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Abstract

In this paper we study constrained stochastic optimal control problems for Markovian switching systems, an extension of
Markovian jump linear systems (MJLS), where the subsystems are allowed to be nonlinear. We develop appropriate notions
of invariance and stability for such systems and provide terminal conditions for stochastic MPC that guarantee mean-square
stability and robust constraint fulfillment of the Markovian switching system in closed-loop with the SMPC law under very
weak assumptions. In the special but important case of constrained MJLS we present an algorithm for computing explicitly the
stochastic MPC control law off-line, that combines dynamic programming with parametric piecewise quadratic optimization.

1 Introduction

Markovian switching systems consist of a family of non-
linear subsystems (usually called modes) and a Markov
chain that orchestrates the switching among them.
Since their introduction [21], they have found numerous
applications due to their ability to model dynamical
systems with random abrupt dynamic changes (fail-
ures and repairs) and random time–delays. Some of the
applications include manufacturing systems [2], biore-
actors [14], macroeconomics [35], and networked control
systems [25], to name a few.
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Due to these reasons, a large amount of research has
been conducted concerning various notions of stabil-
ity such as mean square stability [17], stochastic sta-
bility [9], almost sure stability [8] and uniform stabil-
ity [22]. Furthermore, finite and infinite horizon opti-
mal control both in discrete [1, 7] and continuous time
[31, 34] have been studied extensively. Notably, all the
aforementioned works deal with a special instance of
Markovian switching systems, where individual mode
dynamics are linear, namely Markov jump linear sys-
tems (MJLS) [12]. Regarding the infinite horizon lin-
ear quadratic optimal control problem for unconstrained
MJLS, it can be solved efficiently via a Coupled Alge-
braic Riccati equations (CARE) approach [1,7], or a lin-
ear matrix inequalities (LMI) approach [27].

However, almost all physical systems are subject to con-
straints dictated by physical limits and performance,
safety, or economical considerations. Nonetheless, only a
few works exist in the literature concerning optimal con-
trol of constrained Markovian switching systems. Specif-
ically, in [11], the framework of [20] for robust model
predictive control (MPC) of uncertain linear systems is
extended to MJLS subject to hard symmetric state and
control constraints, while the transition matrix of the
Markov chain is known to lie in a convex set. This subop-
timal approach calculates, on-line, a mode-dependent,
linear, state-feedback control law that minimizes an up-
per bound on the worst-case expected infinite horizon
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cost, by solving an LMI problem. In [33], the MPC prob-
lem for MJLS with constraints on the first and second
moments for the input and state vector and unobserv-
able modes is studied. More recently [4, 5], a Stochas-
tic Model Predictive Control (SMPC) framework for
stochastic constrained linear systems was proposed. The
authors impose a stochastic Lyapunov decrease condi-
tion for the first step of the SMPC algorithm that is ro-
bust with respect to constraint enforcement, and allows
to guarantee mean-square stability and robust invari-
ance so that scenario trees are only used for performance
optimization.

This paper studies the constrained finite horizon
stochastic optimal control problem for discrete-time
Markovian switching systems. Here, the constraints
must be satisfied uniformly, over all admissible switching
paths. Properties of the value function and the mode-
dependent optimal policy are derived under a variety
of assumptions. Furthermore, an appropriate notion of
control invariance, namely uniform control invariance,
is defined for Markovian switching systems. In addition,
we employ dynamic programming coupled with the
parametric piecewise quadratic optimization solver [24]
to solve explicitly the constrained finite-horizon con-
strained stochastic optimal control problem arising in
SMPC for MJLS, without griding the state-space. For
general nonlinear Markovian switching systems we show
how the finite-horizon stochastic optimal control prob-
lem can be formulated as a finite-dimensional optimiza-
tion problem. Conditions that guarantee mean-square
(exponential) stability for the system in closed-loop
with the SMPC law are established.

This work was motivated by the increased interest of
the research community on Markovian Switching Sys-
tems and the need for a Stochastic Model Predictive
Control methodology that provides robust uniform sat-
isfaction of the state and input constraints (a very im-
portant requirement for engineering applications) and
mean-square stability.

2 Mathematical Preliminaries

Let R, R+, N and N+ denote the sets of real numbers,
nonnegative real numbers, nonnegative integers and pos-
itive integers, respectively. The notation we use in this
paper comes from [29]. For k1, k2 ∈ N, N[k1,k2] , {k ∈
N|k1 6 k 6 k2}. R , [−∞,∞] denotes the extended-
real line. For an extended-real-valued function f : Rn →
R, its epigraph is epi f , {(x, α) ∈ Rn×R|α > f(x)}, its

effective domain is dom f , {x ∈ Rn|f(x) <∞} and for

any α ∈ R, the corresponding level-set of f is lev6α f ,
{x ∈ Rn|f(x) 6 α}. We call f proper if f(x) < ∞ for
at least one x ∈ Rn, and f(x) > −∞ for all x ∈ Rn. A
function f : Rn → R is lower-semicontinuous (lsc) at x̄
if lim infx→x̄ f(x) = f(x̄). A function f : Rn × Rm → R

with values f(x, u) is level-bounded in u locally uniformly
in x if for each x̄ ∈ Rn and α ∈ R there exists a neighbor-
hood N (x̄) of x̄, along with a bounded set B ⊂ Rm such
that {u|f(x, u) 6 α} ⊂ B for all x ∈ N (x̄). A function
f : Rn → R is called piecewise quadratic (PWQ) if dom f
can be represented as the union of a finite number of
polyhedral sets, relative to each of which f is quadratic.

Let S ⊂ N+. For ease of notation we define the class of
functions

fcns(Rn,S),{f : Rn×S → R̄|f > 0, f(0, i) = 0, i ∈ S}.

We use the notation lsc(Rn,S), conv(Rn,S) and
pwq(Rn,S) for the subclasses of fcns(Rn,S) whose
members f(·, i) are lsc, convex and PWQ respectively
for all i ∈ S. We define the class of sets

sets(Rn,S),{C = {Ci}i∈S |0 ∈ Ci ⊆ Rn, i ∈ S},

and we use the notation cl−sets(Rn,S), conv−sets(Rn,S)
and poly−sets(Rn,S) for the subclasses of sets(Rn,S)
whose member Ci are closed, convex and polyhedral re-
spectively for all i ∈ S. With a slight abuse of notation,
for f ∈ fcns(Rn,S) we write dom f = C, meaning that
C ∈ sets(Rn,S) and dom f(·, i) = Ci, i ∈ S. f1 6 f2

for f1, f2 ∈ fcns(Rn,S) means f1(x, i) 6 f2(x, i) for
every (x, i) ∈ Rn × S. Likewise, C1 = C2 (C1 ⊆ C2)
for C1, C2 ∈ sets(Rn,S) means C1

i = C2
i (C1

i ⊆ C2
i ) for

every i ∈ S.

