
SVM Training Phase Reduction Using Dataset Feature Filtering for
Malware Detection

O'Kane, P., Sezer, S., McLaughlin, K., & Gyu Im, E. (2013). SVM Training Phase Reduction Using Dataset
Feature Filtering for Malware Detection. IEEE Transactions on Information Forensics and Security, 8(3), 500-
509. https://doi.org/10.1109/TIFS.2013.2242890

Published in:
IEEE Transactions on Information Forensics and Security

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2013 IEEE.
Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Open Access
This research has been made openly available by Queen's academics and its Open Research team.  We would love to hear how access to
this research benefits you. – Share your feedback with us: http://go.qub.ac.uk/oa-feedback

Download date:13. May. 2024

https://doi.org/10.1109/TIFS.2013.2242890
https://pure.qub.ac.uk/en/publications/f382a397-cfa6-439a-b2e5-f20a41bfafe3


SVM Training Phase Reduction 

using Dataset Feature Filtering 

 
Abstract—Obfuscation is a strategy employed by malware 

writers to camouflage the telltale signs of malware and thereby 

undermine anti-malware software and make malware analysis 

difficult for anti-malware researchers.  This paper investigates 

the use of supervised learning machines to identify malware and 

investigates the problems of feature identification and feature 

reduction.  We present several methods of filtering features in 

the temporal domain prior to applying the reduced feature set to 

the learning machines.  The findings have identified several 

methods of feature reduction and are presented their viability as 

filters are assessed. 

Keywords-component; Obfuscation, Packers, Polymorphism, 

Metamorphism Malware, KNN, SVM 

I. INTRODUCTION 

Recent years have seen massive growth in malware, with 

signature detection and monitoring suspected code for known 

security vulnerabilities becoming ineffective and intractable. 

In response, researchers need to adopt new detection 

approaches that outmanoeuvre the different attack vectors and 

obfuscation methods employed by the malware writers.  

Detection approaches that use the host environment’s native 

op-codes at run-time will circumvent many of the malware 

writers’ attempts to evade detection.  One such approach, as 

proposed in this paper, is the analysis of op-code density 

features using supervised learning machines performed on 

features obtained from run-time traces.  In further research we 

intend to expand the detection methods by investigating N-

gram size, which will dramatically increase the number of 

features.  With this anticipated explosion of features we have 

chosen to investigate methods to prune irrelevant features. 

While Principle Component Analysis (PCA) is a popular 

method to reduce features in subspace, this paper aims to 

identify feature reduction in the temporal (original dataset) 

space. 

Others have carried out research into indentifying malware 

based on statistical op-code analysis, such as Lakhotia et al [1] 

that presented a static detection of obfuscated calls relating to 

push, pop and ret op-codes mapped to stack operations.  The 

approach presented in this paper performs dynamic analysis 

and evaluates the full spectrum of op-codes, which builds 

upon the work carried out by Bilar [2]. 

For large datasets, or costly (computation) distance 

function, the training process associated with learning 

machines can become intractable.  Thus, the feature explosion 

that occurs with N-grams for large values of N needs to be 

addressed.  This paper investigates several approaches to 

filtering out irrelevant features. 

The remainder of this paper is laid out as follows: Section 

II gives an overview of the approach.  Section III describes the 

dataset.  Section IV details the test platform and monitoring 

tools. Section V details the Support Vector Machine 

configuration and the results obtained.  These results are used 

as a reference to gauge the successfulness of the filtering 

approaches.  Section VI gives a brief overview of competing 

malware detection strategy.  Section VII introduces and 

presents empirical data that characterise the different feature 

filtering approaches.  The penultimate section, VIII, 

summarises the results and key characteristics recorded during 

these experiments.  Finally, Section IX concludes by 

comparing the results with other research and details future 

work that will be carried out as part of this research. 

II. SYSTEM OVERVIEW 

The motivation for this research is to reduce the 

computational overhead required when N-gram analysis is 

performed on low-level fine grain data.   Therefore, 

developing a lightweight filter that will reduce the number of 

features to be processed will in turn reduce the computational 

overhead; thus making the training phase of the SVM 

approach a viable solution for N-gram analysis where large 

feature sets are generated.  Fig. 1 illustrates an overview of the 

approach taken in this paper.  The programs under 

investigation are run in a test environment with a debug tool 

monitoring the runtime op-codes.  After completion, the data 

is parsed into op-code histograms and after some conditioning 

the dataset is passed to the SVM to perform feature selection 

of the optimum features that can be used to detect malware.  

In parallel, the dataset is processed with various filtering 

algorithms in an attempt to identify the op-codes selected by 

the SVM.  The objective is that a lightweight filter can be 

identified and used to pre-process the dataset before feeding it 

to the SVM. 

 

 

Fig. 1 System Overview 

Dynamic

Environment

Program

Trace

Opcode

Parsing

Feature

Filter

SVM

Feature

Identification

Identify Filter with 

feature selection 

that matched the 

SVM selection

Compare

Results

Philip Okane
1
, Sakir Sezer

1
, Kieran McLaughlin

1
 & Eul Gyu Im2 

1Centre for Secure Information Technologies, Queen’s University Belfast, Northern Ireland, UK 
2Div. of Computer Science & Engineering, Hanyang University, Seoul, 133-791, Korea 

1{pokane17, sakir.sezer, kieran.mclaughlin}@ecit.qub.ac.uk, 2imeg@hanyang.ac.kr 



 

III. TEST PLATFORM 

The main challenge with dynamic analysis is to ensure that 

the malicious code path is executed during investigation.  

Three dynamic approaches exist: 1) Native (debugger), 2) 

Emulation and 3) Virtualization.  Each has to address malware 

evasion techniques that may attempt to fool the dynamic 

analysis into completing its analysis without running the 

malicious code [5]. 

While native environments present the malware with a real 

platform on which to run, this presents issues with control and 

‘clear up’ of the malware infection.  The program under 

investigation needs to be monitored during execution.  There 

are several debugger tools available to monitor and intercept 

programs - IDA Pro, Ollydbg and WinDb32, which are 

popular choices for malware analysis. 

A virtualization approach is chosen as it provides isolation 

by decoupling the virtual machine (malware environment) and 

the OS.  The isolation provided by a hypervisor in a 

virtualised system prevents the malware from infecting the 

host OS or other applications that are running on adjacent 

virtual machine on the same physical machine.  Prior to 

performing the analysis, the virtualized environment files 

(virtual images) are backed-up (snapshot).  After the analysis 

is complete, the infected files are discarded and replaced with 

the clean snapshot. 

