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Abstract—Cloud computing technology has rapidly evolved
over the last decade, offering an alternative way to store and
work with large amounts of data. However data security remains
an important issue particularly when using a public cloud service
provider. The recent area of homomorphic cryptography allows
computation on encrypted data, which would allow users to
ensure data privacy on the cloud and increase the potential
market for cloud computing. A significant amount of research on
homomorphic cryptography appeared in the literature over the
last few years; yet the performance of existing implementations of
encryption schemes remains unsuitable for real time applications.
One way this limitation is being addressed is through the use of
graphics processing units (GPUs) and field programmable gate
arrays (FPGAs) for implementations of homomorphic encryption
schemes. This review presents the current state of the art in this
promising new area of research and highlights the interesting
remaining open problems.

I. INTRODUCTION

Cloud computing offers many services to users, including
the option to offload storage and computation of large amounts
of data to the cloud. However to take advantage of cloud
computing, users must trust and share their data with the
cloud service providers. One way to ensure data privacy
is to encrypt data before uploading to the cloud. However,
if users wish to compute on the data, the data must be
downloaded and decrypted, making the main advantages of
using cloud services redundant. One solution for providing
secure cloud computing on untrusted public clouds is the use
of homomorphic encryption: a method of encryption which
allows computations on encrypted data, without the need to
fully decrypt the data on the cloud.

Partially homomorphic encryption schemes have been
known for many years, offering the ability to carry out a
certain type of operation on ciphertexts without decryption,
for example addition or multiplication, such as the additively
homomorphic Paillier [1] or the multiplicatively homomorphic
ElGamal [2] cryptosystems. However the most commonly used
computations, for example in the areas of signal processing,
statistics or finance, include both the use of addition and
multiplication and thus partially homomorphic schemes do not
suffice.

The idea of a fully homomorphic encryption (FHE) scheme
was first proposed by Rivest, Adleman and Dertouzos in 1978
[3] under the alternative title of privacy homomorphism and
it has remained an open problem until 2009. The concept of

homomorphic encryption (HE) has been revisited in recent
years, due to the seminal Stanford PhD thesis [4] produced
by Craig Gentry in 2009, in which he introduced the first
plausible fully homomorphic encryption scheme. A FHE
scheme is an encryption scheme which allows the efficient
evaluation of an arbitrary depth circuit (composed of additions
and multiplications) to be evaluated directly on encrypted
data. Gentry provided a blueprint for constructing an FHE
from a so-called somewhat homomorphic encryption (SHE)
scheme, an encryption scheme which allows the evaluation of
a limited depth circuit. From its introduction in 2009, three
main branches of homomorphic encryption schemes have de-
veloped: lattice-based, integer-based and learning-with-errors
(LWE) or ring-learning-with-errors (RLWE) based encryption.

Research into SHE and FHE could ultimately lead to very
exciting developments in a wide variety of areas. The main
application of FHE would be to enable secure storage and
computation on the cloud. This would serve to further the use
and development of cloud-based computing. The technique of
homomorphic encryption also lends itself to other important
cryptographic applications such as multi-party computation
(MPC) [5], [6].

In spite of this potential, current homomorphic encryption
schemes are still not efficient enough for real time applica-
tions, for example, key generation in Gentry and Halevi’s
lattice based scheme [7] takes from 2.5 seconds to 2.2 hours.
Moreover, a recent implementation required 36 hours for a
homomorphic evaluation of AES using FHE by Gentry et al.
[8]. Another important limitation of FHE schemes is memory
usage; very large ciphertext and public key sizes are required
to guarantee adequate security to prevent against possible
lattice-based attacks. Gentry and Halevi’s FHE scheme uses
public key sizes ranging from 17 MB to 2.25 GB [7]. Also
in the previously mentioned evaluation of AES, memory is
reported to be the main limiting factor in the implementa-
tion [8]. A further limitation to FHE schemes is the costly
bootstrapping operation; bootstrapping is required to reduce
and manage the noise that is incurred when homomorphic
operations are carried out on ciphertexts. Recent research
has therefore focused on optimisations to improve efficiency
of the FHE schemes, such as minimising the need for the
expensive bootstrapping operation [9] or employing batching
techniques for multiple bit encryption [10]–[12]. Moreover



the development of optimised FHE architectures targeting
alternative platforms to software are being explored, such as
for GPU technology [13] or FPGA technology [14]–[18] to try
and increase the performance capabilities of these schemes.