The indicator function δC of a set C ⊆ Rn is defined
by δC(x) = 0, if x ∈ C and δC(x) = ∞, otherwise. For
C ∈ sets(Rn,S), let δC : Rn×S → R̄ with δC(·, i) = δCi ,
i ∈ S. The domain of a set-valued mapping S : Rd ⇒ Rn,
is the set domS = {p|S(p) 6= ∅}. If C is a finite set, then
|C| denotes the cardinality of C.

3 Constrained Markovian Switching Systems

Consider the following discrete-time Markovian switch-
ing system (MSS):

xk+1 = frk(xk, uk) (1)

Here, {rk}k∈N is a discrete-time, time-homogeneous

Markov chain taking values in a finite set S , {1, . . . , S}
with transition matrix P , (pij) ∈ RS×S and initial
distribution v = (v1, . . . , vS). We assume that xk ∈ Rn,
uk ∈ Rm. The standing assumption valid throughout
the paper is:

Assumption 1 The mappings fi : Rn × Rm → Rn are
continuous and satisfy fi(0, 0) = 0, i ∈ S.

When needed, we will impose the following assumption:
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Assumption 2 fi(x, u) = Aix+Biu, ∀i ∈ S.

Let S consist of all subsets of S, and Ω , Πk∈N(Rn ×
Rm × S). Let Fk be the minimal σ-field over the Borel-
measurable rectangles of Ω with k-dimensional base and
F be the minimal σ -field over all Borel-measurable rect-
angles, i.e., the product σ-field measurable space. Define
the filtered probability space (Ω,F, {Fk}k∈N,P) where
P is the unique product probability measure according
to the infinite dimensional product measure theorem [3,
Th. 2.7.2], with P(r0 = i0, r1 = i1, . . . , rk = ik) =
vi0pi0i1 · · · pik−1ik for any i0, i1, . . . , ik ∈ S and k ∈ N,
where rk is a random variable from Ω to S. Let E[·] de-
note the expectation of a random variable with respect
to P and E[·|Fk] the conditional expectation. It can be
shown [32] that the augmented state (xk, rk) contains all
the probabilistic information relevant to the evolution
of the Markovian switching system for times t > k. We
call realizations of the Markov chain, switching paths.

Definition 1 The cover Si of a mode i ∈ S is the set
of all modes j ∈ S accessible from i in one time step,
i.e.Si , {j ∈ S|pij > 0}.

Definition 2 An admissible switching path of length
N ∈ N∪{+∞}, r , (r0, · · · , rN ) for (1) is a switching
path for which rk+1 ∈ Srk , for any k ∈ N[0,N−1]. We de-
note by G the set of all admissible switching paths (of infi-
nite length), and by GN the set of all admissible switching

paths of length N . For any i ∈ S, G(i) , {r ∈ G|r0 = i}
and GN (i) , {r ∈ GN |r0 = i} denote the set of all ad-
missible switching paths emanating from i, of infinite
length and length N , respectively.

It is assumed that (1) must satisfy the following hard
joint state and input constraints, uniformly, over all ad-
missible switching paths:

(xk, uk) ∈ Yrk , k ∈ N, r ∈ G (2)

where Yi ⊆ Rn × Rm, i ∈ S. For each i ∈ S let Ui(x) ,
{u ∈ Rm|(x, u) ∈ Yi} and Xi , domUi. Let Y ,
{Yi}i∈S and X , {Xi}i∈S . A Borel measurable map-
ping µ : Rn×S → Rm, such that µ(x, i) ∈ Ui(x) for each
x ∈ Xi and i ∈ S, is called a (mode-dependent) control

law. A sequence of control laws π , {µ0, µ1, . . .} is called
a (mode–dependent) policy. Since we are only dealing
with mode–dependent control laws and policies, the ad-
jective mode-dependent will be omitted for brevity since
now on. We denote by Π , {π = {µ0, µ1, . . .}|µk(x, i) ∈
Ui(x), i ∈ S, k ∈ N} the set of all policies, and by ΠN

the set of all policies of length N . If the policy is of the
form {µ, µ, . . .} then it is called stationary and is simply
denoted by µ. The solution of (1) at time k, given a pol-
icy π and a switching path r with r0 = i and x0 = x, is
denoted by φ(k;x, i, π, r).

4 Finite–Horizon Stochastic Optimal Control
for MSS

In this section, the finite–horizon stochastic optimal con-
trol problem for constrained MSS is formulated. The
stage cost ` is assumed to be (possibly) mode-dependent.
To improve clarity of exposition and express the re-
sults of the paper in a more general setting, we will
work with extended–real–valued stage costs where for
each mode i ∈ S, their effective domain is equal to Yi,
i.e., ` ∈ fcns(Rn+m,S) with dom ` = Y . Furthermore,
the terminal cost function can be mode-dependent, i.e.,
Vf ∈ fcns(Rn,S). Let Xf , domVf ⊆ X. The finite-
horizon cost of the policy π ∈ ΠN for (1), starting from
x0 = x, r0 = i is:

VN,π(x, i) , E

[
N−1∑
k=0

`(xk, uk, rk) + Vf (xN , rN )

]
(3)

where xk , φ(k;x, i, π, r), uk , µk(φ(k;x, i, π, r), rk)
and N is the finite horizon length. It is apparent that
given a pair (x, i) ∈ Rn × S and a policy π ∈ ΠN , the
finite-horizon cost (3) is finite if and only if (xk, uk) ∈ Yrk
and xN ∈ Xf

rN for all r ∈ GN (i). The constrained finite-
horizon stochastic optimal control problem is:

PN (x, i) : V ?N (x, i) , inf
π∈ΠN

VN,π(x, i) (4a)

Π?
N (x, i) , argmin

π∈ΠN

VN,π(x, i) (4b)

We call V ?N : Rn ×S → R, Π?
N ⊂ ΠN the value function

and optimal policy mapping, respectively.

4.1 Dynamic Programming Solution

In this subsection, we study properties of (4) using dy-
namic programming. We also define an appropriate no-
tion of controlled invariance for MSS, namely uniform
control invariance and establish a connection with dy-
namic programming. In order to study properties of (4)
we introduce some notation due to [6].

Definition 3 For any V ∈ fcns(Rn,S) and any control
law µ : Rn × S → Rm define the operator Tµ as

TµV (x, i) , `(x, µ(x, i), i) +
∑
j∈S

pijV (fi(x, µ(x, i)), j)

Definition 4 For any V ∈ fcns(Rn,S) define the oper-
ators T and S, respectively as

TV (x, i) , inf
u
{`(x, u, i) +

∑
j∈S

pijV (fi(x, u), j)}

SV (x, i) , argmin
u
{`(x, u, i) +

∑
j∈S

pijV (fi(x, u), j)}
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We call T and S, the DP operator and the optimal con-
trol operator, respectively. For any k ∈ N, denote by Tk

the composition of T with itself k times. Similarly, for
any feedback policy π, and any k ∈ N, Tµ0Tµ1 · · ·Tµk

denotes the composition of operators Tµ0 ,Tµ1 , . . . ,Tµk
.