The test platform consists of a QEMU-KVM hypervisor 

with Windows XP (SP3) installed.  Ollydbg is chosen because 

it is open source and supports the StrongOD plug-in to prevent 

the malware from detecting that it is being monitored. 

IV. DATASET 

Classification tasks involve separating data into training 

and test data.  Each training-set instance is assigned a target 

value/label i.e. benign or malicious.  The goal of the SVM is 

to construct a model that predicts the target values of the test 

data.  Table 1, lists the dataset with the benign files being 

Windows XP executables.  The dataset is constructed from 

runtime traces that are parsed to create histograms of op-code 

density.  The malware samples are restricted to programs that 

indicated that they are packed or use encryption, which is 

determined by using the Ollydbg plug-in StrongOD. 

Table 1 Dataset 

 Dataset Training Validation 

Benign 260 230 30 

Malicious 350 310 40 

Total 610 540 70 

While there are 344 different Intel op-codes, only 149 

different op-codes are recorded during the captured datasets 

for all programs traced during this experiment.  The dataset is 

normalised by calculating the percentage density of op-codes 

rather than the absolute op-code count to remove time 

variance introduced by different run lengths of the various 

programs.  The dataset is sorted into most commonly 

occurring op-codes as illustrated in Fig. 2. 

 

Fig. 2 Histogram: Op-code Percentage 

 The dataset is marshalled into matrix format so that the 

data could be manipulated easily by Matlab, as detailed in 

Table 2. Note – the rank value versus structure size shows that 

there is a linear dependency between rows i.e. redundant 

information exists within the dataset. 

Table 2 Number of files in datasets 

Variable name Size (r/c) Rank Comment 

X 623/149 106 Total data 

Training 561/149 104 Model training 

Test 62/149 61 Validation data 

Label 1/149 N/A Training label 

An initial assessment of the data shows two key properties 

a) The distribution of the various op-codes does not show any 

consistent distribution shapes; rather op-code distribution 

changes greatly as illustrated by the difference between mov 

and ret op-codes, described later in VII: ‘Area of Intersect’.  

Therefore, no one data shape could be assumed and hence a 

non-parametric method should be used. b) The data values are 

a percentage of the op-codes within a particular program. For 

example, 0 means that op-code does not occur within that 

program or 0.25 means that 25% of the program comprises of 

that op-code.  To improve the performance of the SVM the 

data is linearly scaled (0, +1). 

V. SUPPORT VECTOR MACHINE 

Support Vector Machine (SVM) is a technique used for 

data classification and was introduced by Boser et al in 1992 

[4] and is categorised as a kernel method.  The kernel method 

algorithm depends on dot-products function, which can be 

replaced by other kernel functions that map the data into a 

higher dimensional feature space.  This has two advantages: 

Firstly, the ability to generate a non-linear decision plane and 

secondly, allows the user to apply a classification to data that 

do not have an intuitive dimensional vector space i.e. SVM 

training when the data has a non-regular or unknown 

distribution [16].  The dataset consists of 149 different op-

codes, each having their own unique distribution 

characteristics and therefore a SVM is an appropriate choice.  

As mentioned earlier, the data is linearly scaled to improve the 

performance of the SVM.  The main advantages of scaling are 

a) it avoids attributes with greater numeric ranges dominating 

those with smaller numeric ranges and b) it avoids numerical 

difficulties during the calculation as kernel values usually 

depend on the inner products of feature vectors, e.g. in the 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

Series1

M
o

v
A

d
d

D
ec

P
u

sh
C

m
p

R
et

Le
a

Te
st

C
al

l
Je A

n
d

P
o

p
X

o
r

Su
b

Jm
p

O
r

Sh
l

In
c

Sh
r

Le
av

e
Jl In

t
Ja Jb N

o
t

Jb
e

Jg
e

Js N
eg

se
te

Se
tg

e
Se

tn
e

xc
h

g
D

iv
Fl

d
cw

Fs
tc

w
Id

iv
Im

u
l

Jg Jl
e

Jn
s

Lo
d

s
M

u
l

N
o

p
Sb

b
Se

tl
e

Sh
rd

St
o

s
St

d
   

   

O
p

c
o

d
e

 o
c
c
u

rr
e

n
c
e

(p
e

rc
e

n
ta

g
e

 o
f 
to

ta
l 
o

p
c
o

d
e

 c
o

u
n

t)

Histogram of opcode occurrence

Histogram – Percentage of Op-code occurrence



case of the linear kernel and the polynomial kernel, large 

attribute values might cause numerical problems [17]. 

The RBF (Radial Basis Function) kernel is used as it is 

considered a reasonable first choice in that it provides a non-

linear mapping of samples into a higher dimensional space.  

This caters for instances where the relationship between the 

class label and attributes is non-linear.  

SVM is used to create a reference datum to validate the 

filter experiments that are presented in the subsequence 

sections.  The SVM is configured to traverse through the 

dataset searching for op-codes that have a positive impact on 

the classification of benign and malicious software.  The 

search starts with six op-codes scanning across the complete 

data sequence for all unique permutations for that number of 

op-codes.  The search is repeated for five and then four op-

code sequences.  An average of these results is sorted by most 

occurrences as illustrated in Fig 3, which show the most 

important op-codes as chosen by the SVM.  Only unique op-

codes are selected for each SVM classification test and no 

duplicates of repeated op-code patterns are processed.  Key 

points to note are: 

1) The 6 op-codes ja, adc, sub, inc, add and rep, each 

having an importance rating of more than 20% of the 

peak detection rate, are selected as the most important 

indicators for classifying benign and malicious software. 

2) mov has a negative impact on the classification and 

identification of software. i.e. when mov is part of the 

analysis data the output/classification is always incorrect. 

The mov has a high density (30% [2] and 40% in the 

presented dataset) in both benign and malicious software. 

3) Polymorphic and encryption based malware 

commonly use the xor instruction as the 

transfer/encryption function.  Despite the fact that several 

polymorphic and encryption based malware samples are 

used in both the training and validation dataset xor is not 

highlighted as an indicator of malware. 

 

Fig. 3 SVM Op-code Sensitivity 

VI. RELATED WORK 

There has been extensive research into the detection of 

malicious code using both static and dynamic analysis.  

Malware research can be categorised not only in terms of 

static and dynamic analysis but also in how the information is 

processed after it is captured.  Popular research methods 

include: Control Flow Graphs (CFG) for both course and fine 

grain analysis, State machines to model system behaviour, 

mapping stack operations and mechanisms to detect malicious 

behaviour for known vulnerabilities. 

