
An optimisation of Gaussian mixture models for integer processing
units

Salvadori, C., Petracca, M., Martinez del Rincon, J., Velastin, S. A., & Makris, D. (2014). An optimisation of
Gaussian mixture models for integer processing units. Journal of Real-Time Image Processing.
https://doi.org/10.1007/s11554-014-0402-5

Published in:
Journal of Real-Time Image Processing

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
The final publication is available at Springer via http://link.springer.com/article/10.1007%2Fs11554-014-0402-5

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Open Access
This research has been made openly available by Queen's academics and its Open Research team. We would love to hear how access to
this research benefits you. – Share your feedback with us: http://go.qub.ac.uk/oa-feedback

Download date:21. May. 2024

https://doi.org/10.1007/s11554-014-0402-5
https://pure.qub.ac.uk/en/publications/28e0e11f-fd1c-4485-b11c-548c96ff5940

Real-Time Image Processing manuscript No.
(will be inserted by the editor)

Claudio Salvadori · Matteo Petracca · Jesus Martinez del Rincon · Sergio
A Velastin · Dimitrios Makris

An Optimisation of Gaussian Mixture Models for integer
processing units

Received: date / Revised: date

Abstract This paper investigates sub-integer implemen-
tations of the adaptive Gaussian mixture model (GMM)
for background/foreground segmentation to allow the de-
ployment of the method on low cost/low power proces-
sors that lack Floating Point Unit (FPU). We propose
two novel integer computer arithmetic techniques to up-
date Gaussian parameters. Specifically, the mean value
and the variance of each Gaussian are updated by a re-
defined and generalised “round” operation that emulates
the original updating rules for a large set of learning
rates. Weights are represented by counters that are up-
dated following stochastic rules to allow a wider range of
learning rates and the weight trend is approximated by
a line or a staircase. We demonstrate that the memory
footprint and computational cost of GMM are signifi-
cantly reduced, without significantly affecting the per-
formance of background/foreground segmentation.

Claudio Salvadori
TeCIP Institute, Scuola Superiore Sant’Anna, via Moruzzi 1,
56124 Pisa Italy
Tel.: +39-050-5492037
E-mail: claudio.salvadori@sssup.it

Matteo Petracca
National Inter-University Consortium for Telecommunica-
tions, Pisa, Italy
E-mail: matteo.petracca@cnit.it

Jesus Martinez del Rincon
The Institute of Electronics, Communications and Informa-
tion Technology (ECIT), Queens University of Belfast, BT3
9DT, UK
E-mail: j.martinez-del-rincon@qub.ac.uk

Sergio A Velastin
Department of Informatic Engineering, Universidad de San-
tiago de Chile
E-mail: sergio.velastin@ieee.org

Dimitrios Makris
Digital Imaging Research Centre, Kingston University, Lon-
don, United Kingdom
E-mail: d.makris@kingston.ac.uk

1 Introduction

Background modelling (Piccardi (2004), Cheung and Ka-
math (2004), Radke et al (2005)) is a basic task for many
computer vision applications, such as surveillance, road
traffic monitoring, assisted living, etc. Normally, back-
ground modelling is based on pixel-wise operations that
lead to both high computational cost and high mem-
ory requirements. Hardware parallelisation approaches
may significantly speed up the processing, however they
tend to have relatively high computational cost and high
power consumption.

In Smart-Camera Network applications (Pagano et al
(2012)), the goal is the pervasivity of the low cost vi-
sual sensors. The usage of very simple embedded systems
based on low memory, low computational capability and
low power consumption microcontrollers/microprocessors
is required to both reduce costs and increase node power
autonomy. Thus, microcontrollers without Floating Point
Unit (FPU) are attractive, as FPUs increase the cost and
the power consumption of the system. Consequently, one
of the challenges is the redefinition of complex computer
vision algorithms in an optimised and/or approximated
version while maintaining comparable performance.

In this paper we present an extended version of what
we proposed earlier in Salvadori et al (2012): we take the
work further by considering any mixture of Gaussians
(previously we only considered a mixture of two Gaus-
sians), thus generalising the method to a generic mixture
of G Gaussians. We also consider a larger domain for
the learning-rate to cover a wider range of applications.
Here we also propose two methods to approximate the
Gaussian Mixture Model (GMM): iGMM-l and iGMM-
s, where the integer weight quantisation is performed by
a linear or a staircase function, respectively. Thus, while
our previous works could be consider as a particular case
of iGMM-l, because of the common usage of linear quan-
tisation, in this paper we present the new method iGMM-
s able to better the accuracy in weight approximation
and to improve the overall segmentation performance.

2

In what follows we will use the term iGMM-x to gener-
ally refer to both variations above.

The rest of the paper is organised as follow: in Sec.
2 background model techniques in the literature are re-
viewed, focusing on solutions suitable for embedded sys-
tem deployment; in Sec. 3 the proposed methodology is
explained; in Sec. 4 the implementation details are de-
picted to introduce Sec. 5 where the performance evalu-
ation of the considered techniques is presented and anal-
ysed.

2 State of the art

One popular approach for background modeling in em-
bedded systems is the temporal median filter (see Lo and
Velastin (2001), Cucchiara et al (2003)) and its approxi-
mations. For example, in Hung et al (2010), a selection-
based median filter algorithm is proposed to reduce the
computation and consequently to speed-up processing,
and in McFarlane and Schofield (1995) a very fast and
low memory footprint approximated median filter is de-
picted. In Rahimi et al (2005), another low computation
and low memory footprint method is based on running
average: each background pixel is updated by its differ-
ence with the corresponding value in the current image,
using a value α ∈ [0, 1] called learning rate. Moreover, in
Iannizzotto et al (2010), a combination of the two pre-
vious methods is described to increase the robustness of
the median filter to sudden changes.

The above mentioned techniques represent the vari-
ations of each image pixel using only one value to model
the background, while foreground is considered as an
outlier. Methods that explicitly represent foreground as
part of multimodal approaches have demonstrated higher
accuracy. For instance, in Apewokin et al (2009) a mul-
timodal mean technique is presented: every image pixel
is described by a group of K mean values and a fixed
threshold, to define a membership criterion, and a pixel
is labeled as background if it matches a popular mean
value. However, all above assumptions lack a rigorous
statistical base, as no deviation measurement is used to
adapt the membership threshold.

Gaussian Mixture Method (see Stauffer and Grim-
son (1999)) explicitly provides rigorous statistical mod-
els for both background and foreground by representing
each pixel by a set of adaptive G Gaussians. Although
it allows performing solid and accurate background sub-
traction, this method is characterized by a high memory
footprint, as each Gaussian is represented by three float-
ing point parameters, and a high computation cost, as
each parameter is updated using a Finite Impulse Re-
sponse (or FIR) filter.