Then the finite-horizon cost (cf. (3)) of the feedback pol-
icy π for (1), starting from x0 = x, r0 = i can be ex-
pressed as

VN,π(x, i) = (Tµ0Tµ1 · · ·TµN−1
)(Vf )(x, i),

while the value function can be expressed as

V ?N (x, i) = TNVf (x, i),

The standard DP algorithm to compute the value func-
tion (4a) and the optimal policy mapping (4b) is ex-
pressed as

V ?0 = Vf , (6a)

V ?k+1 = TV ?k , U?k+1 = SV ?k , k ∈ N[0,N−1]. (6b)

Upon termination of the DP algorithm, the value func-
tion is V ?N and the optimal policy mapping is Π?

N =
U?N × · · · × U?1 (U?k : Rn × S ⇒ Rm).

In parallel with the DP operator, the so-called predeces-
sor operator is introduced below.

Definition 5 Given a family of sets C ∈ sets(Rn,S),

let R(C) , {R(C, i)}i∈S where:

R(C, i) ,

{
x ∈ Rn

∣∣∣∣∃ u ∈ Rm s.t. (x, u) ∈ Yi
fi(x, u) ∈ Cr1 ,∀r ∈ G1(i)

}
(7)

Using Definition 2, Eq. (7) becomes:

R(C, i) = Projx(Z(C, i)) (8a)

Z(C, i) , {(x, u) ∈ Yi|fi(x, u) ∈ ∩j∈SiCj} (8b)

For any i ∈ S, R(C, i) denotes the set of states x, for
which there exists an admissible input such that, for all
admissible switching paths of length 1 emanating from
i, the next state is in Cr1 .

For any k ∈ N, denote by Rk the composition of R,
k times with itself, i.e., Rk(C) , R(Rk−1(C)) =

{R(Rk−1(C), i)}i∈S . Let Rk(C, i) , R(Rk−1(C), i).
Obviously, Rk(C) = {Rk(C, i)}i∈S . Here we make the
convention that R0(C) = C.

Theorem 1 presents properties of V ?k , U?k , k ∈ N[1,N ],
inherited by properties of ` and Vf . These properties will
be studied under the following assumptions on the stage
cost, `:

Assumption 3 ` ∈ lsc(Rn+m, S), dom ` = Y and
`(·, ·, i) is level-bounded in u locally uniformly in x, for
every i ∈ S.

Assumption 4 In addition to Assumption 3, ` ∈
conv(Rn+m,S).

Assumption 5 In addition to Assumption 4, ` ∈
pwq(Rn+m,S) .

Assumption 3 is the minimal assumption (along with
Assumption 1) for which we will guarantee existence of
an optimal policy. The stronger Assumptions 4 and 5
lead to more favorable properties of V ?k and U?k .

Theorem 1 Consider a Vf ∈ fcns(Rn,S) with domVf =
Xf . Then V ?k ∈ fcns(Rn,S), k ∈ N[1,N ]. Furthermore:

(a) If Assumptions 1 and 3 hold and Vf ∈ lsc(Rn,S),
then V ?k ∈ lsc(Rn,S), k ∈ N[1,N ]. In addition,

domV ?k = domU?k = Rk(Xf ), and for each
x ∈ domU?k (·, i) the set domU?k (x, i) is compact, for
any i ∈ S, k ∈ N[1,N ].

(b) If Assumptions 2 and 4 hold and Vf ∈ conv(Rn,S),
then V ?k ∈ conv(Rn,S) and U?k (·, i) is convex-valued
and outer-semicontinuous relative to int(domU?k (·, i))
for any i ∈ S, k ∈ N[1,N ]. Furthermore, if
`(·, ·, i) is strictly convex for some i ∈ S, then
V ?k (·, i) is strictly convex and U?k (·, i) is single-
valued on domU?k (·, i) and continuous relative to
int(domU?k (·, i)), k ∈ N[1,N ].

(c) If Assumptions 2 and 5 hold and Vf ∈ pwq(Rn,S),
then V ?k ∈ pwq(Rn,S) and U?k (·, i) is a polyhedral
multifunction, thus outer-semicontinuous relative to
domU?k (·, i) for any i ∈ S, k ∈ N[1,N ]. Furthermore,
if `(·, ·, i) is strictly convex for some i ∈ S, then
U?k (·, i) is a single-valued, piecewise-affine mapping,
thus Lipschitz continuous relative to U?k (·, i), for any
k ∈ N[1,N ].

PROOF. It suffices to prove the claims for k = 0. Then
using a simple induction argument, the corresponding
properties for V ?k , U?k will hold for all k ∈ N[1,N ]. Let

hVi (x, u) , `(x, u, i) +
∑
j∈S pijV (fi(x, u), j), i ∈ S.

Then (6b) becomes

V ?k+1(x, i) = inf
u
h
V ?
k
i (x, u) (9a)

U?k+1(x, i) = argmin
u

h
V ?
k
i (x, u) (9b)

Therefore, properties of the dynamic programming oper-
ator can be inferred by properties of the parametric op-

timization problem (9). Obviously, from (8b) domh
Vf

i =

Z(Xf , i). Since h
Vf

i > 0 and h
Vf

i (0, 0) = 0 it follows that
V ?1 > 0 and V ?1 (0, i) = 0, i ∈ S, hence V ?1 ∈ fcns(Rn,S).
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(a) Because of [29, Props. 1.39, 1.40], h
Vf

i is lsc for every
i ∈ S. Since Vf is bounded below by zero and pij ≥ 0,
it follows that

∑
j∈S pijVf (fi(x, u), j) > 0. From the

uniform level-boundedness of `(·, ·, i) we have that for
any x̄ ∈ Rn and any α ∈ R there exists a neighbor-
hood N (x̄) along with a bounded set B ⊂ Rm such
that {u|`(x, u, i) 6 α} ⊂ B for all x ∈ N (x̄). There-

fore, {u|hVf

i (x, u)6α}⊂{u|`(x, u, i)6α}⊂B. Hence, h
Vf

i
is proper, lsc and level-bounded in u locally uniformly
in x, for every i ∈ S. By [29, Th. 1.17], it follows that
V ?1 (·, i) is proper, lsc, domV ?1 (·, i) = domU?1 (·, i), and
for each x ∈ domU?1 (·, i), the set U?1 (x, i) is compact,
for every i ∈ S. Furthermore, V ?1 (·, i) = {x|∃ α ∈
R s.t. (x, α) ∈ epiV ?1 (·, i)} = {x|∃ α ∈ R ∃ u s.t. (x, α) ∈
epih

Vf

i } = {x|∃ u s.t. (x, u) ∈ domh
Vf

i } = R(Xf , i).
The first and the third equality follows from the rela-
tionship between epigraphs and effective domains, the
second from the fact that for any x ∈ domV ?1 (·, i), the
minimum is attained and [29, Prop. 1.18], and the last
by (8a).