CFG analysis has played a key role in the research.  Bilar [6] 

compared the statically generated CFG of benign and 

malicious code.  Their findings showed a difference in the 

basic block count for benign and malicious code.  Bilar 

concluded that malicious code has a lower basic block count, 

implying a simpler structure: Less interaction, fewer branches 

and less functionality. 

Christodorescu et al [7] presented a semantic aware 

technique that used CFG model checking to identify 

components of malware using previously specified malicious 

code templates.  These templates are constructed using a 3-

tuple signature that consists of instructions, variables and 

symbolic constants.  They addressed some issues relating to 

obfuscated code such as ‘dead code’ insertion, register 

reassignment and code sequencing. 

Vinod et al [8] proposed a method that constructed CFG 

nodes from blocks of de-obfuscated (Normalised) code of a 

known malware program.  These blocks of instructions are 

compared for similarities to identify variants of the malware.  

Zhang et al [9] proposed a similar method that pattern-

matched code fragments to determine if two code fragments 

are similar enough to exhibit functional equivalency. 

Bonfante et al [10] extended this research by using a 

reduced CFG to reduce the effects of code reordering as used 

in obfuscation. Their experiments showed that CFG size 

affected the false positive error rate i.e. decreasing the CFG 

size increased the false positive error rates. 

Vulnerabilities have been the Achilles heel of software 

security, which malware writers have continuously targeted, 

with stack exploits being a major issue.  Lakhotia et al [1] 

presented a method to detect obfuscated calls relating to push, 

pop and ret that are mapped to stack operations.  An abstract 

stack model is constructed from results obtained from 

program executions.  Their work does not address situations 

where push and pop instructions are decomposed into multiple 

instructions, such as directly manipulating the stack pointer 

using mov commands. 

The lack of user input validation has been another security 

weakness that has lead to many malware attacks.  Newsome et 

al [11] proposed a dynamic taint analysis for automatically 

detecting malware attacks.  Their approach is fine-grained 

analysis that could detect overwrite attacks that utilised 

vulnerability and exploits. 

Monitoring program behaviour to determine malicious 

activity has been another avenue of research.  Ellis et al [12] 

proposed a dynamic detection system that used behavioural 

signatures of worm operations to identify worms. One such 

behaviour is that a worm acts like a server when infecting a 

host and after the infection is complete, it changes its 

behaviour from a server to client as it attempts to infect 

adjacent hosts. 

OS calls analysis has also provided an avenue of research.  

Okazaki et al [13] proposed an anomaly-based approach to 

analyse program behaviour, based on profiling OS calls on a 

Unix platform, and checking whether the system is being used 

0

0.2

0.4

0.6

0.8

1

1.2

-J
A

-A
D

C

-S
U

B

-I
N

C

-A
D

D

-R
E

P

-S
H

R
D

-F
IN

IT

-S
H

L

-M
O

V
S

X

-F
C

O
M

P
P

-F
P

R
E

M

-F
X

A
M

-F
A

B
S

-F
S

U
B

-X
L

A
T

-J
B

E

-F
X

C
H

-C
L

D

-J
O

-I
M

U
L

-S
E

T
L

E

-J
N

B

-M
U

L

-J
B

-N
E

G

-X
C

H
G

-S
B

B

-W
A

IT

-S
E

T
L

-S
A

R

-P
O

P
A

D

-O
R

-A
N

D

-F
S

T
C

W

Support Vector Machine

Op-code Importance

R
e

la
ti

v
e

 I
m

p
o

rt
a

n
c

e



in a different manner.  The model is constructed by ranking 

the OS calls based on their popularity during normal operation.  

The model is used to compare the behaviour of running 

programs using a distance algorithm that eliminated system 

variance.  Hofmeyr et al [14] also used anomaly detection 

based upon the sequence of OS calls. A normal profile 

obtained from the sequence of OS calls is compared against 

suspected binaries using hamming distance calculated on the 

sequences of OS calls. 

Sekar et al [15] used Finite State Automata (FSA) to 

represent OS call sequences. The binary is executed multiple 

times and recorded the OS calls to create the FSA models.  

Anomaly detection is achieved by comparing the FSAs with 

the run-time sequence of OS calls.  Ruschitzka et al [16] 

presented an approach based on the sequence of OS calls that 

is similar to [15]. 

Malware has often attempted to hide its presence by 

injecting itself into other file and performing entry point 

obfuscation.  Rabek et al [18] proposed an anomaly based 

technique that used both static and dynamic analysis to detect 

injected, dynamically generated and obfuscated code.  During 

static analysis the location of each OS call is identified within 

the program and then when the program runs, each OS call is 

verified against the original location. 

N-grams are based on a signature approach that relies on 

small sequences of strings or byte codes that are used to detect 

malware.  Santos et al [19] demonstrated that n-gram 

signatures could be used to detect unknown malware. The 

experiment extracted code and texts fragments from a large 

database of programs executions to form signatures that are 

classified using machine learning methods  

Sekar et al [20] implemented an n-gram approach and 

compared it to a FSA approach. They evaluated the two 

approaches on httpd, ftpd, and nsfd protocols. They found that 

the FSA method has a lower false-positive rate when 

compared to the n-gram approach.  Li et al [21] describe N-

gram analysis, at byte level, to compose models derived from 

learning the file types the system intends to handle. Li et al 

found that applying an N-gram analysis at byte level (N=1) on 

PDF files with embedded malware proved an effective 

technique of detecting malicious PDF files. 

However, Li et al only detected malware embedded at the 

beginning or end of a file; therefore any malware embedded in 

the middle of the file will go undetected.  Li et al suggested 

that further investigation needed to be carried out on the 

effectiveness of N=2, N=3 etc. 

In this vein, we have chosen to focus our research on the 

identification of malware using N-grams obtained from run-

time program traces.  We started with N=1 and have 

demonstrated that malware can be identified with a reduced 

set of features.  Initial investigation has shown that for N=1, 

149 features are produced in the raw dataset.  Increasing N=2 

produced 8092 features (no filtering).  Therefore, before 

continuing the research by increasing N, it is prudent to 

establishing a basis to filter the dataset to prevent feature 

explosion.   To this end, this research focuses on finding a 

filter to remove redundant features. 

The key weakness of static analysis is that the code 

analysed may not be the code that actually runs, which is 

particularly true for obfuscated programs that employ 

polymorphic or metamorphic techniques.  Due to the high 

level of obfuscation employed by malware writers, dynamic 

analysis is used to find indicators of malware. 