There have been only few reported attempts to op-
timize the above mentioned approach for embedded sys-
tems. An efficient implementation of the GMM algorithm
is described in Shen et al (2012). The image is segmented

into 8x8 blocks, and their projections (based on com-
pressive sensing, proposed by Candes et al (2006) and
Donoho (2006)) are modelled as a GMM, so as to label
each one as background or foreground. Finally, each fore-
ground block is refined to generate a pixel-wise binary
map. This approach obtains very good performance in
terms of processing speed (five times faster than the orig-
inal GMM) but only a modest result in terms of memory
(a quarter of the original GMM).

Finally, in Salvadori et al (2012), an integer based
technique is described to allow deployment on proces-
sors with no FPU. Mean value and variance updating
process uses a rounding operator, while weight updating
is based on a counter-based representation. This tech-
nique demonstrated both low computation cost and a
highly optimised memory footprint (1/12 of the original
GMM memory footprint) for a two-Gaussian mixture.
For example, they achieved real-time performance for
a QQ-VGA resolution using a low cost/low power mi-
crocontroller (PIC32-80MHz). However its extension to
models with more than two Gaussians is not trivial and
it introduces restrictive limitations on the learning rate
domain. In this paper we propose how to overcome those
limitations and deal with any given number of Gaussians.
Particularly, in order to improve the mean value and the
variance updating rule we have enhanced the generalised
round operations making use of a variable updating step
ξ as a function of the learning rate α (ξ(α), see Sec. 3.4),
and not constant as in our previous work. Moreover, in
Sec. 3.5.1, we propose a technique to overcome the lim-
itations introduced by the weight updating rule based
on stochastic updating: the weights are represented as
counter (as in Salvadori et al (2012)), but they are up-
dated with a probability-based function so as to better
emulate the original GMM.

3 Methodology

3.1 Introduction to Gaussian Mixture Model (GMM)

GMM is a technique to model the static background and
separate it from foreground in video sequences acquired
by static cameras. The temporal variation of each pixel of
the image is modeled by the weighted sum (or mixture)
of G Gaussians, each one of them described by three
parameters: mean value (µ), variance (σ2) and weight
(w). Each parameter takes values from a certain range as
presented in Tab. 1. Particularly, constraining the range
of variance prevents Gaussians from degenerating into a
Dirac delta (if σ2 → 0) or into a uniform distribution (if
σ2 →∞).

µ σ2 w

[0, 255] [σ2
min,σ2

MAX] [0, 1]

Table 1: Gaussian parameters ranges

3

The GMM adaptation procedure is based on the com-
putation of the difference (see Eq. 1) of the pixel pi(j)
(where i represents the pixel position and j the given
frame) from the mean value of each g Gaussian, ∀g ∈
[1, G].

di,g(j) = pi(j)− µi,g(j) (1)

A membership criterion (see Eq. 2) is defined to up-
date the Gaussians with the corresponding pixel value,
given a certain value of learning rate α (α ∈ [0, 1]) and
a certain threshold T . Thus, if a pixel satisfies the mem-
bership criterion for a certain Gaussian, its mean value,
variance and weight are updated using three different
FIR filters described respectively by equations Eq. 3,
Eq. 4 and Eq. 5. Otherwise, the weight of the consid-
ered Gaussian, is updated using Eq. 6.

if d2i,g(j) < Tσ2
i,g(j) (2)

µi,g(j + 1) = µi,g(j) + ki,g(j)di,g(j) (3)

σ2
i,g(j + 1) = σ2

i,g(j) + ki,g(j)(d
2
i,g(j)− σ2

i,g(j)) (4)

wi,g(j + 1) = (1− α) · wi,g(j) + α (5)

else

wi,g(j + 1) = (1− α) · wi,g(j) (6)

where ki,g(j) = α
wi,g(j)

.

For each pixel i and each frame j, the weights of
Gaussians satisfy the following equation:

G∑
g=1

wi,g(j) = 1 (7)

The role of the weight is to discriminate between
foreground and background Gaussians. For every pixel,
the Gaussians are ordered accordingly to a sorting rule,
based on the value of ρ (Stauffer and Grimson (1999))
that is directly proportional to the squared value of the
weight, as described in Eq. 8. If the pixel belongs to the g-
th Gaussian, where g satisfies the equation

∑g
m=1 wm(j)

≤ TW (where TW is a threshold given by the user), the
pixel is labeled as background, otherwise as foreground.

ρ(j) =
w2(j)

σ2(j)
(8)

3.2 Overview of iGMM-x

In the following sections we propose integer-GMM or
iGMM, a method to port the GMM to architectures that
lack a FPU, aiming to minimise both memory footprint
and processing time. To this purpose, we use sub-integer
representation, where the Gaussian parameters are rep-
resented using a number of bits less than the size of
the smallest data integer type (namely uint8 t). Thus,
the mean value and the variance updating that depend
directly on the pixel values, will be handled defining a

generalised round operation (see Sec. 3.3). On the other
hand, weight updating, dependent only on matching a
certain Gaussian, will be handled using a stochastic ap-
proach (see Sec. 3.5).

3.3 Mean value and variance updating

This section describes the proposed updating operations
of the mean value and the variance of a Gaussian, repre-
sented by sub-integer variables. To permit this operation,
we have an updating methodology based on three phases,
as shown in Fig. 1: (i) the scaling transform, (ii) the
additive updating function, and (iii) the scaling inverse
transform.

Fig. 1: Mean value and variance updating chain.

This updating methodology can be seen as a com-
mon pipeline used in several signal processing applica-
tions: data defined in the integer space V (in this case
the domain represented in memory) are transformed to
another space U (by using the scaling transform) where
it is simpler to process, and then converted back to V
(with scaling inverse transform). Moreover, the process-
ing operation, performed in the GMM case in the real
domain (namely R), is ported in the U domain using a
method based on the additive updating function and the
generalised round. All the above mentioned phases are
described in the following sections.

3.3.1 Sub-integer operations

To achieve sub-integer accuracy in Eq. 3 and Eq. 4,
all their operands are converted appropriately using a
scaling transformation. Accuracy is specified by a pre-
defined parameter P and the conversion operation (χ(◦) :
V→ U) for a given operand V ∈ V is defined as:

χ(V) = V · P (9)

After the updating process, the resulting parameters
of applying the operation in the new space are converted
back to be saved in the memory (namely from U to V),
using the inverse transform shown in Eq. 10 ((χ−1(◦) :
U→ V)).

χ−1(E) =
E

P
(10)

4

with E ∈ U being the transformed operand. Both trans-
formations in Eq. 9 and 10 are linear.