(b) Convexity is preserved under composition with

affine mappings and nonnegative sums, hence h
Vf

i
is proper and convex. The convexity of V ?1 (·, i) and
the convex-valuedness of U?1 (·, i) follow by [29, Prop.
2.22]. The outer-semicontinuity of U?1 (·, i) relative to
int(domU?1 (·, i)) follows by [29, Th. 7.41]. If `(·, ·, i) is
strictly convex, one can easily show by definition of strict

convexity that h
Vf

i is strictly convex as well. The single-
valuedness of U?1 (·, i) on domU?1 (·, i) and its continuity
on int(U?1 (·, i)) follow by [29, Th. 7.43]. In order to prove
strict convexity of V ?1 (·, i), for any x1, x2 ∈ domV ?1 (·, i),
x1 6= x2, let u1 ∈ U?1 (x1, i) and u2 ∈ U?1 (x2, i). Then

V ?1 (τx1 + (1− τ)x2, i) = infu h
Vf

i (τx1 + (1− τ)x2, u) 6

h
Vf

i (τx1 + (1 − τ)x2, τu1 + (1 − τ)u2) < τV ?1 (x1, i) +
(1− τ)V ?1 (x2, i), for any τ ∈ (0, 1).

(c) The PWQ property is preserved under composition
with affine mappings and nonnegative sums [29, Ex.

10.22], hence h
Vf

i is proper, convex, PWQ. That V ?1 ∈
pwq(Rn,S) follows by [29, Cor. 11.32(c)]. That U?1 (·, i)
is a polyhedral multifunction is proved in [24, Prop.
5]. Outer-semicontinuity of U?1 (·, i) on V ?1 (·, i) follows
from [16, Th. 3D.1], and Lipschitz continuity of U?1 (·, i)
on V ?1 (·, i) in case of strict convexity follows from part
(b), convexity of V ?1 (·, i) and [16, Cor. 3D.5]. 2

Remark 1 In the case of constrained MJLS, the value
function and an optimal policy π? ∈ Π?

N can be calcu-
lated explicitly, using the DP recursion (6) and the con-
vex parametric piecewise quadratic optimization solver
of [24]. The solver uses a computable formula for calcu-
lating the graphical derivative [23] of the solution map-
ping under a graph traversal framework, to enumerate
all critical regions, i.e., all full–dimensional polyhedral
sets on which the solution mapping is polyhedral. For
each k ∈ N[0,N−1], the proposed algorithm calculates a

µ?k ∈ U?k , where µ?k is a piecewise affine (PWA) mapping
for each mode i ∈ S, i.e., domV ?k (·, i) is decomposed

in a finite number of polyhedral sets {Pjk,i}j∈Jk,i
where

µ?k(·, i) is affine, i.e., µ?k(x, i) = Kj
k,ix+ κjk,i if x ∈ Pjk,i.

Tracing a parallel with invariant set theory for discrete-
time nonlinear systems [19, 26] we introduce the follow-
ing notion of invariance for MSS.

Definition 6 A familiy of sets C ∈ sets(Rn,S) with
Ci ⊆ X is said to be uniformly control invariant for the
constrained MSS (1), if there exists a policy π such that
x0∈Cr0 ⇒ φ(k;x, r0, π, r) ∈ Crk , k ∈ N,∀r∈G(r0)

Remark 2 Uniform control invariance is a less conser-
vative notion than classical robust control invariance. By
taking into consideration the mode of the MSS as an ad-
ditional discrete-valued state, a uniform control invari-
ant set is allowed to be dependent of the current mode
while ensuring satisfaction of constraints for every pos-
sible transition of the underlying Markov chain.

Lemma 1 below presents the monotonicity property of
the DP operator. Its proof can be easily inferred by e.g.,
[6, Ch. 3] and is omitted for brevity.

Lemma 1 If V, V ′ ∈ fcns(Rn,S) with V 6 V ′ then
TkV 6 TkV ′ for any k ∈ N.

The following lemma gives a geometric characterization
of uniform control invariance.

Lemma 2 A family of sets C ∈ sets(Rn,S) with C ⊆ X
is uniformly control invariant for the Markovian switch-
ing system (1), (2) if and ony if C ⊆ R(C).

PROOF. For the reverse implication suppose that
Ci 6⊆ R(C, i) for some i ∈ S. Then there exists a x ∈ Ci
such that fi(x, u) 6∈ Cj for some j ∈ Si and for any
u ∈ Ui(x). Pick a switching path r ∈ G with rk = i and
rk+1 = j. It then follows that for some xk ∈ Ci, there
does not exist a uk ∈ Urk(xk) such that xk+1 ∈ Crk+1

contradicting the definition of uniform control invari-
ance. The opposite direction follows by an analogous
argument. 2

Lemma 3 below presents a link between uniform control
invariance and the DP operator.

Lemma 3 Suppose that Assumptions 1 and 3 hold. If
Vf ∈ lsc(Rn,S) and Vf > TVf then

(a) V ?k > V
?
k+1,

(b) domV ?k is uniformly control invariant for any k ∈
N[0,N ].
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PROOF. (a) Since Vf > TVf , using Lemma 1, V ?k =
TkVf > Tk+1Vf = V ?k+1.

(b) From the assumptions of the lemma, Theorem 1(a)
is valid, hence domV ?k = Rk(Xf ) where Xf = domVf .
Notice that part (a) implies that domV ?k ⊆ domV ?k+1,

or Rk(Xf ) ⊆ Rk+1(Xf ). Equivalently, this can be ex-
pressed as Rk(Xf ) ⊆ R(Rk(Xf )). Invoking Lemma 2,
the claim is proved. 2

4.2 Conversion to a Finite–dimensional Optimization
Problem

This section shows how the constrained finite-horizon
stochastic optimal control problem (4) can be converted
to a finite-dimensional optimization problem. For each
i ∈ S letQN (i) , N[1,|GN (i)|] and associate with each q ∈
QN (i) the corresponding switching path emanating from

i, i.e., rq ∈ GN (i). Also let uq , {uq0, . . . , u
q
N−1} denote

a control sequence associated with the q–th switching
path and let xq , {xq0, . . . , x

q
N} represent the sequence

of solutions of:

xqk+1 = frq
k
(xqk, u

q
k). (10)

Let x , {xq}q∈QN (i), u , {uq}q∈QN (i) and

pq0 = 1, and pqk+1 = pqkprqkr
q
k+1

, k ∈ N[0,N−1]. (11)

Then (4) is equivalent to [30]

V ?
N (x, i) = inf

x,u

∑
q∈QN (i)

N−1∑
k=0

pq
k`(x

q
k, u

q
k, r

q
k) + pq

NVf (xq
N , rqN )

(12a)

s.t. xq
0=x, ∀q ∈ QN (i) (12b)

xq
k+1 = frq

k
(xq

k, u
q
k), ∀q ∈ QN (i) k ∈ N[0,N−1], (12c)

xq1
k =xq2

k , ∀q1, q2∈QN (i),with rq1
[k]=rq2

[k], k∈N[0,N−1], (12d)

uq1
k =uq2

k , ∀q1, q2∈QN (i),with rq1
[k]=rq2

[k], k∈N[0,N−1], (12e)

(xq
k, u

q
k) ∈ Yr

q
k
, ∀q ∈ QN (i), k ∈ N[0,N−1], (12f)

xq
N ∈ Xf

r
q
N
, ∀q ∈ QN (i) (12g)

The above problem possesses a favourable structure
which can be used its efficient numerical solution based
on techniques on dual decomposition [30]. It is easy
to notice that if Assumptions 2 and 4 hold then (12)
is a convex optimization problem, for which efficient
solution algorithms exist. However, it can be highly
complex for large number of modes and large predic-
tion horizons. This complexity can be mitigated at the
expense of introducing some conservatism based on the
reduction of the scenario tree [5].