VII. OP-CODE PRE-FILTERING 

N-gram analysis presents a dimensionality problem in 

terms of the number of raw features produced and if left 

unfiltered would result in a SVM training phase with a high 

computation cost.  To reduce this effort and narrow the area of 

search, this research aims to identify filters that can select the 

optimum features prior to feeding them to a SVM.  The 

hypothesis is: Malware that employs evasion techniques will 

exhibit telltale signs in terms of run-time op-codes; such as a 

higher density of instructions that are commonly used in 

polymorphic engines within malware.  Therefore filtering out 

irrelevant op-codes and allowing the SVM to focus on a 

subset will result in a fast training phase. 

A. Hypothesis test 

Firstly, considering the null hypothesis: Benign and 

malicious software produce the same op-code distributions; as 

rejectoHa

oHo








 

Ho – The sample data belong/fits into the distribution of the 

original dataset. 

Ha – If the sample data does not fit into the original dataset, 

the inference is that the two datasets are different. 

As both sets of data are large and the mean and standard 

deviation can be calculated, the critical Z formula is used as 

shown; 

  
 ox 

)/( n
 

Where –  Z = test statistic; 

x = test data mean; 

µ0 = mean of parent group; 
n = Sample size;  

 = standard deviation of population; 

Table 2 lists the calculated Z values.  A large value of Z 

indicates that those distributions are likely to belong to 

different groups and are therefore more likely to indicate a 

difference between benign and malicious software.  On the 

other hand, a small value of Z would indicate that the two 

distributions belong to the same group and are therefore 

unlikely to make a good indicator of malware.  The Z values 

do not present any meaningful correlation to those op-codes 

selected by the SVM and therefore would not make an 

appropriate filter, but are listed here for completeness. 

B. Area of intersect 

Secondly, consider the simplistic characteristics of benign 

and malicious op-codes with a normal distribution as shown in 

Fig. 4.  The plots are grouped into density curves for benign 



and malicious software of a single op-code. The horizontal 

axis relates to the percentage of a given program that is made 

up of a particular op-code and the vertical axis indicates the 

number of programs with that percentage of op-code.  The key 

feature to note is the overlapping area of the two density 

curves. The greater the difference between the mean of the 

curves and narrower the standard deviation reduces the 

overlapping area and therefore reduces the interference and 

corresponding misclassification of the benign and malicious 

software. 

 

Fig. 4 Ideal characteristics 

This implies that a simple analysis of low order statistics, such 

as calculating the product of the mean and the inverse of the 

standard deviation to determine the overlapping area would 

yield the best indicators (op-codes) of benign and malicious 

software.  Hence, calculating the overlapping area for the 

density curves should provide a numerical value to those 

indicators. Using- 

   
           

 
 

Where –  A = area of benign density curve. 
B = area of malware density curve. 

C = area of intersect of the two density curves. 

The above equation produced the results shown in Fig. 5.  

These results need to be placed in a context that provides 

meaning in term of relative importance.  Those op-codes 

chosen by the SVM as the optimal indicators are highlighted. 

It can be seen that those op-codes chosen by the SVM do 

correlate in part with those op-codes sorted by the area least 

intersect. While it is not a direct match, setting a filter criteria 

that selects op-codes with a area of insect of less than 50% 

does not eliminate any of the optimal op-codes and removes 

75% of those op-codes that provide no values in the 

classification of benign and malicious software.  However, a 

important op-code (adc) has been removed by the ‘area of 

insect filter’ and therefore cannot be considered a useful tool 

for removing irrelevant op-codes. 

 

Fig. 5 Benign & Malicious area of intersect 

The SVM selected: ja, adc, sub, inc, rep and add as 

indicators of benign and malicious software.  The second most 

important op-code adc is filtered out by the ‘area of intersect’ 

filter which contradicts the hypothesis that op-codes with the 

least area of intersect make the best indicator of benign and 

malicious software. This is clearly not the case.  Two further 

points need to be considered.  Firstly, the overall density of a 

particular op-code needs to be considered in the context of 

their area of intersect and its population as it needs to be 

significantly important to be considered as an indicator of 

benign and malicious software.  Taking ja and rep op-codes 

(SVM selected range) as reference points, it can see from the 

data presented in Table 2 that the other op-codes relating to 

population and area of intersect fall within the characteristics 

of ja and rep.  Therefore the area of intersect does not tell the 

full story as many other op-codes such as ret, call, etc have 

lower area of intersect than ja and a population that lays 

between both rep and ja.  In addition the ‘area intersect’ filter 

removes the adc op-code.  Low dimensional analysis does not 

consider covariance i.e. the relationship between the 

distributions of one op-code with that of another op-code. 

Table 2 Op-code Statistics 

Op-code % occurrence % area of 

intersect 

Z-Value 

add 6.10 10.76 0.35378 

test 3.16 15.07 0.52379 

sub 2.67 16.25 0.463953 

rep 6.31 17.53 0.455446 

ret 1.85 18.82 0.504489 

call 1.91 23.30 0.536635 

jnb 1.41 23.50 0.419838 

inc 5.24 24.59 0.543303 

movzx 1.66 24.62 0.9687 

jb 1.66 25.83 0.499322 

dec 1.67 26.28 0.535424 

lea 2.56 29.76 0.896827 

stos 0.45 30.44 0.813775 

pop 3.51 30.72 0.649154 

xor 2.29 32.29 0.821013 

ja 1.17 32.20 0.641516 

and 1.01 34.72 0.962486 

sbb 0.09 35.32 0.784135 

shr 0.67 35.44 0.776227 

jmp 1.83 36.98 0.677423 

leave 0.45 37.46 0.395372 

nop 0.34 40.72 0.848149 

jbe 0.27 39.57 0.57276 

shl 0.55 40.92 0.600475 

jl 0.38 42.52 0.896412 

sar 0.25 44.27 0.64066 

movsx 0.23 45.11 0.647835 

je 4.52 45.18 0.851666 

jge 0.27 48.26 0.708946 

imul 0.30 48.71 0.93168 

push 7.99 48.98 0.54069 

repne 0.32 49.28 0.732861 

P
ro

b
a

b
ili

ty
 d

e
n

si
ty

OpCode occurance

Benign Malicious

mean

standard

deviation

Small area 

of intersect P
ro

b
a

b
ili

ty
 d

e
n

si
ty

OpCode occurance

Benign
Malicious

Large area of intersect

Implies greater error and 

misclassification

0

10

20

30

40

50

60

A
D

D

T
E

S
T

S
U

B

R
E

P

R
E

T
N

C
A

L
L

JN
B

IN
C

M
O

V
Z

X JB

D
E

C

P
O

P

X
O

R

L
E

A

S
T

O
S

O
R JA

A
N

D

S
B

B

S
H

R

JM
P

L
E

A
V

E

N
O

P

JB
E

S
H

L JL

S
A

R

M
O

V
S

X JE

JG
E

IM
U

L

P
U

S
H

R
E

P
N

E

Benign & Malicious Area on Intersect

P
e

rc
e

n
ta

g
e

 A
re

a
 o

f 
in

ts
e

c
t Op-codes with an intersect area 

greater than 50% are not shown

1

4

3

5

6

SVM optimal op-code ranked

Key -
?