According to the above considerations, a generalised-
round operation G ROUND is defined (see also Salvadori
et al (2012)) to enable a satisfactorily accurate represen-
tation of floating-point numbers in the integer domain
U, with U ⊆ Z. The above mentioned integer domain
U can be described as the discrete and ordered set of
numbers B = {bm ∈ U|bm+1 − bm = γ}, and it can be
characterized by two parameters: the granularity γ, and
the updating step ξ, defined as a function of γ:

ξ = F(γ) = Rγ (11)

where R ∈ (0, 1) is called rounding parameter. Therefore,
it is possible to define the γ-floor operator b◦cγ as:

bδcγ = b δ
γ
cγ (12)

and finally the generalised-round operator G ROUND
as:

G ROUND(δ, ξ, γ) =


bδcγ if |δ| ≥ γ
γ if (|δ| < γ) ∧ (|δ| ≥ ξ)
0 if (|δ| < γ) ∧ (|δ| < ξ)

(13)

where δ ∈ Z is the value to be rounded.

3.3.2 Generalised additive updating function

The second updating block in Fig. 1 corresponds to Eq. 3
and Eq. 4, which defines additive updating operations for
both the mean value and the variance. However, since
our proposed system is based on integer representation,
(see Sec. 3.3.1), these formulas need to be redefined ap-
propriately to emulate the original floating point formu-
lation. Let U : R → D (in this case D ⊆ R) an ad-
ditive updating function of the parameter a, such that
a(j + 1) = U(a(j), δ(j)) = a(j) + δ(j), where δ(j) is
the updating contribution for the parameter a. There-
fore, Eq. 3 and Eq. 4 can be rewritten as:

µ(j + 1) = µ(j) + δµ(d(j))

where δµ(d(j)) = k(j)d(j) (14)

σ2(j + 1) = σ2(j) + δσ2(d2(j))

where δσ2(d2(j)) = k(j)(d2(j)− σ2(j)) (15)

According to the first block of Fig. 1, a conversion in
the space U is needed:

χ[a(j + 1)] = χ[a(j) + δ(j)] = χ[a(j)] + χ[δ(j)] (16)

Consequently, to achieve the floating point accuracy
with a sub-integer representation, the generalised addi-
tive updating function Ū is defined in the integer space

U (Ū(◦) : U → U), taking into account the generalised-
round operator G ROUND defined in Eq. 13, as follows:

Ū(a(j), δ(j)) = G ROUND[χ[a(j + 1)]] =

= χ[a(j)] + {G ROUND[χ[δ(j)]]} (17)

Finally, the overall result of all the chain in Fig. 1
can be summarized by the following relation:

a(j + 1) = a(j) + χ−1{G ROUND[χ[δ(j)]]} (18)

and the parameters γ and ξ for the G ROUND operator
should have appropriate values to produce similar results
to the original updating function U(a(j), δ(j)).

3.4 Calculating the updating step ξ

As described in our previous work Salvadori et al (2012),
using a fixed value of rounding parameter R in Eq. 11 (in
that case R = 0.5) limits the learning rate range, since
updating the mean value and the variance is possible
for only a sub-set of learning rate values. In this paper
a more general technique is suggested. It computes the
value of the updating step ξ as a function of the learn-
ing rate α, to ensure appropriate updating of both pa-
rameters while maintaining the membership intervals of
Gaussians similar to the ones estimated by the floating-
point approach.

According to Eq. 2, 14 and 15, both the updating
contributions δµ(di,j) and δσ2(d2i,j) are bounded inside
updating contribution ranges, as defined by the following
formulas:

δµmin(σ2) = −kσ
√
T ≤ δµ(di,j) ≤ kσ

√
T = δµMAX(σ2)

(19)

δσ
2

min(σ2) = −kσ2 ≤ δσ2(d2i,j) ≤ kσ2(T − 1) = δσ
2

MAX(σ2)

(20)

where k depends on the learning rate α, as stated in
Sec. 3.1.

Thus, fixing α, Eq. 19 and 20 can be seen as generic
ranges bounded by a maximum (δMAX) and a minimum
(δmin), and they can be represented using a couple of
parameters: the center C (see Eq. 21) and the radius r
(see Eq. 22), as shown in Fig. 2.

C =
δMAX + δmin

2
(21)

r =
δMAX − δmin

2
(22)

In Tab. 2 both the intervals of Eq. 19 and 20 are
represented in terms of centers and radii as a function of
σ2.
Because of the bounded nature of the variance and the
direct proportionality of the above mentioned parame-
ters on its value, it is possible to show that both the

5

Fig. 2: Range center (C) and radius (r).

Cµ(σ) = 0 rµ(σ2) = ασ
√
T

Cσ2(σ2) =
αTσ2 − 2ασ2

2
rσ2(σ2) =

ασ2T

2

Table 2: Centers and radii for mean value and variance
updating contribution range.

centers and the radii are bounded into the following in-
tervals:

Cµ = 0 ∀σ2 (23)

rµ ∈ [rµ(σ2
min), rµ(σ2

MAX)] (24)

Cσ2 ∈ [Cσ2(σ2
min), Cσ2(σ2

MAX)] (25)

rσ2 ∈ [rσ2(σ2
min), rσ2(σ2

MAX)] (26)

From the previous considerations it is possible to
state that the updating contribution ranges have a vari-
able width, dependent on the variance. Consequently, the
idea is to define critical intervals close to the border of
both the above mentioned ranges, where the updating
contribution is considered sufficiently large to increase
the counter. In the following the criteria to estimate these
intervals are described. By comparing Eq. 3 and 4, it is
noted that the former depends directly on the difference
value di,g(j) (where di,g(j) ∈ Z) but the latter evolves
with its square value. Consequently, in case of a large
value of di,g(j), the variance update will be significantly
higher than the mean value update, and then the above
mentioned critical intervals can be estimated as:

(a) the critical interval Πµ is the zone inside the maxi-
mum width membership interval (namely the interval
[−rµ(σ2

MAX), rµ(σ2
MAX)]) where the updating contri-

bution δµ is considered sufficiently large to update the
mean value of its granularity;

(b) the critical interval Πσ2 is the zone inside the mini-
mum width membership interval (namely the inter-
val [Cσ2(σ2

min)− rσ2(σ2
min), Cσ2(σ2

min) + rσ2(σ2
min)])

where the updating contribution δσ2 is considered
sufficiently large to update the variance of its granu-
larity.

In Sec. 5.1.1 the impact of both of these principles will
be shown and evaluated in a real test case.

Following the above considerations, two new param-
eters, minimum updating numbers Nµ ∈ R and Nσ2 ∈ R
(with Nµ ∈ (0, 1) and Nσ2 ∈ (0, 1)), can be used to code

(a) Mean value case.

(b) Variance case.