5 Stability of Autonomous Markovian Switch-
ing Systems

In this section, we proceed with the establishment of suf-
ficient conditions for mean-square stability and exponen-
tial mean-square stability of constrained autonomous
MSS. Consider the autonomous MSS:

xk+1 = frk(xk) (13)

with fi(0) = 0, i ∈ S. Since the system has no in-
put, “uniformly control invariant” is replaced with “uni-
formly positive invariant” in Definition 6, the predeces-
sor operator (7) becomes R(C, i) = {x ∈ Xi|fi(x) ∈
∩j∈SiCj} and Lemma 2 remains valid with the appro-
priate modifications. The solution of (13) at time k ∈ N
given a switching path r with r0 = i and x0 = x is de-
noted by φ(k;x, i, r).

Definition 7 Let X ∈ sets(Rn,S) be a uniformly posi-
tive invariant set for (13). We say that the origin is:

(a) Mean square ( MS) stable in X if

lim
k→∞

E[||φ(k;x, i, r)||2] = 0, ∀x ∈ Xi, i ∈ S

(b) Exponentially mean square ( EMS) stable in X if
there exist θ > 1, 0 < ζ 6 1 such that

E[||φ(k;x, i, r)||2] 6 θζk||x||2, ∀x ∈ Xi, i ∈ S

The assumption that X is uniformly positive invariant
for (13) ensures that φ(k;x, i, r) ∈ Xrk for all x ∈ Xi,
r ∈ G(i) and i ∈ S. For any V : X × S → R let:

LV (xk, rk) , E[V (xk+1, rk+1)− V (xk, rk)|Fk]

Due to the Markov property one has:

LV (xk, rk) =
∑

rk+1∈S
prkrk+1

V (frk(xk), rk+1)−V (xk, rk)

Lemma 4 For any 0 6 k1 6 k2

E[V (xk2 , rk2)−V (xk1 , rk1)|Fk1 ]=E

[
k2−1∑
k=k1

LV (xk, rk)|Fk1

]

PROOF. Notice that V (xk2 , rk2) − V (xk1 , rk1) =∑k=k2−1
k=k1

[V (xk+1, rk+1)− V (xk, rk)]. Taking the condi-

tional expectation: E[V (xk2 , rk2) − V (xk1 , rk1)|Fk1 ] =

E[
∑k=k2−1
k=k1

[V (xk+1, rk+1)−V (xk, rk)|Fk1 ]. Using prop-
erties of the conditional expectation, the right-hand side

of the above becomes: E[
∑k=k2−1
k=k1

E[V (xk+1, rk+1) −
V (xk, rk)|Fk]|Fk1 ] = E

[∑k2−1
k=k1

LV (xk, rk)|Fk1
]

and the

statement is valid. 2
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In the next theorem, sufficient stochastic Lyapunov-like
conditions for MS and EMS stability of (13) are pre-
sented.

Theorem 2 Consider the autonomous MSS (13). Let
X be a uniformly positive invariant set for (13).

(a) Suppose that there exists a V ∈ fcns(Rn,S) and γ >
0 satisfying LV (x, i) 6 −γ||x||2, ∀ x ∈ Xi, i ∈ S.
Then the origin is MS stable in X for (13).

(b) Assume that there exists a V ∈ fcns(Rn,S) and posi-
tive scalars α , β and γ satisfying the following prop-
erties.

α||x||2 6 V (x, i) 6 β||x||2,∀ x ∈ Xi, i ∈ S, (14a)

LV (x, i) 6 −γ||x||2,∀ x ∈ Xi.i ∈ S (14b)

Then the origin is EMS stable in X for (13).

For better readability of the paper the proof of Theo-
rem 2 can be found in the appendix. For the rest of this
section the focus is on autonomous MJLS:

xk+1 = Arkxk (15)

where the state vector must satisfy the constraint xk ∈
Xrk , k ∈ N for all r ∈ G where X ∈ cl−sets(Rn,S).
Let Φ(k; r) = Ar0Ar1 · · ·Ark for k > 0 and Φ(0; r) = I.
The maximal uniformly positive invariant set is X? =
{X?

i }i∈S with X?
i = {x ∈ Rn|Φ(k; r)x ∈ Xrk , ∀ k ∈

N, r ∈ G(i)} and can be calculated via the recursion
Xk+1 = R(Xk), with X0 = X. It is not difficult to see
that for any i ∈ S:

Xk
i ={x ∈ Rn|Φ(t; r)x ∈ Xrt ,∀t∈N[0,k], r∈Gk(i)} (16)

For autonomous LTI systems (|S|=1) it is known that
asymptotic stability of (15) implies that the maximal
positive invariant set is finitely determined and the ori-
gin belongs to its interior [18]. However, when S > 1,
MS stability of (15) is not sufficient, neither for finite de-
terminedness of X? , nor for its full- dimensionality. For
that matter, a stronger notion of stability is required,
i.e., uniform asymptotic stability. The MJLS (15) can be
viewed as a discrete-time linear switched system [13,22],
where the switching path is constrained by the matrix
Q = (qij) ∈ {0, 1}S×S where S=|S|, qij = 1 if pij > 0,
and qij = 0 otherwise. The MJLS (15) is said to be
uniformly asymptotically stable if for every x ∈ Rn ,
Φ(k; r)x converges to zero uniformly, over all r ∈ G, as k
approaches infinity. A necessary and sufficient condition
for uniform asymptotic stability of (15) is the existence
of Pi ∈ Rn×n, such that Pi > 0 and Pi − A′iPjAi < 0
for all j ∈ Si , i ∈ S [13]. Notice that uniform asymp-
totic stability implies mean-square (exponential) stabil-
ity. Next, we will establish a sufficient condition for finite
determinedness of X?.

Lemma 5 Suppose that (15) is uniformly asymptoti-
cally stable, Xi is bounded and 0 ∈ intXi, i ∈ S. Then
X? is finitely determined and 0 ∈ intX?

i .

PROOF. By monotonicity, the sequence {Xk} is non-
increasing. X? is finitely determined if and only if there
exists a k? such that Xk = Xk+1, for all k ≥ k?. Since
Xi is bounded there exists an ε > 0 such thatXi ⊆ B(ε),
for every i ∈ S. This fact, and the monotonicity of the
sequence lead to Xk

i ⊆ B(ε), for every k ∈ N, i ∈ S.
Since 0 ∈ intXi and limk→∞ ||Φ(k; r)|| = 0 for every
r ∈ G, it follows that there exists a k ∈ N such that
Φ(k+1; r)B(ε) ⊆ Xrk+1

, for every r ∈ Gk+1(i) and since

Xk
i ⊆ B(ε), we get Φ(k + 1; r)Xk

i ⊆ Xrk+1
, for every

r ∈ Gk+1(i), i ∈ S. This shows that x ∈ Xk
i implies

Φ(k + 1; r)x ∈ Xrk+1
. Using (16) this is translated to

Xk ⊆ Xk+1, therefore Xk = Xk+1 , and X? is finitely
determined.