II. CURRENT APPROACHES

Initial research on FHE concentrated on lattice based
schemes [7], [19], [20], involving relatively large public key
sizes and ciphertext sizes. Lattice based FHE schemes, and
indeed the other FHE schemes, base their security on hard
problems associated with lattices, such as the sparse subset
sum problem (SSSP) or the shortest vector problem (SVP).
Single instruction, multiple data (SIMD) techniques were
proposed by Smart and Vercauteren [10] for these schemes
to perform tasks in parallel and thus improve efficiency.

The main focus of the theoretical cryptographic research
community is currently on LWE and RLWE based FHE [21]–
[23]. LWE was introduced by Regev [24], and has been
shown to be as hard as the worst case lattice problems. This
problem has been extended to work over rings [25], and this
extension increases the efficiency of LWE. An analysis into
the practicality of SHE schemes along with an implementation
of a SHE scheme by Brakerski and Vaikuntanathan [26] was
carried out by Lauter et al. [27].

Integer based schemes were introduced by van Dijk et al.
[28] as a theoretically simpler alternative to lattice based
schemes and have been further developed to offer similar
performance to existing lattice based schemes [29], [30].
Moreover a proposed public key compression technique has
reduced the size of the public key from over 2 GB down to a
manageable 10 MB [29]. The performance of these integer
based schemes has very recently been improved through
a proposed batching technique [12] for the encryption of
multiple plaintext bits into one ciphertext. The performance of
evaluating AES using this batched scheme over the integers is
comparable to the alternative implementation by Gentry et al.
using the RLWE based FHE scheme [8].

Since the introduction of SHE and FHE in 2009 [4] there
have been several optimisations in the field of homomorphic
encryption to improve efficiency and speed. As mentioned in
the introduction, bootstrapping is an expensive operation used
to reduce the noise in the ciphertext by homomorphically
decrypting a ciphertext using a secret key that is encrypted
and hidden in the public key. There has been a lot of research
into improving or avoiding the use of bootstrapping, such as
the introduction of modulus switching by Brakerski et al. [9],
which helps to minimise the noise generated when carrying
out homomorphic operations.

There have been several recent software implementations of
FHE schemes, such as [8], [12], and an open source software
implementation, hcrypt, of FHE is available online [31].
The latest online introduction of a homomorphic encryption
library (HElib), developed by Halevi and Shoup, features
an optimised implementation of the FHE scheme proposed
by Brakerski et al. [9]. It improves the performance of
schemes, offering a speed up by a factor of 12 over previous

implementations. It takes 3 hours instead of 36 hours for the
homomorphic AES scheme [32], [33].

III. GPU AND FPGA IMPLEMENTATIONS OF
HOMOMORPHIC ENCRYPTION SCHEMES

Research into the development of optimised FHE archi-
tectures targeting alternative platforms to software for imple-
mentations could prove useful in increasing the efficiency of
SHE and FHE schemes. There are currently several research
groups working towards this goal and recent developments in
this area indicate the potential of hardware architectures to
drastically increase the efficiency of homomorphic encryption
schemes. In particular, the performance of the underlying
crypto-primitives required in many of the FHE schemes, such
as modular reduction and large multiplication, could be signifi-
cantly improved through the use of GPU or FPGA technology.
FPGA technology offers flexibility at a low cost, in comparison
with application specific integrated circuit (ASIC) designs. In
addition, modern FPGAs include embedded hardware blocks,
which are optimised for multiply-accumulate (MAC) opera-
tions, and thus can be exploited when implementing large
multiplications.