Fig. 3: Updating contributions ranges and minimum up-
dating number.

the width of the critical intervals Πµ and Πσ2 respec-
tively (see red zones in Fig. 3a and Fig. 3b). The intro-
duction of these two parameters allows us to define the
intervals while using only integers instead of real num-
bers for our calculations. Thus, according to Eq. 2, 3 and
4, the following two conditions describe these critical in-
tervals:

Πµ = {δµ ∈ Z : |δµ − Cµ| ≥ bNµrµ(σ2
MAX)c} (27)

Πσ2 = {δσ2 ∈ Z : |δσ2 − Cσ2 | ≥ bNσ2rσ2(σ2
min)c} (28)

Thus, it is possible to rewrite the generalised round
operation (Eq. 13) as:

G ROUND(δ, ξ, γ, C) =


bδcγ if |δ| ≥ γ
γ if (|δ| < γ) ∧ (δ ∈ Π)

0 if (|δ| < γ) ∧ (δ /∈ Π)

(29)

where ξ is the updating step, and Π is the critical inter-
val. Thus, from Eq. 27, Eq. 28 and Eq. 29 it is possible
to define the updating steps ξ as:

ξµ(α) = Nµ(α) · rµ(σ2
MAX , α) (30)

ξσ2(α) = Nσ2(α) · rσ2(σ2
min, α) (31)

Finally, the values of Nµ(α) and Nσ2(α) are cali-
brated iteratively to minimize the difference of the iGMM-
x and GMM membership intervals on a validation data-
set, as depicted in Sec 5.1.1.

6

3.5 Weight updating

The weight updating rule, in contrast to the mean and
variance updating rules, does not depend directly on the
value of the pixel pi, but only on the membership to a
certain Gaussian: if the pixel belongs to a Gaussian, its
weight is increased by a given value, otherwise it is de-
creased. In the original approach described in Sec. 3.1,
the weights are represented as floating points between
0 and 1 and updated using the formulas in Eq. 5 and
Eq. 6 to increase and decrease the weight respectively.
To avoid the use of floating point weights, Eq. 5 and
Eq. 6 are solved as a function of both the learning rate α
and the number of iterations s needed to reach a certain
value of weight wg starting from 0 and 1 respectively.
The derived equations have an exponential form as de-
scribed in Eq. 32 and 33 (see also Fig. 4), where g is the
considered Gaussian index (g ∈ [1, G]):

wg(s) = 1− (1− α)s (32)

wg(s) = (1− α)s. (33)

Fig. 4: Weight trends.

Under this formulation, solving Eq. 32 as a function
of both the learning rate α and the weight, Eq. 34 is ob-
tained: this relation specifies how many iterations s(w,α)
are needed to reach a certain weight value starting from
0.

s(w,α) =
log10(1− w)

log10(1− α)
(34)

Consequently, it is possible to represent a weight as
an integer counter and represent it using a fixed number
of l bits, able to cover the range of values [0, L] (where
L = 2l − 1).

Though these considerations simplify the weight up-
dating problem, the operation to retrieve the weight value
continues to be floating point based because of the expo-
nential nature of both Eq. 32 and Eq. 33. To deal with
this issue two options are considered, where the weight
trend is simplified and approximated to: (i) a line (see
Fig. 5a and Sec. 3.5.2) or (ii) a staircase (see Fig. 5b
and Sec. 3.5.3). These two approximation methods, also

called iGMM-l and iGMM-s respectively, derive directly
from Eq. 34 and they allow the computation of: (i) the
number of steps needed to reach a certain value of weight
starting from 0 (or 1); (ii) the number of steps needed to
reach a certain value of weight from another one.

However, from Eq. 34, it is possible to show that the
number of steps to retrieve the highest value of weight
(namely 1 − ε where ε is a very small positive number,
e.g. ε = 0.01) is inversely proportional to the learning
rate, and consequently the lower the learning rate, the
higher the number of bits needed to represent the weight.
Because of the limited number of available bits, the de-
terministic calculation of both the linear and staircase
trends could be efficient only for large values of α.

To overcome such restriction, we propose a stochastic
method in Sec. 3.5.1 that increases the counter with a
certain probability to reach the highest value of weight
(namely 1− ε) in a certain number of steps A in average
using the above mentioned number of bits l, such that
A > L (where L = 2l − 1).

3.5.1 Stochastic updating

This section describes a method to generalise both the
proposed weight approximations (i.e. iGMM-l and iGMM-
s), to emulate floating point updating. Particularly, in
the case of iGMM-l, it allows to overcome the learning
rate limitation described in Salvadori et al (2012). In
iGMM-s, stochastic updating is essential since it allows
emulating a logarithmic trend using a set of weight val-
ues linearly sampled.

As stated in the previous section, the idea is to rep-
resent the weight using an integer counter and to re-
trieve its real value using one of the above mentioned
approximations. Consequently, in an ideal scenario with
no memory constraints, dealing with the weight updat-
ing means increasing the above mentioned counter by
a certain value, called STEP . However, in case where
weights are represented using l bits this approach is not
feasible: reaching the highest value of weight when learn-
ing rate is relatively small may require A iterations, such
that A > L (where L = 2l − 1). Thus a stochastic ap-
proach is proposed in order to overcome this limitation:
the integer counter s is updated a STEP amount with a
certain probability to reach the highest value of weight
in a certain A number of steps in average, as described
in the following equation.

sn = sn + Hn (35)

where Hn ∈ {0, STEP} is a set of independent binary
random numbers, such that:

E

[
A∑
n=1

Hn

]
= L (36)

7

(a) iGMM-l. (b) iGMM-s.

Fig. 5: The weight trend and its approximations.

If the probability of the values STEP and 0 are
PSTEP (n) and P0(n) respectively, from discrete random
number theory and because of the linearity of the ex-
pected value E[◦], it is simple to obtain the following
relation:

STEP ·
A∑
n=1

PSTEP (n) = L (37)

The value of PSTEP (n) is known and derives from the
chosen weight approximation (see Sec. 3.5.2 and 3.5.3).
The idea is to implement the logic derived from Eq. 35
making use of the set of the values PSTEP (n), a uni-
formly distributed random number Xn defined in the
interval [0,MAX], and a threshold TX , such that:

PSTEP (n) = P (Xn > TX) (38)

It is possible to demonstrate (see Appendix A) that
the threshold TX is simply specified using the following
formula:

TX = [1− PSTEP (n)] ·MAX (39)

3.5.2 iGMM-l: Linear approximation

In this configuration, the relation to calculate the weight
value w from the number of iterations s (Eq. (32)) is
approximated by a line passing through the origin and
the point P0 = (s(w0, α), w0) as shown in Fig. 5a. This
can be rewritten as the equation of the line that approx-
imates the weight trend, depicted in Eq. 40.

w(s) = s
w0

s(w0, α)
(40)

Assuming the values of P0 are known, the weight can
be represented as a counter, and it is updated adding the
value STEP (usually equal to G−1). Consequently, the
updating rules of using the linear approximation are the
following: (i) the counter related with the g-th Gaussian
has to increase by the updating step STEP ; (ii) all the
weights wk (with k 6= g) have to decrease by the constant
value STEP

G−1 .
In this method it is important to estimate the opti-

mal position of the point P0, which can be calculated as
the point where the line intersects the logarithmic trend

of Eq. 32. This point represents an estimation where a
weight swap may happen during the sorting operation.
Because a precise estimation of the above mentioned
swap point is impossible (the sorting depends on ρ, see
Eq. 8), the considered value w0 is the middle point of
the weight range, namely 0.5.