To prove that 0 ∈ intX?
i , i ∈ S, from the uniform

asymptotic stability of (15) we have that there exists a
constant γ1 > 0 such that ||Φ(k; r)x|| 6 γ1||x||. Since
0 ∈ intXi, there exists a γ2 > 0 such that B(γ2) ⊆ Xi,
i ∈ S. Then γ1||x|| 6 γ2 implies Φ(k; r)x ∈ Xi for all
i ∈ S and all r ∈ G. Hence B(γ2/γ1) ⊆ X?

i and conse-
quently 0 ∈ intX?

i for every i ∈ S. 2

6 Stochastic MPC for MSS

In stochastic MPC the stationary policy µ?N ∈ SV ?N−1,
i.e., Tµ?

N
V ?N−1 = TV ?N−1 = V ?N is implemented to sys-

tem (1). For future reference, the following notation for
the MSS in closed-loop with the receding horizon con-
troller is introduced:

xk+1 = f
µ?
N

rk (xk), (17)

where f
µ?
N

i (x) , fi(x, µ
?
N (x, i)). If Assumptions 2 and

5 hold, then the procedure described in Remark 1 can
be employed to calculate off-line the mode-dependent,
PWA receding horizon controller µ?N . The implementa-
tion of the receding-horizon controller is trivial, since
only a minimal number of computations is performed on
line. Specifically, at time k, after the state (x(k), r(k))
of (1) is measured, one needs to find a j ∈JN,r(k) such

that x(k) ∈ PjN,r(k), and apply u(k) = Kj
N,r(k)x(k) +

κjN,r(k) to the system.

In any other case, if merely Assumptions 1 and 3 hold,
one can calculate on-line the receding horizon control
action, by solving at each time instant k, the optimiza-
tion problem (12). The following standard assumption
is imposed for the stage cost.

Assumption 6 The stage cost satisfies `(x, u, i) >
α||x||2 for every (x, u) ∈ Yi, i ∈ S.
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Mean-square stability can be guaranteed under the fol-
lowing assumption for the terminal cost function.

Assumption 7 Vf ∈ lsc(Rn × S), with Vf > TVf .

Assumption 7 is trivially satisfied when Vf = δ{0}.

Theorem 3 Suppose that Assumptions 1, 3, 6 and 7
hold. Then the origin is mean-square stable in X?

N ,
domV ?N for (17).

PROOF. By virtue of the fact that V ?N = Tµ?
N
VN−1:

LV ?N (x, i) =
∑
j∈S

pijV
?
N (f

µ?
N

i (x), j)− V ?N (x, i) (18a)

=
∑
j∈S

pijV
?
N (f

µ?
N

i (x), j)− `(x, µ?N (x, i), i), (18b)

and from Assumption 7 and Lemma 3(a) it isLV ?N (x, i) 6
−`(x, µ?N (x, i), i), and then because of Assumption 6
it is LV ?N (x, i)) 6 −α||x||2. The claim is proved by
invoking Theorem 2(a). 2

Assumption 8 Stage cost `(x, u, i) = x′Qix+ u′Riu+
δYi

with Qi > 0, Ri > 0, i ∈ S. Furthermore Y ∈
poly−sets(Rn+m,S) with Yi bounded.

For constrained MJLS (Assumption 2), if the stage cost
satisfies Assumption 8, one can choose

Vf (x, i) = x′P fi x+ δXf
i
, (19)

where P fi , i ∈ S solve the CARE, [12] (ch. 4)

P fi =A′iEi(P f )Ai +Qi (20)

−A′iEi(P f )Bi(Ri+B
′
iEi(P f )Bi)

−1B′iEi(P f )Ai, i ∈ S

where Ei(P f ) =
∑
j∈S pijP

f
j , and Xf = {Xf

i }i∈S is the
maximal uniformly positive invariant set for the MJLS
in closed loop with the unconstrained optimal policy:

µ(x, i) = −(Ri +B′iEi(P f )Bi)
−1B′iEi(P f )Ai (21)

In order to assure mean square exponential stability the
following stronger assumption on the terminal cost is
required:

Assumption 9 Vf ∈ lsc(Rn × S), with Vf > TVf ,
Vf (x, i) ≤ δ||x||2 and 0 ∈ int(domVf (·, i)), i ∈ S.

Theorem 4 Suppose that Assumptions 1, 3, 6 and 9
hold and 0 ∈ int(domVf ), V ?N (·, i) is continuous on

XN
i , domV ?N (·, i) and XN

i is compact for every i ∈ S.
Then the origin is mean square exponentially stable in
XN for (17).

PROOF. Because of Assumption 6 and V ?N (x, i) =

`(x, µ?N (x, i))+
∑
j∈S pijVN−1(f

µ?
N

i (x), j) it follows that

α||x||2 6 V ?N (x, i), x ∈ XN
i , i ∈ S. Since Vf > TVf

(Assumption 9), using the monotonicity of the DP op-
erator (Lemma 3(a)), we arrive at Vf ≥ V ?N . Therefore,
through Assumption 9, V ?N (x, i) ≤ δ||x||2. This fact
along with the extra assumption 0 ∈ int(domVf ), in
conjuction with the continuity and compactness as-
sumption provide an upper bound for V ?N relative to
XN , [28, Prop. 2.18], i.e., there exists a β > 0 such that
V ?N (x, i) ≤ β||x||2 for any x ∈ XN

i , i ∈ S. As it was
shown in Theorem 3, XN is uniformly positive invari-
ant for system (17) and LV ?(x, i) ≤ −α||x||2, for any
x ∈ XN

i , i ∈ S. In virtue of Theorem 2(b), the origin is
exponentially mean–square stable in XN for (17). 2

An important case where Theorem 4 is valid is SMPC
of constrained MJLS.

Corollary 1 Let Assumptions 2 and 6 hold. Consider
the LMI[

Zi (AiZi+BiYi)
′Fi ZiQ

1/2
i

Y ′iR
1/2
i

? Z 0 0
? ? I 0
? ? ? I

]
> 0, i ∈ S (22a)[

Zi (AiZi+BiYi)
′

? Zj

]
> 0, j ∈ Si, i ∈ S (22b)

where Fi = [
√
pi1I ···

√
piSI ], i ∈ S and Z =

⊕
i∈S Zi. If

(22) is feasible, consider the terminal cost

Vf (x, i) = x′P fi x+ δXf
i
, (23)

where P fi = Z−1
i , and Xf = {Xf

i }i∈S is the maximal
uniformly positive invariant set for the MSS in closed–
loop with µ(x, i) = Kixi (Ki = YiZ

−1
i ), i ∈ S. Then

the origin is mean-square exponentially stable in XN =
domV ?N for (17).