There has been some research already conducted into hard-
ware implementations of LWE schemes. Hardware building
blocks for the LWE cryptosystem were considered by Göttert
et al. along with the use of the Fast Fourier Transform
(FFT) [36]. An efficient hardware implementation of RLWE
encryption is presented by Pöppelmann and Güneysu [37], as
proposed by Lyubashevsky et al. [25] and Lindner and Peikert
[25], is presented by Pöppelmann and Güneysu [37], which
can fit on a low cost Xilinx Spartan-6 FPGA, and thus has
relatively small resource usage. It compares favourably with
the previously mentioned implementation of LWE by Göttert
et al. in terms of hardware resource utilisation.

The recent work on hardware and GPU architectures for
large-integer multiplication has improved the efficiency of
FHE schemes. A hardware design of polynomial multiplication
using FFT targeting lattice-based SHE and FHE schemes
and implemented on FPGA was presented by Pöppelmann
and Güneysu [38]. The performance of this multiplication
operation implemented on a Spartan-6 FPGA is compared to
the same operation with similar parameter sizes in the software
implementation of a RLWE SHE scheme by Lauter et al. [27]
and offers a speed up factor of 39 [38].

The first GPU implementation of a FHE scheme was pre-
sented by Wang et al. [13]. The authors implemented the small
parameter size version of Gentry and Halevi’s lattice-based
FHE scheme [7] on an NVIDIA C2050 GPU using the FFT
algorithm, achieving speed up factors of 7.68, 7.4 and 6.59 for
encryption, decryption and the recryption operations, respec-
tively. The FFT algorithm was used to target the bottleneck of
this lattice-based scheme, namely the modular multiplication
of very large numbers, and the authors took advantage of
the highly parallelised GPU to accelerate the performance
of the FHE scheme. However, the authors state that even
with the speed up the implemented FHE scheme remains



TABLE I
OVERVIEW OF FHE IMPLEMENTATIONS: TIMINGS FOR MULT AND SMALL SIZE ENCRYPT

Design Scheme Platform Mult. Encrypt
FFT multiplier [34] Gentry & Halevi’s FHE scheme [7] 90nm TSMC 7.74 ms 2.09s
FFT multiplier / reduction [13] Gentry & Halevi’s FHE scheme [7] NVIDIA C250 GPU 0.765 ms 1.69s
Optimised FFT multiplier / reduction [35] Gentry & Halevi’s FHE scheme [7] NVIDIA GTX 690 0.583 ms 0.0062s
FFT multiplier [18] Gentry & Halevi’s FHE scheme [7] Stratix V FPGA 0.125 ms -
FFT multiplier / reduction [17] Coron et al.’s FHE schemes [29], [30] Xilinx Virtex7 FPGA - 0.0130s

unpractical, as high latency is incurred in the encryption
and recryption steps. An extension of the authors’ work [35]
involves the modification of arithmetic operations to decrease
costly back and forth FFT conversions. This modified method,
implemented on an NVIDIA GTX 690, achieves speed up
factors of 174, 7.6 and 13.5 for encryption, decryption and the
recryption operations, respectively, when compared to results
of the implementation of Gentry and Halevi’s FHE scheme
[7] that runs on an Intel Core i7 3770K machine. A further
FPGA implementation targeting large number multiplication
was proposed by Wang and Huang [18]. The authors propose
an architecture for a 768K-bit FFT multiplier using a 64K-
point finite field FFT as the key component. This component
was implemented on both a Stratix V FPGA and a NVIDA
Tesla C2050 GPU and the implementation was around twice
as fast on the FPGA as on the GPU [13].

Doröz et al. presented a full custom hardware implementa-
tion of very large integer multiplication [34]. Their design is
based on Schönhage-Strassen’s Number Theoretic Transform
algorithm and includes a 768-KByte cache to decrease I/O
transactions. A multiplication takes 7.74 ms for million-bit
operands at 666 MHz using a TSMC 90 nm library with an
area requirement of 26.7 million equivalent gates. The authors
also mention that the performance estimates of Gentry and
Halevi’s FHE primitive operations match with the previously
reported software implementations on a high end Intel Xeon
processor [7], and only uses a tiny fraction of the area.