As shown in Fig. 5, it is not always the case that op-codes 

with a low area of intersect produce the best indicators of 

benign and malicious software.  This requires a closer 

inspection of the op-code distribution curve to understand the 

characteristics that make the best indicators chosen by the 

SVM over the other op-codes that have similar area of 

intersect and population. 

C. Linear Programming 

The previous explanation (Fig. 4) considered a normal 

probability distribution.  Therefore, further investigation is 

required to understand how the area under each curve is 

interpreted when a decision plane is applied.  Linear 

Programming (LP) [23] is a technique that is applied to 

optimise a linear function when subject to linear equality and 

inequality constraints.  LP can be applied to the classification 

of benign and malicious software.  The components of LP are- 

Constraints - The data is in the form of a probability 

density curve. The horizontal axis represents the makeup of a 

program i.e. the op-code percentage that makes up a program 

and the vertical axis, representing the number of programs that 

have that percentage of op-codes.  The probability density is 

based on a percentage of op-code counts obtained from traces 

during the execution of a program.  The minimum value is 0 

and the maximum is the percentage of the most occurring op-

code within the captured dataset (mov).  Thus the maximum 

value is 0.4 (40%). 

Decision Variable - this is the value found during the 

search for the maximum or minimum point.  It is the 

percentage of a particular op-code that yields the greatest area 

of benign and malicious density that lies either side of the 

decision plane. 

Objective function - is the numerical expression used to 

define the goal of the task.  The mathematical input to the LP 

is the cumulative probability as the decision variable is 

incremented across the range (illustrated in Fig. 6).  Therefore 

the maximum classification would be achieved when the two 

density curves do not intersect and their entire area lies on 

their respective side of the decision plane, as- 

BwhenABA  ;1;1  
 

 

Fig. 6 Linear Programming Optimisation 

Listed below is the Matlab script used to calculate the 

optimum decision point. 

 

 

Fig. 7 ret op-code probability density curve 

Fig. 7 shows the density distribution of the ret op-code for 

both benign and malicious software.  It can be seen that a 

software program with a ret density of 0.001 is much more 

likely to be malicious that benign software.  To distinguish 

between benign and malicious software and to determine the 

likelihood of a correct classification, the optimum value has to 

be obtained and the respective areas that lie either side of the 

optimum decision plane have to be assessed.  The cumulative 

density curves are calculated, as the decision variable is 

incremented across the density curves, as shown in Fig. 8. 

 

Fig. 8 Cumulative Probability Density with Cost function 

In Fig. 8, a cost function calculates the area under each 

curve and identifies the optimum decision point (0.022).  This 

point marks the optimum value that should be used to 

maximise the correct classification of benign and malicious 

software.  Fig. 8 shows a cumulative probability density of 84% 

lying either side of a decision plane at 0.022.  Therefore, a 

software program with a value greater than 0.022 is highly 

likely (84%) to be benign software; and programs with values 

less than 0.022 are highly likely to be malicious. 

P
ro

b
a

b
il
it
y
 d

e
n

s
it
y

OpCode occurrence

Benign Malicious

Decision variable

mb m b

Decision variable

Benign
Malicious

MiiBb
i

 
0

)(1
4.0

MiiBm
i

 

stepSize = 0.001;

endofData = 0.4;

range = endofData/stepSize;

result1 = [];

result2 = [];

for i = 1:1: range

    result1 = [result1; ((sum(f(i:range))/sum(f)))];

    result2 = [result2; (1- (sum(f2(i:range))/sum(f2)))];

end;

result3 = abs(result1 - result2);

% minimum point that represents the maximum density either side of the 

decision plane.

min(result3)

Benign & Malicious Density Curve for ret

O
p

c
o

d
e

 o
c
c
u

re
n

c
e

 w
it
h

 a
 p

ro
g

ra
m

Percentage of  an opcode within dataset

Malicious software

Benign Software

LP Benign & Malicious Density Curve for ret

O
p

c
o

d
e

 o
c
c
u

rr
e

n
c
e

 w
it
h

in
 a

 p
ro

g
ra

m

Percentage of  an opcode within dataset

0.05 0.10 0.15 0.200.00 0.25 0.30 0.35 0.40

Descision plane

Benign Software Density curve

Malicious Software Density curve

Optimum Descision Plane

0.022



Considering ‘false friends’: Those op-codes that appear at 

first glance to have the potential to detect malicious software 

but fail to do so.  Fig. 9 shows the cumulative probability 

density for the je op-code with the decision plane optimised at 

0.045.  This example is purposely chosen as a worst op-code 

to demonstrate that the area of intersect and population are not 

the only contributing factors.  The optimum value yields a 

very poor predictor of malware as the area either side of the 

decision plane is 57% making is slightly better than guessing.  

Here we have seen that the je op-code had initially promising 

characteristics of a low area of intersect and a high population, 

yet the LP analysis of the je op-code showed that it only has a 

density of 57% either side of the decision plane.  The process 

is repeated for all the op-codes within this discussion and the 

results are listed in Table 3. 

 

 

Fig. 9 Cumulative Probability Density with Cost function 

Table 3 LP Decision Plane 

Op-

code 

Occurrence 

% 

area of intersect 

% 

Optimised 

Decision plane 

% 

pop 2.60 28.70 70 

push 8.87 48.98 64 

je 6.53 45.18 57 

add 4.35 10.75 56 

test 3.16 15.07 56 

sub 2.67 16.25 60 

rep 6.31 17.53 78 

ret 4.54 18.82 84 

call 4.60 23.30 78 

jnb 1.41 23.50 54 

inc 5.24 24.59 66 

mov 40.76 24.62/(49.7) 72 (unstable) 

jb 1.66 25.83 54 

dec 1.67 26.28 54 

lea 1.74 29.29 72 

stos 0.45 30.44 56 

pop 3.51 30.72 56 

xor 2.29 29.23 58 

ja 1.17 32.20 57 

While there are no clear boundaries of what makes a good 

or bad indicator of malicious software, the LP analysis has 

placed a numerical value upon those op-codes discussed in 

this section (Table 3).  Clearly op-codes with 50% of their 

area either side of the decision plane make very poor 

indicators of malware, whereas op-codes with a high area 

either side of the decision plane make better indicators.  