As shown in Salvadori et al (2012), because the weight
counter is represented using a finite number of bits l, the
method is only able to handle a subset of the learning
rate, that satisfies this condition:

s(w0, α
w
min)

w0
≤ L

STEP
(41)

Consequently, using Eq. 34, the retrieved interval of
learning rate is:

α ≥ 1− (1− w0)
STEP
w0·L (42)

To increase the range of this interval, the stochas-
tic updating method described in Sec. 3.5.1 is applied.
Since we are using a linear approximation, the probabil-
ity PSTEP (n) to update the weight (counter) is constant
and independent to n (it depends only on the learning
rate α). Consequently, it is possible to compute its value
solving Eq. 37:

PSTEP (α) =
L

STEP ·A
(43)

Thus, in this case PSTEP (n) represents the ratio between
the maximum value L

STEP that can be represented in l

bits (namely L = 2l − 1), and the number of steps A
needed to reach the value w = 1 using Eq. 40.

3.5.3 iGMM-s: Staircase approximation

This technique is based on the assumption that all the
possible weight values may be represented by an expo-
nential distribution as defined by Eq. 32 or Eq. 33 that
has been uniformly sampled over the iterations. For il-
lustrative purposes, only the increasing function is con-
sidered in a first instance, being the decreasing function
symmetrical as described later. Such approach emulates
completely the weight trend of Eq. 32, but the above

8

counter may require more levels than what is available
in the system. Therefore, we propose an approximated
solution. The increasing exponential curve in Fig. 4 can
be calculated as a linear function sampled using an expo-
nentially distributed sampling period over the iterations
(see dotted line in Fig 5b).

ν̄(s, α) = w(s)− w(s− 1) = (1− α)(s−1)α (44)

Following this logic, the weight is a linear function
that can be represented as an integer counter c .

w(c) = c · ν (45)

Thus, assuming that the available number of bits to rep-
resent the weight is l, and consequently the number of
available levels to represent the weight are L = 2l − 1 (0
represents the value w = 0), the idea is to sample the
interval [0, 1] using at least L points. To optimise both
memory footprint and processing complexity, the learn-
ing rate (namely the maximum value in Eq. 44 when
s = 1) is chosen as sampling period ν, and consequently
the counter c is updated stochastically, in order to ap-
proximate the trend of Eq. 32. Therefore, the stochastic
updating method of Sec. 3.5.1 is the core mechanism used
for updating the weight counter for iGMM-s: the weight
is updated with a exponential distributed probability de-
pendent on the value of the counter c (PSTEP (c)). Be-
cause the chosen sampling period is the maximum inside
the set described in Eq. 44, this probability is defined
as how many iterations are compressed at every counter
updating of the value STEP :

PSTEP (c, α) =
STEP

ν̄(c, α)
(46)

Thus, a Look-Up Table (or LUT) is instantiated in-
side a vector of L elements to contain the thresholds com-
puted as a function of PSTEP (c, α) using Eq. 39: we call
this data structure threshold-LUT or LUTT (α). There-
fore, from this vector indexed by a counter c (namely
LUTT (α)[c]), it is possible to obtain the current thresh-
old value for the stochastic updating technique (see also
Sec. 3.5.1).

All these considerations only refer to the weight in-
creasing operations and they do not take into account the
weight decreasing case. As seen in Fig. 4 the increasing
trend curve is symmetric to the decreasing trend curve
with respect to the horizontal line through 0.5. There-
fore, it is simple to conclude that the updating step func-
tion has the same form in both the increasing and the
decreasing trend, with the difference that the first one
maps the update from 0 to 1, the second one the inverse,
namely from 1 to 0. It is then possible to state that the
same threshold LUT can be used for both the increasing
and the decreasing trend by simply inverting the access
index. Summarizing:

1. if the pixel pi belongs to the current Gaussian, the
counter c is increased by STEP if and only if the
random value V > LUTT (α)[c];

2. if the pixel pi does not belong to the current Gaus-
sian, the counter c is decreased by STEP if and only
if the random value V > LUTT (α)[S̄− c], where S̄ is
the number of iterations needed to reach the weight
value 0.99 from 0;

3. otherwise no operation is performed.

4 Implementation

This section discusses the implementation details of the
proposed methods. Firstly, the hardware specifications
of two platforms are presented: the SEED-EYE board
(Scuola Superiore Sant’Anna and Evidence s.r.l. (2011))
and the Raspberry Pi board (Raspberry Pi Foundation
(2011)). Then, the memory and processing requirements
of our methods, deployed on the above platforms, are
discussed.

4.1 The selected boards

4.1.1 The SEED-EYE board

The SEED-EYE board is an advanced multimedia Smart
Camera Networks node based on PIC32MX795F512L
by Microchip (see also Microchip (2008)) that embeds:
a wireless transceiver compliant with the IEEE802.15.4
standard, an IEEE802.3 (Ethernet) interface, a USB in-
terface and a CMOS camera. Low power operation is
an essential requirement for such mobile sensors and the
specific hardware specifications allow the board operat-
ing at 0.45W with only 0.30W consumed by the micro-
controller.

The PIC32 microcontroller is characterized by a com-
putational capability of 80MHz, and an internal RAM
of 128KBytes. It lacks FPU and consequently any float-
ing point data are handled by software libraries. In Tab.
3 the processing time for executing a series of 32 mil-
lions arithmetic operations (+, -, *, /) on both floating
point and integer data is shown: for every arithmetic
operation, the ratio between the processing times of on
floating point data (namely float) and on integer data
Tdouble/Tuint32 t is at least 11 (see Tab. 3). This ratio
hints at the potential gain of our integer-based imple-
mentation.

4.1.2 The Raspberry Pi board

The Raspberry Pi is based on a Broadcom BCM2835 sys-
tem on a chip (SoC), which includes an ARM1176JZF-S
characterized by a computational capability of 700 MHz
processor and 256 MBytes of RAM. An SD card is used

9

Table 3: Standard operation times using integer and floating point representation for Raspberry Pi and SEED-EYE
boards

Precision Sum Subtraction Multiplication Division
[s] [s] [s] [s]

SEED-EYE Rasp. Pi SEED-EYE Rasp. Pi SEED-EYE Rasp. Pi SEED-EYE Rasp. Pi

uint32 t 3.31 0.29 3.43 0.30 4.11 0.47 9.80 0.76

double 41.98 0.86 50.08 0.85 44.97 0.91 130.58 2.01

Ratio ∼13 ∼3 ∼15 ∼3 ∼11 ∼2 ∼13 ∼2.5
Tdouble/Tuint32 t

for booting and long-term storage. Although this sys-
tem lacks FPU, floating point arithmetics are supported
by an optimised library which is part of the operation
system Raspbian (Debian project (2012)): integer op-
erations are about 2-3 times faster than floating point
operations (see Tab. 3), therefore an integer-based im-
plementation may still be valuable.