Furthermore, the authors also present the first custom
hardware realisation of the Gentry-Halevi FHE scheme [39].
The design introduces new hardware blocks to the previously
introduced multiplier to perform all the Gentry-Halevi FHE
primitives. The primitives are implemented by using a similar
approach as Wang et al. [35] to reduce the number of FFT con-
versions. The design achieves speed up factors of 1.24, 99.44
and 10.32 for decryption, encryption and recryption operations
respectively, when compared to the software implementation
by Gentry and Halevi [7]. In comparison with the results of the
GPU implementation by Wang et al. [13], the custom hardware
design achieves speed up factors of 0.15, 12.15 and 1.35 for
encryption, decryption and the recryption operations, respec-
tively. The authors also state that they achieve these speed up
factors utilising a small area of 30 million equivalent gates
whereas the NVIDIA Tesla C2050 GPU and the Intel Xeon
processor contains 900 million and 205 million equivalent
gates respectively.

Other current work has also focused on the use of large
integer multiplications required in many FHE schemes [7],
[29], [30], in order to maximise the potential speed up factor

for hardware implementations. The use of a Comba multiplier
[40], which can be implemented efficiently using the DSP
slices of an FPGA [41], was proposed by Moore et al. [16] to
improve the performance of integer based FHE schemes [28],
[30]. An FPGA implementation of a RLWE SHE scheme was
also targeted by Cousins et al. [14], [15], in which Matlab
Simulink is used to design the FHE primitives.

Lastly, Cao et al. [17] proposed a large-integer multiplier
using integer-FFT multipliers combined with Barrett reduction
to target the multiplication and modular reduction bottlenecks
featured in many FHE schemes. The encryption step in the
proposed integer based FHE schemes by Coron et al. [29], [30]
were designed and implemented on a Xilinx Virtex-7 FPGA.
The synthesis results show speed up factors of over 40 are
achieved compared to existing software implementations of
this encryption step [17]. This speed up illustrates that further
research into hardware implementations could greatly improve
the performance of these FHE schemes. An overview of the
above mentioned multipliers for different platforms is given
in Table I.

IV. CONCLUSIONS AND FUTURE DIRECTIONS

Although there has been a lot of recent research in the
area of homomorphic cryptography, there are many remaining
open problems. In terms of the theoretical research, parameter
selection for homomorphic encryption schemes is currently
a complex process, as each scheme has specifically selected
parameters, all of which are interlinked and these parameters
are usually selected based on current possible lattice based
attacks and their existing limits. An example of a weakness in
this approach to parameter selection was exploited in an attack
by Lee [42], where the parameter selection in Gentry and
Halevi’s scheme [7] was not conservative enough to prevent a
lattice based attack exploiting the sparse subset sum problem.
More research into parameter selection is needed to ensure
the most suitable parameters are chosen to guarantee both
efficiency and security.

In terms of practical FHE implementations, further research
into suitable hardware designs and optimisations of existing
schemes could provide a large speed up, as indicated in
[16]. Optimisations at an algorithmic level are required; for
example parameters must be optimised to maximise efficiency
of implementations. Moreover, batching techniques proposed
for FHE schemes, [10]–[12], could greatly improve perfor-
mance of any implementation and should also be investigated
further. Optimisations at an architectural level are also needed.
One major bottleneck in the implementation of these schemes
is memory storage. Large parameter sizes and very large



ciphertext sizes consume large amounts of memory, which
requires memory management. Lastly, optimisations to target
specific devices, such as using the embedded multipliers on
an FPGA, are required. For possible FPGA implementations,
the use of off-chip DDR3 memory is almost certainly required
and therefore data transfer could become a performance issue.
Thus, research into any optimisations reducing the memory
requirements would be useful for future implementations.

In conclusion, the area of homomorphic cryptography re-
mains an interesting area with a lot of scope for future
research. Although further work on FHE schemes is needed
to improve and optimise performance, the new avenue of
targeting hardware or GPU technology for optimised FHE
architectures also looks very promising, and brings the possi-
bility of real time implementations of FHE a step closer.
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