Therefore, using this criteria LP has demonstrated that cmp, 

push, je, add and pop are less effective that ret and lea. 

However, two op-codes remain of interest, call and mov.  The 

call op-code has a high area either side of decision place (78%) 

which merits further investigation.  While the mov op-code 

has an area of 72% either side of the decision plane, its 

behaviour when analysed by Pearson’s correlation, SVM and 

LP merits further examination as to why mov has a negative 

impact on malware identification. 

Fig. 10 shows the density distribution of the mov op-code 

for both benign and malicious software.  It can be seen that 

the distributions are substantially interleaved as compared to 

the ret op-code as shown in Fig. 7.  In addition, during 

analysis, it was noted that small changes in the calculation 

step size produced dramatic changes in the results.  In an 

attempt to stabilise the results, the data is processed using a 

KSdensity function, which is a Kernel density estimation 

function that performs data smoothing by projecting data 

population based on a normal kernel profile [25] and is shown 

in Fig. 11. 

 

 

Fig. 10 mov Density Distribution 

 

Fig. 11 KS Density Curve for mov 

Calculating the area of intersect for the KS density curve fit 

on the mov op-code resulted in an intersect area increasing 

from 15.55% to 49.70%.  Clearly, the granularity of the 

LP Benign & Malicious Density Curve for je

Percentage of  an opcode within dataset

Malicious Software Density curve

Optimum Descision Plane

O
p

c
o

d
e

 o
c
c
u

rr
e

n
c
e

 w
it
h

in
 a

 p
ro

g
ra

m

0.045

0.05 0.10 0.15 0.200.00 0.25 0.30 0.35 0.40

Benign Software Density curve

Decision Plane

Percentage of  an opcode within dataset

O
p

c
o

d
e

 o
c
c
u

rr
e

n
c
e

 w
it
h

in
 a

 p
ro

g
ra

m

Malicious Software

Benign Software

Density Distribution for mov

Percentage of  an opcode within dataset

Malicious Software Density curve

O
p

c
o

d
e

 o
c
c
u

rr
e

n
c
e

 w
it
h

in
 a

 p
ro

g
ra

m

0.05 0.10 0.15 0.200.00 0.25 0.30 0.35 0.40

Benign Software Density curve

Decision Plane

Malicious Software

Benign Software

KS Density Curve for mov



analysis of the mov op-code greatly affects the results and 

implies an unstable indicator.  

Fig. 12 shows both the raw density curve and its KS density 

curve fit for the call op-code.  The raw data shows 

interleaving and some clustering of the two density curves 

(benign and malicious) as highlighted by the KS density 

curves fit.  While this is an improvement over the mov op-

code, comparing it to the ret op-code as shown in Fig. 12, it 

can be seen that the ret op-code presents better separation 

between the two density curves (benign and malicious). 

Calculating the area of intersect for KS density fit on the call 

op-code increases the area slightly from 24.81% to 25.6%, 

implying stability as opposed to the unstable results seen with 

mov. 

Performing the same comparison (raw data versus KS 

density) for ret and lea gave 13.69% dropping to 6.81% and 

24.81% increasing to 25.63 respectively.  

 

 

Fig. 12 Distribution of call op-code 

 

 

Fig. 13 Distribution of ret op-code 

While the statistical analysis presented in this section aids 

the understanding and identification of those op-codes that 

make the best indications, their comparison to SVM ability is 

somewhat compromised as the SVM is more than the sum of 

the individual op-codes; it is the covariance matrix i.e. 

comparison between different variables.  The remapping 

performed by the SVM on the input dataset into feature space 

improves the data separation and thus improves both the 

accuracy and robustness of the classifier.  In addition, the 

SVM has the cumulative effect of considering a set of op-

codes rather than individual op-codes.  But, the relative 

importance of individual op-codes is valid. 

D. Subspace 

An alternative approach to determine the importance of the 

individual op-codes, thereby ranking their usefulness as 

classification features, is to investigate the eigenvalues and 

eigenvectors in subspace.  Principal Component Analysis 

(PCA) is a transformation of the covariance matrix and it is 

defined as [24]: 

    
 

   
                    

 

   

 

Where –    C =.Covariance matrix of PCA transformation; 

X=.dataset value; 

X   = .dataset mean; 

n and m = data length; 

This is a technique used to compress data by mapping the 

data into a subspace while retaining most of the 

information/variation in the data.  It reduces the 

dimensionality by mapping the data into a subspace and 

finding a new set of variables (fewer variables) that represent 

the original data.  These new variables are called principal 

components (PCs) and are uncorrelated and are ordered by 

their contribution (usefulness/eigenvalue) to the total 

information that each contain. 

Firstly, to determine the number of PCs that correlate to 

greater than 95% of the data variance, PCA is used.  The 

results show that eight values accounted for 99.5% of the 

variance; therefore the eight largest (most significant) 

eigenvalues are used to locate the most significant 

eigenvectors (meaningfully data). 

As PCA is an algorithm that operates on variance of data i.e. 

a covariance matrix of the training dataset, which is calculated 

in Matlab as follows: 

                     
             

          

Calculating the significant values by multiplying the 

significant eigenvector Column by the respective eigenvalues 

and then summing each row 

         

 

   

 

Where –    R = Sum of the matrix variance; 

C = Covariance; 

V = eigenvector; 

= EigenValue matrix; 

d= EigenValue scalar; 

The results are illustrated in Table 3, note 3->7 values are 

not shown due to layout considerations. 

Table 3 Ranking by Eigenvector 

Op-

code 

x[1..149] 

(10
-3

) 

2x[1..149] 

(10
-3

) 

..x[1..149] 

(10
-3

) 

8x[1..149] 

(10
-3

)  

 

   

 