4.2 Algorithm optimizations

Usually microcontroller/microprocessors for embedded
systems are characterized by both limited memory and
computational capability to reduce the size of the boards,
the energy consumption and the cost. Therefore, our ap-
plication code has been appropriately optimised using
standard techniques (i.e., loop-unroll and word-unroll),
to further reduce the computational cost. In addition,
the implementation of the stochastic approach (section)
is achieved by a pseudo-random number generator Elia
and Neri (1986), which is used only once per frame: the
same pseudo-random value is used to update all pixel
weights of the same frame.

All the missing implementation details are available
by request from the authors.

4.2.1 GMM representation

In this section the memory footprint of the data structure
used to store the background model is discussed. In Tab.
4 the memory footprint of the GMM background model
for different data types is shown. Using a standard inte-
ger type (uint8 t) memory usage is reduced by a factor
4 and 8, compared to floating point types such as (float)
and (double) respectively. to permit the deployment of
the GMM algorithms over the above mentioned memory
constrained architectures, we propose to represent each
Gaussian in a compressed version, namely using only 2
bytes, distributed between its three parameters.

Thus, the mean value, usually defined in the range
[0, 255], is represented using 7 bits and with a granularity
γµ = 2, such that only the even numbers are considered.
Such a choice is derived from the noise introduced by
the hardware components, characterized by a standard

Table 4: Algorithm footprint (QQ-VGA images)

Precision Bytes per Footprint Footprint

Gaussian 2G (Bytes) 3G (Bytes)

Double 24 921,600 1,382,400

Float 12 460,800 691,200

uint8 t 3 115,200 172,800

iGMM-x 2 76,800 115,200

deviation of 2 − 2.5 (Hwang et al (2007)): a granularity
smaller than the noise is pointless.

For the same reason,we propose the interval [5, 36]
that represents a reasonable set of variance values with
respect to the background pixels distribution acquired
with real cameras under no changing light conditions.
Therefore, the variance is sufficiently represented using 5
bits and with a granularity of 1. Finally, the weight has
two different representations depending on the chosen
proposed approach. iGMM-l associates a weight (repre-
sented using 4 bits) to each Gaussian as in the original
GMM. iGMM-s instantiate G−1 weights represented us-
ing a minimum of 6 bits, where the last G-th weight is
retrieved as a function of the previous G−1, using Eq. 7.
Fig. 6a and Fig. 6c shows the bit distribution for the two
and three Gaussians mixture examples.

4.2.2 Learning rate operating range

The usage of an integer based representation for native
floating point based data introduces a limitation on the
learning rate values due to Eq. 9. Therefore, our method
operates properly only for a range of learning rate values,
which we call learning rate operating range. This range
is specified as the set of value of α such that:

α ≥ 1

P
(47)

In the proposed implementation P is fixed to 10,000,
and consequently the learning rate operative range is the
interval [0.0001, 1], which is sufficient to cover almost all
practical cases and it is much wider than the one pro-
posed in Salvadori et al (2012). Particularly, in Tab. 5 a
comparative table is shown to demonstrate the enhance-
ments of the learning rate operating range derived from

10

(a) iGMM-l data representation: 2 Gaussians. (b) iGMM-s data representation: 2 Gaussians.

(c) iGMM-l data representation: 3 Gaussians. (d) iGMM-s data representation: 3 Gaussians.

Fig. 6: iGMM-x data representation.

the proposed work with respect to our previous work
in Salvadori et al (2012).

Table 5: Learning rate operating range: comparison with
Salvadori et al (2012)

αmin αMAX

Salvadori et al (2012) > 0.125 ≤ 1

Proposed solution 0.0001 ≤ 1

5 Performance evaluation

In this section the performance of the proposed algo-
rithm is shown. Particularly, using a simulation approach,
the three Gaussian parameter trends are validated to
satisfy the claims described in Sec. 3.3 and 3.5. Ad-
ditionally, the performance of our approach is evaluated
both qualitatively and quantitatively using two standard
data-sets which comprise different kind of movement: the
“IXMAS data-set” [Weinland et al (2006)] (slow move-
ment) and the “Fudan Pedestrian data-set”
[Ben Tan (2011)] (fast movement). Finally the processing
time of our implementations (i.e., iGMM-l and iGMM-
s) is compared with an optimized version of the original
GMM over the architectures described on Sec. 4.1.

5.1 Validation of the parameters

5.1.1 µ and σ2 updating calibration and validation

Setting the iGMM-x technique requires only the calibra-
tion of the values Nµ and Nσ2 as discussed in Sec. 3.3.
This operation maximises the overlap between the mem-
bership areas of the original GMM and the proposed
iGMM-x under different illumination conditions, by vary-
ing Nµ and Nσ2 on their domain (namely the interval
(0, 1)).

We simulate three different illumination conditions:
(i) variable illumination (i.e. day/night transition) with
a rate of 8.68 levels per minute, (ii) variable illumina-
tion (i.e. cloud/sun transition) with a rate of 4.34 levels
per minute, and (iii) constant illumination. Specifically,
the illumination trend is approximated as a linear transi-
tion, and the typical noise introduced by the acquisition
systems is emulated using a Gaussian number generator.
In this process, the iGMM-x membership area is filtered
using a moving window proportional to 1/α, to reduce
its fast oscillations.

In the case of uncalibrated iGMM-x, simulation re-
sults in Fig. 9 and 10 reveal that the iGMM-x member-
ship area (red) differs significantly from the GMM one
(green), when average illumination is varying. On the
other hand, when average illumination is constant, lack
of calibration does not influence the membership areas
(Fig. 14 and Fig. 11) as pixel matching is straightfor-
ward.

Fig. 7 and 8 depict the optimal values of Nµ and
Nσ2 respectively that maximise the overlap between the
iGMM-x membership area with the GMM one (red lines):
we approximate those trends by the blue lines to cor-
rectly tune the updating step ξ (see Sec. 3.4).

Fig. 7: Nµ trend.

In Fig. 12 and 13 the membership area of the cal-
ibrated iGMM-x approach (red) is compared with the
original GMM (green) under two different rates of illu-
mination transitions and different values of learning rate.

11

(a) α = 0.005 (b) α = 0.05 (c) α = 0.5

Fig. 9: Variable illumination @8.68 levels per minute: un-calibrated case.

(a) α = 0.005 (b) α = 0.05 (c) α = 0.5

Fig. 10: Variable illumination @4.64 levels per minute: un-calibrated case.