PROOF. Consider the closed–loop system xk+1 =
(Ark + BrkKrk)xk. Using the Schur complement

formula, Eq. (22a) is equivalent to P fi ≥ (Ai +

BiKi)
′(
∑
j∈S pijP

f
j )(Ai + BiKi) + (Qi + K ′iRiKi),

for i ∈ S. Therefore V > TµV > TV . Using the
Schur complement formula, equation (22b) becomes

P fi > (Ai + BiKi)
′P fj (Ai + BiKi), j ∈ Si, i ∈ S, im-

plying that the origin is uniformly asymptotically stable
for the close-loop system.

By Lemma 5, 0 ∈ intXf
i , i ∈ S. Therefore, the terminal

cost (23) satisfies Assumption 9. Furthermore, Assump-
tion 8 obviously implies Assumption 5. Therefore, Theo-
rem 1(c) is valid, hence V ? ∈ pwq(Rn,S), implying that
V ?(·, i) is continuous relative to its effective domain for
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i ∈ S. Furthermore, domV ?(·, i) is compact, hence The-
orem 4 is valid, proving EMS of the origin in domV ? for
(17). 2

Note that the LMI (22) is feasible if and only if the set
of pair {(Ai, Bi)}i∈S is mean-square stabilizable, i.e., if
there exist feedback gains {Ki}i∈S so that the closed-
loop system is mean-square stable. The following corol-
lary allows us to perform MPC for MSS using local lin-
earization. This is result is reminiscent of the standard
nonlinear MPC approach that can be found in [28].

Corollary 2 Let Assumptions 1 and 6 hold and for i ∈
S define Ai = ∂fi

∂x (0, 0), and Bi = ∂fi
∂u (0, 0). Let Pi be

given by the LMI (22) and Xf
i = lev≤αi

(x′Pix) where
αi > 0. Then, the αi can be chosen in such a way so
that Assumption 9 is satisfied and the origin becomes
mean-square exponentially stable in XN = domV ?N for
the nonlinear MSS (17).

7 Illustrative Examples

7.1 Samuelson’s macroeconomic model

In this example we compare the SMPC scheme for con-
strained MJLS against the algorithm of [11]. The al-
gorithm of [11] is an extension of the robust MPC al-
gorithm of [20] to stochastic MPC of MJLS with sym-
metric input and state constraints. Essentially, it is an
MPC scheme with prediction horizon 1, where in real–
time an LMI problem is solved, to compute a mode–
dependent, linear control law which minimizes an upper
bound of the infinite–horizon cost. The two techniques
will be compared on Samuelson’s multiplier–accelerator
macroeconomic model. The system has three operating
modes and satisfies Assumption 2 with

A1 =
[

0 1
−2.5 3.2

]
, A2 =

[
0 1
−4.3 4.5

]
, A3 =

[
0 1

5.3 −5.2

]
,

B1 = B2 = B3 = [ 0 1 ]
′
. The mode–dependent polyhe-

dra constraint sets are Y1 = R2
[−10,10], Y2 = R[−8,8] ×

R[−10,10], Y3 = R[−12,12] × R[−10,10]. The stage-cost sat-
isfies Assumption 8 with

Q1 =
[

3.6 −3.8
−3.8 4.87

]
, Q2 =

[
10 −3
−3 8

]
, Q3 =

[
5 −4.5
−4.5 5

]
,

and R1 = 2.6, R2 = 1.165, R3 = 1.111. The transition
matrix of the Markov chain is

P =
[

0.67 0.17 01.6
0.3 0.47 0.23
0.26 0.1 0.64

]
.

The terminal cost is chosen so as to satisfy Eqs. (19),
(20). The maximal uniformly positive invariant set
for the system in closed–loop with (21) is chosen as
a terminal set. The prediction horizon is N = 6. The
SMPC problem was solved explicitly off–line, using

Fig. 1. Region of Attraction for SMPC (red) and LMI–based
MPC of [11] (blue).

Fig. 2. Simulation cost comparison for 20 random switching
paths for the system in closed–loop with the proposed SMPC
law and the LMI–based MPC law of [11].

the technique outlined in Remark 1. The effective do-
main domV ?6 (the region of attraction of the system in
closed–loop with the SMPC controller) consists of 393,
409 and 465 polyhedral sets, for each one of the three
modes, respectively. The region of attraction of the LMI
algorithm [11] is computed approximately by gridding
the polyhedral set Projx Y . As expected, the region of
attraction of the proposed SMPC algorithm is a super-
set of the one corresponding to the LMI—based MPC
algorithm, for every mode of the Markov chain (Figure
1).

Next, we simulate the MJLS in closed–loop with the
SMPC and the LMI–based controller for 30 time steps
starting from a vertex of the region of attraction of the
LMI–based approach, by selecting randomly 20 admissi-
ble switching paths, for each mode. The goal of this task
is to compare the two design methodologies in terms of
closed–loop simulated cost. As it can be seen from Fig-
ure 2, the proposed SMPC algorithm always results in a
smaller simulation cost.

Figure 3 depicts statistical results for simulations of the
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Fig. 3. Simulation of MJLS on closed–loop with SMPC
for 10000 switching paths from G30(2) starting from
x0 = −[8 8]′.

MJLS system in closed–loop with the SMPC controller
for 10000 randomly generated admissible switching
paths of length 30 emanating from mode i = 2 and
initial state x0 = − [ 8 8 ]

′
.

7.2 Constrained networked control with random time
delay

We apply the proposed SMPC design on a networked
control system (NCS) and manifest its advantages over
alternative approaches found in literature. We consider
the NCS model consisting of a printer described via a
linear time-invariant, continuous-time plant that is con-
trolled using a discrete-time controller that is connected
to the system through a communication network with
induced sensor-to-controller (SC), τ sc, and controller-
to-actuator (CA), τ ca, delays [10]. The controller delay
(the time needed by the controller to perform compu-
tations) is assumed to be incorporated into the CA de-
lay. The full state of the system is sampled by a time-
driven sensor with a constant sampling interval h > 0.
The discrete-time controller is event-driven and able to
monitor the SC delay, via timestamping. The CA de-
lay is considered to be constant by using the buffering
technique. The discrete-time control signal uk is trans-
formed to a continuous-time control input u(t) by a zero-
order hold device (ZOH). Based on these assumptions,
the NCS model is:

ẋ(t)=Acx(t) +Bcu(t) (24a)

u(t)=uk, t∈[kh+τ sc
k +τ ca

k , (k+1)h+τ sc
k+1+τ ca

k+1) (24b)

where Ac = [ 0 1
0 0 ], Bc = [ 0

126.70 ]. The system is subject

to continuous-time state, x(t) ∈ X , [−10, 10]2, t ∈ R+,
input constraints uk ∈ U = [−2, 2] and Q = 10I2 and
R = 1 are the state and input weight matrices for the
continuous-time optimal control problem. The sampling

interval is h = 20 ms while the SC delay can take the
values τ sc,1 = 3 ms and τ sc,2 = 15 ms with transition
matrix P = [ 0.67 0.33

0.30 0.70 ]. The CA delay is considered con-
stant with τ ca = 1 ms. Using the technique described
in [25], (24) is transformed into a discrete-time MJLS

in the extended state space ξk , [x′k u
′
k−1]′ ∈ Rnx+nu

(xk = x(kh)), whereas the continuous time constraints
on the state vector X, have been replaced with polyhe-
dral constraint set Y ⊆ Rnx×Rnu×Rnu that guarantees
continuous-time constraint satisfaction for the NCS.