(10
-3

) 

rep 4.79808 5.7494 .. 0.009 11.81529 

mov 6.78336 6.78336 .. 0.03066 9.05347 

Percentage of  an opcode within dataset

O
p

c
o

d
e

 o
c
c
u

rr
e

n
c
e

 w
it
h

in
 a

 p
ro

g
ra

m

Density Distribution for call

Benign

Malicious

Percentage of  an opcode within dataset

O
p

c
o

d
e

 o
c
c
u

rr
e

n
c
e

 w
it
h

in
 a

 p
ro

g
ra

m

Density Distribution for ret

Benign
Malicious

Out layer



add 2.8656 2.8656 .. 0.03066 8.06337 

push 2.23008 2.08845 .. 0.0693 6.69625 

adc 1.46304 1.80965 .. 0.0051 3.91844 

sub 0.74688 1.9006 .. 0.01953 3.60979 

inc 0.20928 0.20928 .. 0.03669 3.05887 

je 0.81024 0.6698 .. 0.0231 2.80649 

cmp 1.70304 0.1207 .. 0.06282 2.68178 

pop 0.96672 0.63155 .. 0.03018 2.44806 

test 0.79872 0.8789 .. 0.05628 2.25302 

ja 0.41568 0.95965 .. 0.1449 1.97699 

jnb 0.31392 0.7616 .. 0.11751 1.66773 

jb 0.25824 0.8279 .. 0.08028 1.54664 

call 0.6096 0.55845 .. 0.02712 1.54664 

Table 3 has been sorted based on the sum (largest first) of the 

eigenvectors and are displayed in Fig. 3 and is overlayed with 

those op-codes chosen by SVM as the optimal features for 

detecting malware.  The ‘eigenvector’ filter has not only 

correctly chosen those op-codes selected by the SVM but has 

grouped them in to the most significant range (highest 

eigenvector/eigenvalues).

 

Fig. 4 Eigenvector magnitude 

Given that the six SVM chosen op-codes have been grouped 

into the top twelve op-codes i.e. top 8% thereby removing the 

92% irrelevant op-codes makes this an effective filtering 

mechanism to reduce features prior to the SVM training phase. 

VIII. DISCUSSION 

Malware has a long history of evolutionary development as 

the war between the anti-malware researchers and the 

malware writers has progressed.  This study presents an 

argument for the analysis of run-time op-code trace to detect 

malware. 

Firstly, Op-code traces are captured for both benign and 

malicious software in the form of dynamic traces of each 

program.  This data is marshalled and used as both the training 

and validation datasets. 

Secondly, a SVM performs analysis on all the available op-

codes and identifies the best indicators of malware, which is 

used to create a reference datum for the filters. 

Finally, several filter criteria are tested against the reference 

datum generated by the SVM. 

While this research is still ongoing, evidence exists to show 

that a subset of op-codes can be used to detect malware; and 

applying a filter to the features can reduce the SVM training 

phase.  This has established an efficient approach to 

investigate the variables of N-gram N=2, N=3 etc.  It is 

proposed that the findings provide a basis for further research 

in order to identify key op-codes or groups of op-codes (N-

grams) that can be used to detect malware, negating evading 

techniques employed by the malware writers. 

Bilar [6] demonstrated a difference in structure between 

benign and malicious software, which has been borne out by 

the finding produced by the SVM. 

Lakhotia et al [1] presented a method to statically detect 

obfuscated calls relating to push, pop and ret op-codes that are 

mapped to stack operations.  However, their approach did not 

model situations where the push and pop instructions are 

decomposed into multiple instructions, such as directly 

manipulating the stack pointer using mov commands. The 

method proposed in this paper investigates the full spectrum 

of op-codes to identify key op-code characteristics that will 

yield valuable indicators for malware detection. 

While Lakhotia et al [1] and Bilar [2] methods use static 

analysis, the approach presented in this paper uses dynamic 

analysis and therefore evaluate actual execution paths as 

opposed to evaluating all possible paths through the program 

that is normally done when static analysis is used. 

The results obtained from this experiment shown that high-

density op-codes such as mov are not good indicators of 

malware.  However, less frequent op-codes such as ja, adc, 

sub, inc and add make better indicators of malware, which 

confirms Bilar [2] claim that the 14 most occurring op-codes 

do not provide a good indication of malware with the 

exception of the add op-code, as listed in Table 4 (shadded 

area indicate op-codes selected by the SVM).  While there is 

no numerical relationship between Bilar and the SVM results, 

LP and eigenvector analysis are introduced to identify a pre-

classification filter and append a meaningful numerical value 

in terms of their ability to indentify malware.  While the ‘area 

of intersect’ filter identifies five of the op-codes chosen by the 

SVM it missed an important op-code adc.  The ‘eigenvector’ 

filter correctly indentifies all the op-codes chosen by the SVM.  

A point to note is that eigenvector filter ranked the mov op-

code as the second best indicator of malware which 

contradicts the other analysis.  Therefore the ‘eigenvector’ 

filter adequately removes irrelevant op-codes but does not 

guarantee that all the selected op-codes make the best 

indicators of malware. 

Table 4 Op-code Importance 

Op-

code 

SVM Area Subspace Bilar  

Population 

mov   2 25% 

push  32 4 19% 

call  6 15 9% 

pop    6% 

cmp    5% 

jz    4% 

lea    4% 

test  2  3% 

jmp    3% 

add 5 1 3 3% 

jnz    3% 

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

R
EP

M
O

V

A
D

D

P
U

SH

A
D

C

SU
B

IN
C JE

C
M

P

P
O

P

TE
ST JA

JN
B JB

C
A

LL

R
ET

N

X
O

R

D
EC

JM
P

LO
D

S

LE
A

ST
O

S

M
O

V
ZX

SH
R

N
O

P

A
N

D

SH
L

O
R

LO
O

P
D

JB
E

LE
A

V
E

-R
O

R

-R
O

L

-S
A

R

-I
M

U
L

-J
L

-M
O

V
SX

Benign & Malicious EigenVector magnitude

1

2
3

4

5

6

SVM optimal op-code ranked

Key -
?



ret  5 16 2% 

xor  13 17 2% 

and    1% 

rep 6 4 1  

ja 1 17 12  

inc 4 8 7  

adc 2  5  

sub 3 3 6  

Note -  indicates that the op-code was not ranked high 

enough to be considered 

Further investigation is required to determine the 

interrelationship between op-codes, N-gram size and their 

ability to act as good indicators of malicious software. The 

investigation will need to identify and exclude misleading data 

as is exhibited by the mov op-code, which has an immense 

negative impact on the correct classification of benign and 

malicious software. 

IX. CONCLUSION 

This paper, proposes the use of SVM as a means of 

identifying malware. It shows that malware, that is 

packet/encrypted, can be detected using SVMs and by using 

the op-codes chosen by the SVM as a benchmark, identified a 

pre-filter stage using eigenvectors that can reduce the feature 

set and therefore reduce the training effort.  The results 

presented in this paper exposed three key points. 

 Firstly, the identification of a high population op-code: 

mov that is not only is a poor indicator of benign/malicious 

software, but inhibits the ability to correctly classify software 

when used with other op-codes such as ja, adc, sub, inc, add 

and rep. 

Secondly, a subset of op-codes can be used to detect 

malware.  However, the SVM analysis demonstrates that ja, 

adc and sub are strong indicators of malware as they are four 

times more likely to be used in the correct classification of 

malware than the next most significant op-codes (inc).  