(a) α = 0.005 (b) α = 0.05 (c) α = 0.5

Fig. 11: Constant illumination: un-calibrated case.

(a) α = 0.005 (b) α = 0.05 (c) α = 0.5

Fig. 12: Variable illumination @8.68 levels per minute: calibrated case.

12

(a) α = 0.005 (b) α = 0.05 (c) α = 0.5

Fig. 13: Variable illumination @4.34 levels per minute: calibrated case.

(a) α = 0.005 (b) α = 0.05 (c) α = 0.5

Fig. 14: Constant illumination: calibrated case.

Fig. 8: N2
σ trend.

5.1.2 Weight trend validation

In Sec. 3.5, two possible approximations are defined and
stochastic updating techniques (see also Sec. 3.5.1) are
used in both of them. To validate the proposed approx-
imations, we propose a simulative approach of the life-
time of Gaussians. As a starting condition, we consider
a mixture where only the background mode MG1 is ac-
tive, and the effect of the creation and the evolution on a
new Gaussian MG2 is evaluated to understand how the
MG1 weight trend develops. Particularly, we propose to
compare the evolution of the approximated techniques
with the original GMM weight trend, especially taking
into account the occurrence of the following three points:
(i) the C point where the MG2 mode is created (cre-
ation point), (ii) the S point, where MG2 mode is sorted
as most popular Gaussian (swap point), and (iii) the D
point where the MG1 is destroyed (destruction point).
Thus, both iGMM-x techniques emulate correctly the

creation point (see the Cl and Cs points in in Fig. 15).
Moreover, the iGMM-l approximates linearly the weight
trend (the green line in Fig. 15) and emulates correctly
the Gaussian-swap point (see the point Sl), but it dis-
cards Gaussians too early (see the point Dl) in compari-
son with the original GMM case (the red line in Fig. 15).
On the other hand, iGMM-s approximates as a staircase
the weight trend (the green line in Fig. 15) and emulates
correctly both the swap and the destruction point (see
both the points Ss and Ds) compared with the GMM
case. Consequently it is possible to state that, the iGMM-
s technique approximates better the weight trend of the
original approach. However, for large values of the learn-
ing rate, both cases have equivalent trends because the
threshold TX (see Sec. 3.5.1) for the staircase approxi-
mation is a very small number (see Fig 15c).

5.2 Comparison to the original GMM algorithm

In this section the performance for both iGMM-l and
iGMM-s is compared to standard GMM by means of a
qualitative analysis, i.e., a visual comparison on bina-
rized foreground images, and quantitative analysis, i.e.,
an analysis on aggregated metrics. Finally in Sec. 5.2.2
the processing time of the proposed optimization (Sec. 3)
over both the Raspberry Pi and the SEED-EYE boards
is measured for varying learning rate.

13

(a) α = 0.005

(b) α = 0.05

(c) α = 0.5

Fig. 15: Weight trends, where Co, Cl and Cs are the
creation points, So, Sl and Ss are the swap points, and
Do, Dl and Ds are the destruction points for GMM,
iGMM-l and iGMM-s respectively.

5.2.1 Qualitative and quantitative comparison

Firstly, a qualitative comparison between the binarized
foreground images generated by the iGMM-x, the stan-
dard GMM and the ground-truth is shown (Tab. 6 and
7) for both data-sets: our approaches have comparable
results to the original GMM method in foreground seg-
mentation.

To understand the overall performance of the pro-
posed algorithms, an aggregate analysis, based on Precision-
Recall (or P-R) curves is presented. Particularly, the
minimum distance of the P-R curves from the perfect
classification point is computed for each value of learn-
ing rate so that the smaller the distance, the better the
performance. In Fig. 16, the trends of the distance for
P-R curves are shown as a function of the learning rate
for both data-sets and all the cases (i.e., mixture of 2
and 3 Gaussians).

In Fig. 16c and 16d the evaluation on the fast move-
ment data-set (namely Fudan data-set) are shown: in
this case the considered metric has a constant trend be-
cause only few objects are absorbed by the background.
On the other side, in Fig. 16a and 16b the impact of
the considered techniques on the slow movement data-set
(namely using IXMAS data-set) is shown. In this case the
segmentation performance decrease with the increase of
the learning rate, due to the foreground objects absorp-
tion inside the background. Apart the different trends,
all the results shown in these figures demonstrate that
the iGMM-x has comparable performance with original
GMM.

5.2.2 Processing time comparison

In this section, the processing time of iGMM-l, iGMM-s
and GMM techniques are compared to measure the real
impact of implementations over the two boards described
on Sec. 4.1. Specifically, on the Raspberry Pi board two
different resolutions are tested (Q-VGA and QQ-VGA)
and on the SEED-EYE board only the 40x40 resolution
is used in order to fit the scarce amount of PIC32 RAM
for configurations of 2 and 3 Gaussians.

In Tab. 8, the mean values of the processing times are
shown for all the different configurations in terms of used
platform, resolutions and number of Gaussians. iGMM-l
is 3÷5 times faster than GMM and iGMM-s 1.5÷3 times
on the Raspberry Pi board.These ratios increase by a
factor 10 (iGMM-l is around 40 times faster than GMM
and iGMM-s 20÷28 times) on the SEED-EYE board.
The obtained results are consistent with the data shown
in Tab. 3 in Sec. 4. Processing time of iGMM-s is longer
than the one of iGMM-l due to the higher complexity
of the staircase approximation (e.g., iGMM-s needs the
use of “read” operations from the LUTT buffer for ev-
ery pixel). Moreover comparing the experiments with 2
and 3 Gaussians (in the same platform and with a con-
stant resolution), the complexity of iGMM-s increases

14

Picture Ground-truth GMM iGMM-l iGMM-s

Table 6: ”Fudan pedestrian” data-set results using a 3 Gaussians mixture.

Picture Ground-truth GMM iGMM-l iGMM-s

Table 7: ”IXMAS” data-set results using a 3 Gaussians mixture.

(a) Using ”Fudan pedestrian” data-set (2 Gaussians). (b) Using ”Fudan pedestrian” data-set (3 Gaussians).

(c) Using ”IXMAS” data-set (2 Gaussians). (d) Using ”IXMAS” data-set (3 Gaussians).

Fig. 16: Minimum distance from the P-R curves to the perfect classification (1,1)

15

Table 8: Processing times

GMM iGMM-l iGMM-s

[s] [s] [s]

Rasp.Pi 2G QQ-VGA 0.033 0.007 0.010

Rasp. Pi 3G QQ-VGA 0.036 0.013 0.025

Rasp. Pi 2G Q-VGA 0.136 0.031 0.041

Rasp. Pi 3G Q-VGA 0.148 0.057 0.104

SEED EYE 2G (40x40) 0.084 0.002 0.003

SEED EYE 3G (40x40) 0.115 0.003 0.006

significantly with the number of Gaussians with respect
to iGMM-l: the latter is about 1.5 times faster than the
former in case of two Gaussians mixture, but about 2
times in case of three Gaussians.

