert and Schneider
2010], which would mean parameter selection becoming much more explicit in lattice-
based cryptography.

One of the most time consuming components for hardware implementations of
lattice-based cryptography is currently polynomial multiplication. Making this stage
efficient has been well studied [Pöppelmann and Güneysu 2012; Göttert et al. 2012;
Aysu et al. 2013; Roy et al. 2014], with most instantiations adapting from special-
ist techniques by Karatsuba and Ofman [1963] (O(nlog 3)), Cooley and Tukey [1965]
(O(n log n)), Pollard [1971] (O(n log n)) or Moenck [1976] (O(n log n)). Optimising such
a stage is arguably the most critical in hardware due to the computationally intensive
operations, as such, this is still an important focus for research for implementations
on larger devices [Pöppelmann and Güneysu 2012; 2013; Göttert et al. 2012; Aysu
et al. 2013] and on lightweight devices [Boorghany and Jalili 2014; Pöppelmann and
Güneysu 2014; Oder et al. 2014].

Another module pertaining to one of the more computationally expensive in hard-
ware is the Gaussian sampling stage. Dwarakanath and Galbraith [2014] and Roy
et al. [2013] look into different approaches to efficiently compute such a stage for con-
strained devices. As shown by [Pöppelmann et al. 2014] and [Oder et al. 2014] the
CDT approach is best suited for larger devices with the Bernoulli approach showing
efficiencies on smaller devices. Due to its computational importance, further research
into making this stage more efficient could result in significant improvements overall.

As lattice-based DSSs become more practical and publicly available, further attack
vectors like side-channel analysis (SCA) [Kocher et al. 1999] have to be considered. At-
tacks such as timing and fault injection attacks, power, electro-magnetic analysis and
advanced machine learning-based attacks are serious threats to many real-world im-
plementations. Highly secure algorithms such as the Advanced Encryption Standard
(AES) or ECC are easily breakable if an attacker has physical access to the security
device, unless appropriate countermeasures are built in. So far there has been very
little research conducted on the vulnerabilities of lattice-based cryptographic imple-
mentations to physical attacks (a first work is [Roy et al. 2014]). It is anticipated that
there may be a particular vulnerability with respect to algorithmic parts with variable
runtime, for instance Gaussian and rejection sampling, which are major components
of many lattice-based algorithms.

An interesting area of theoretical research looks into the security of DSSs in the
quantum world. Specifically, relating to the DSSs that use random oracle construc-
tions and whether they are still secure to a quantum adversary. Although making the
DSSs less efficient, schemes by Gentry et al. [2008] and Lyubashevsky [2012] are re-
spectively shown by Boneh and Zhandry [2013] and Dagdelen et al. [2013] to be secure
to such an adversary, creating the quantum random oracle model. This could also mo-
tivate an important area for future research, such as proving security for more DSSs to
a quantum adversary or possibly creating a generic technique, that could turn a DSS
secure in the random oracle model to that in the quantum random oracle model.
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Léo Ducas. 2014. Accelerating Bliss: the geometry of ternary polynomials. IACR Cryptology ePrint Archive
2014 (2014), 874.
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