Several op-codes have been identified as potential indicators 

of malware, which provides the basis for an improvement in 

detection techniques beyond current state of the art [3].  

Finally, using the ‘eigenvector’ pre-filter, the dataset can 

safely remove irrelevant features. 

REFERENCES 

[1] Arun Lakhotia, Eric Uday Kumar, and Michael Venable “A Method 

for Detecting Obfuscated Calls in Malicious Binaries” Software 
Engineering, IEEE Transactions on, Nov. 2005, Volume:  31, Issue:11, 

On page(s): 955 – 968 

[2] Bilar, D “Opcodes as predictor for malware”, Int. J. Electronic Security 
and Digital Forensics (2007) Vol. 1, No. 2, pp.156–168. 

[3] Ulrich Bayer, Imam Habibi, Davide Balzarotti, Engin Kirda, and 

Christopher Kruegel, “A View on Current Malware Behaviors” 
Proceedings of the 2nd USENIX conference on Large-scale exploits 

and emergent threats: botnets, spyware, worms, and more. USENIX 

Association  Berkeley, CA, USAYear of Publication: 2009. 
[4] Boser, Bernhard E.; Guyon, Isabelle M.; and Vapnik, Vladimir N.; “A 

training algorithm for optimal margin classifiers”, In Haussler, David 

(editor); 5th Annual ACM Workshop on COLT, pages 144–152, 
Pittsburgh, PA, 1992. ACM Press 

[5] Clemens Kolbitsch, Paolo Milani Comparetti, Christopher Kruegel, 

Engin Kirda, Xiaoyong Zhou and XiaoFeng Wang,“Effective and 

Efficient Malware Detection at the End Host”, USENIX Association, 

18th USENIX Security Symposium, pages 351-366 

[6] Bilar, D. “Callgraph properties of executables and generative 

mechanisms”, Journal AI Communications - Network Analysis in 

Natural Sciences and Engineering archive Volume 20 Issue 4, 
December 2007 

[7]  M. Christodorescu, S. Jha, S. Seshia D. Song, and R. Bryant, 

“Semantics-Aware Malware Detection.”, IEEE Symposium on 
Security and Privacy, 2005 pp. 32–46. 

[8] Vinod P., V. Laxmi and M. S. Gaur, “Static CFG Analyzer for 

Metamorphic Malware Code”, Proceedings of the 2nd international 
conference on Security of information and networks ACM New York, 

NY, USA Pub 2009. 

[9] Qinghua Zhang, Douglas S. Reeves, “MetaAware: Identifying 
Metamorphic Malware”, Cyber Defense Laboratory, Computer Science 

Department North Carolina State University, Raleigh, NC 27695-8207 

[10]  Guillaume Bonfante, Matthieu Kaczmarek and Jean-Yves Marion 
“Control Flow Graphs as Malware Signatures “, Nancy-Universit´e - 

Loria - INPL - Ecole Natioanale Sup´erieure des Mines de Nancy B.P. 

239, 54506 Vandoeuvre-l`es-Nancy C´edex, France  
[11] James Newsome, Dawn Song, “Dynamic Taint Analysis for Automatic 

Detection, Analysis, and Signature Generation of Exploits on 

Commodity Software 
[12] D. Ellis, J. Aiken, K. Attwood, and S. Tenaglia. “A Behavioral 

Approach to Worm Detection.” ACM Workshop on Rapid Malcode, 

2004, pp. 43–53. 
[13] Yoshinori Okazaki, Izuru Sato and Shigeki Goto, “A New Intrusion 

Detection Method based on Process Profiling” Proceedings of the 2002 
Symposium on Applications and the Internet 

[14] S. Hofmeyr, S. Forrest, and A. Somayaji.“Intrusion detection using 

sequences of system calls.” Journal of Computer Security, pp. 151–180, 
1998 

[15] R. Sekar, M. Bendre, P. Bollineni, and D. Dhurjati. “A Fast 

Automaton-Based Approach for Detecting Anomalous Program 

Behaviors.” IEEE Symposium on Security and Privacy, 2001. 

[16] C. Ko, M. Ruschitzka, and K. Levitt. “Execution Monitoring of 

Security-Critical Programs in Distributed Systems: A Specification-
Based Approach.” IEEE Symposium on Security and Privacy, 1997. 

[17] Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin, "A Practical 

Guide to Support Vector Classification", Department of Computer 
Science National Taiwan University, Taipei 106, Taiwan, 

http://www.csie.ntu.edu.tw/~cjlin Initial version: 2003 Last updated: 

April 15, 2010 
[18] Jesse C. Rabek, Roger I. Khazan, Scott M. Lewandowski, and Robert 

K.Cunningham.“Detection of Injected, Dynamically Generated, and 

Obfuscated Malicious Code.” ACM Workshop on Rapid Malcode, 
2003 , pp. 76–82, 2003. 

[19] Igor Santos, Yoseba K. Penya, Jaime Devesa and Pablo G. Bringas. 

“N-GRAMS-BASED FILE SIGNATURES FOR MALWARE 
DETECTION”, S3Lab, Deusto Technological Foundation, Bilbao, 

Basque Country fisantos, ypenya, jdevesa, 

pgbg@tecnologico.deusto.es 
[20] Sekar, R., Bendre, M., Dhurjati, D., & Bollineni, P. (2001). “A fast 

automaton-based method for detecting anomalous program behaviors”, 

In R. Needham & M. Abadi (Eds), Proceedings of 2001 IEEE 
symposium on security and privacy (pp. 144--155), IEEE Computer 

Socitey, Los Alamitos, CA. 

[21] W. Li, K.Wang, S. Stolfo, and B. Herzog. “Fileprints: Identifying file 
types by n-gram analysis”, 6th IEEE Information Assurance Workshop, 

June 2005  

[22] Cristianini N, Shawe-Taylor, J “An introduction to support vector 
machines: and other kernel-based learning”, Pub 2000, ISBN 

052178019 

[23] Vanderbei R, “Linear Programming: Foundations and Extensions”, 
Pub 2000, ISBN 0792373421 

[24] Bernhard Schölkopf, Alexander Smola and Klaus-Robert Müller , 

“Kernel principal component analysis”, Artificial Neural Networks — 
ICANN'97 Lecture Notes in Computer Science, 1997, Volume 

1327/1997, 583-588, DOI: 10.1007/BFb0020217 

[25] “Matlab Statistics Toolbox”, http://www.mathworks.co.uk/help/toolbo 
x/stats/, Last access 27 October 2011 