We set the horizon length toN = 10 steps. In the follow-
ing illustrations we present a visualization of the polyhe-
dral decomposition of the feasible state space on which
the control law is defined as a PWA function over these
regions. The mode-dependent PWA control law consists
of 61 and 73 critical regions (cf. Figure ??) for each of
the two modes.

In order to elucidate the benefits of SMPC we com-
pare our results with alternative control approaches.
The first approach (Delay-free MPC ) is a determin-
istic MPC scheme for the exact discretization of the
continuous-time system without taking into consid-
eration the time-varying delay, i.e., for the system

xk+1 = eAchxk + Γ0(h)uk, where Γ0(t) ,
∫ t

0
eAcsdsBc.

Constraints are imposed only on discrete sampling
times while the cost function is considered to be
quadratic, `(x, u) = 1

2 (x′Qhx+ u′Rhu) where Qh = hQ
and Rh = hR. The second alternative scheme (Non-
switched MPC ) is a deterministic MPC controller
for the exact discretization of the continuous-time
system where the delay is considered constant and
equal to its greatest value (worst case scenario,
τmax = 16 ms), i.e., for the discrete-time system
ξk+1 = [ eAch Γ0(h)−Γ0(h−τmax) ] ξk + Γ0(h− τmax)uk and
the constraints are imposed only for the sampling times.
In order to compare SMPC against the alternative
schemes, 20 simulations (corresponding to 20 switching
paths according to the transition matrix) for every ex-
treme point of the effective domain of V ?N (·, i), i ∈ S
are performed. For every single one of them, SMPC
achieved mean-square stability for the continuous time
closed loop system while respecting the constraints in
the continuous time. Non-switched MPC achieved this
goal only in 66.77% of the cases while for delay-free
MPC the percentage drops to 8.47%. An illustrative
simulation of the NCS in closed-loop with the SMPC
controller is depicted in Figure 4.

7.3 Control of a nonlinear Lotka-Volterra model

Consider a discrete-time two-state nonlinear Lotka-
Volterra model whose dynamics is described by:

xk+1=
arkxk − bxkyk

1 + cxk
+ uk, yk+1=

dyk − hxkyk
1 + gyk

, (25)
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Fig. 4. Simulation of the closed-loop system using the
SMPC controller, in continuous time, starting from
x(0) = [9.72 8.98]′ and r0 = 1.

where the parameter ark is governed by a time-
homogeneous Markov chain with states S = {1, 2, 3}
and transition matrix

P =
[

0.85 0.1 0.05
0.2 0 0.8
0.1 0.2 0.7

]
,

so that ark = ai whenever rk = i and a1 = 0.8, a2 = 1.1,
a3 = 1. The linearization matrices Ai and Bi about the
origin which are given by Corollary 2 are

Ai =
[
ai 0
0 d

]
, and Bi = [ 1

0 ]

We introduce the state and input constraints xk ∈ X =
{[ xy ] ∈ R2| − 1 ≤ x ≤ 1,−1 ≤ y ≤ 1} and uk ∈ U =
{u ∈ R| − 0.1 ≤ u ≤ 0.1}. The other parameters of the
system where chosen to be b = 0.2, c = 0.1, d = 0.95,
h = 0.1 and g = 0.5. We formulated the Nonlinear MPC
problem described in Corollary 2 using αi = 0.04 for all
i ∈ S and the prediction horizonN = 8. The closed–loop
trajectories of the Lotka–Volterra system are presented
in Figure 5.

8 Conclusions

The present paper has proposed a new SMPC algorithm
for constrained MSS. This class of stochastic switching
systems is an extension of MJLS, a type of systems that
have been studied thoroughly in the literature. In this
work, the general case of nonlinear mode dynamics and
state-input constraints is investigated in detail. Specif-
ically, a new type of positive invariance is introduced,
namely uniform positive invariance, that is less conser-
vative than robust positive invariance and stochastic
Lyapunov-type conditions for mean-square stability are
stated and proved. Furthermore, conditions that the ter-
minal cost and terminal set must satisfy are given, that
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Fig. 5. Closed-loop trajectories of the Lotka-Volterra system
from the initial point (x0, y0) = (0.2, 0.1). in closed-loop with
the nonlinear SMPC controller. (Blue) Lower bound, (Red)
Upper bound, (Dashed) Average value, (Yellow) Individual
trajectories.

guarantee mean-square stability of the system in closed
loop with the proposed SMPC controller. The new ap-
proach is shown to be significantly less conservative than
the ones proposed in the literature, through simulations.
For the special case of MJLS with quadratic costs and
polyhedral constraint sets, we show how one can com-
pute the explicit SMPC law by combining DP and para-
metric optimization.

Future work will focus on the extension of the principles
introduced in this paper to address the problem of state
estimation in a moving-horizon fashion [28] especially
for nonlinear cases that involve sensor saturation [15].

Appendix - Proof of Theorem 2

(a) Using Lemma 4 for k1 = 0 and k2 = k E[V (xk, rk)−
V (x0, r0)] = E[

∑k−1
j=0 LV (xj , rj)] 6 −γ

∑k−1
j=0 E[||xj ||2]

implying in turn γ
∑k−1
j=0 E[||xj ||2] 6 V (x0, r0) −

E[V (xk, rk)] 6 V (x0, r0). This yields
∑k−1
j=0 E[||xj ||2] 6

V (x0, r0)/γ, i.e., the partial sums of
∑∞
j=0 E[||xj ||2]

form a bounded sequence, therefore the series converges,
implying that one must have limk→∞ E[||xk||2] = 0.

(b) We have E[V (xk+1, rk+1)−V (xk, rk)] 6 −γE[||xk||2]
6 −(γ/β)E[V (xk, rk)] where the first inequality follows
from (14b) and the second from (14a). Therefore:

E[V (xk+1, rk+1)] 6 ζE[V (xk, rk)] (26)

where ζ , 1 − (γ/β). Using (14b) and (14a) it is
0 ≤ E[V (xk+1, rk+1)] 6 E[V (xk, rk)] − γ||xk||2 6
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(β − γ)||xk||2 and it can be inferred that 0 ≤
ζ ≤ 1. Applying recursively (26), we arrive at
E[V (xk, rk)] 6 ζkV (x0, r0). Using (14a) we have
αE[||xk||2] 6 E[V (xk, rk)] 6 ζk V (x0, r0) 6 ζkβ||x0||2.
Finally we arrive at E[||xk||2] 6 θζk||x0||2 where

θ , β/α > 1 . 2
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