6 Conclusions

In this paper we have proposed two sub-integer preci-
sion realisations of mixture of Gaussian modelling to fit
the strict constraints of embedded microcontrollers with
the lack of FPU. To this purpose, we have redefined the
updating rules of each Gaussian parameter. Specifically,
the mean value and the variance of each Gaussian are up-
dated by a redefined and generalised “round” operation
that emulates the original updating rules for a large set
of learning rates. On the other hand, weights are repre-
sented by counters that are updated following stochastic
rules to allow a wider range of learning rates and the
weight trend is approximated by a line (iGMM-l) or a
staircase (iGMM-s).

Experimental results show that both integer reali-
sations have comparable accuracy on background/fore-
ground segmentation compared to the original floating
point precision, but significantly smaller memory foot-
print and lower computational cost over both the con-
sidered hardware platforms. Specifically, in our imple-
mentations, memory requirements are 6 and 12 times
lower than float and double precision versions respec-
tively. Processing time is reduced by 30%-79% on the
Raspberry Pi board and by 95%-98% on the SEED-EYE
board. Such a difference is justified by the usage of an
optimised floating point library for the implementation
of the original GMM on the Raspberry Pi board. The
two proposed versions, iGMM-l and iGMM-s have simi-
lar performance and memory footprint. However, iGMM-
l is faster by 50%-100% than iGMM-s, and the higher the
number of Gaussians the higher the difference, due to the
complexity of handling the staircase weight-trend.

Appendices

A Proof from Sec. 3.5.1

A uniformly distributed random number X ∈ [0,MAX]
is characterised by the cumulative distribution function
in Eq. 48 and the probability density function in Eq. 49.

FX(x) = P (X ≤ x) =
x

MAX
(48)

fX(x) =
∂

∂x
FX(x) = 1 (49)

On the other hand, if we consider the value P (Xn >
TX) and we use the probability properties, the following
relation can be obtained:

P (X> TX) = 1− FX(x) = 1− TX
MAX

(50)

From the assumption in Eq. 38, Eq. 39 is true.

�

References

Apewokin S, Valentine B, Forsthoefel D, Wills L, Wills S,
Gentile A (2009) Embedded real-time surveillance using
multimodal mean background modeling. In: Kisaanin B,
Bhattacharyya SS, Chai S (eds) Embedded Computer Vi-
sion, Advances in Pattern Recognition, Springer London,
pp 163–175

Ben Tan LW Junping Zhang (2011) Semi-supervised elastic
net for pedestrian counting. Pattern Recognition

Candes E, Romberg J, Tao T (2006) Robust uncer-
tainty principles: exact signal reconstruction from highly
incomplete frequency information. Information The-
ory, IEEE Transactions on 52(2):489 – 509, DOI
10.1109/TIT.2005.862083

Cheung SCS, Kamath C (2004) Robust techniques for back-
ground subtraction in urban traffic video. SPIE, vol 5308,
pp 881–892, DOI 10.1117/12.526886

Cucchiara R, Grana C, Piccardi M, Prati A (2003) De-
tecting moving objects, ghosts, and shadows in video
streams. Pattern Analysis and Machine Intelligence,
IEEE Transactions on 25(10):1337 – 1342, DOI
10.1109/TPAMI.2003.1233909

Debian project (2012) Raspbian. http://www.raspbian.org/
Donoho D (2006) Compressed sensing. Information The-

ory, IEEE Transactions on 52(4):1289 –1306, DOI
10.1109/TIT.2006.871582

Elia M, Neri F (1986) Generation of pseudorandom indepen-
dent sequences. In: IASTED International Symposium
MIC ’86

Hung MH, Pan JS, Hsieh CH (2010) Speed up temporal
median filter for background subtraction. In: Proceed-
ings of the 2010 First International Conference on Per-
vasive Computing, Signal Processing and Applications,
IEEE Computer Society, Washington, DC, USA, PC-
SPA ’10, pp 297–300, DOI 10.1109/PCSPA.2010.79, URL
http://dx.doi.org/10.1109/PCSPA.2010.79

16

Hwang Y, Kim JS, Kweon IS (2007) Sensor noise modeling
using the skellam distribution: Application to the color
edge detection. In: Computer Vision and Pattern Recog-
nition, 2007. CVPR ’07. IEEE Conference on, pp 1–8,
DOI 10.1109/CVPR.2007.383004

Iannizzotto G, La Rosa F, Lo Bello L (2010) A wireless sensor
network for distributed autonomous traffc monitoring. In:
Human System Interactions (HSI), 2010 3rd Conference
on, pp 612 –619, DOI 10.1109/HSI.2010.5514504

Lo B, Velastin S (2001) Automatic congestion detection sys-
tem for underground platforms. In: Intelligent Multime-
dia, Video and Speech Processing, 2001. Proceedings of
2001 International Symposium on, pp 158 –161, DOI
10.1109/ISIMP.2001.925356

McFarlane NJB, Schofield CP (1995) Segmentation and
tracking of piglets in images. Machine Vision and Ap-
plications 8(3):187–193, DOI 10.1007/BF01215814

Microchip (2008) PIC32MX3XX/4XX Family Data Sheet.
ww1.microchip.com/downloads/en/DeviceDoc/61143E.pdf

Pagano P, Salvadori C, Madeo S, Petracca M, Bocchino S,
Alessandrelli D, Azzar A, Ghibaudi M, Pellerano G, Pel-
liccia R (2012) A middleware of things for supporting
distributed vision applications. In: Proceedings of the 1st
Workshop on Smart Cameras for Robotic Applications
(SCaBot)

Piccardi M (2004) Background subtraction techniques: a re-
view. In: Systems, Man and Cybernetics, 2004 IEEE In-
ternational Conference on, vol 4, pp 3099 – 3104 vol.4,
DOI 10.1109/ICSMC.2004.1400815

Radke RJ, Andra S, Al-Kofahi O, Roysam B (2005) Image
change detection algorithms: A systematic survey. IEEE
Transactions on Image Processing 14:294–307

Rahimi M, Baer R, Iroezi OI, Garcia JC, Warrior J, Estrin D,
Srivastava M (2005) Cyclops: In situ image sensing and
interpretation in wireless sensor networks. In: In SenSys,
ACM Press, pp 192–204

Raspberry Pi Foundation (2011) Raspberry Pi BOARD.
http://www.raspberrypi.org/

Salvadori C, Makris D, Petracca M, del Rincón JM, Velastin
SA (2012) Gaussian mixture background modelling opti-
misation for micro-controllers. In: ISVC (1), pp 241–251

Scuola Superiore Sant’Anna and Evi-
dence srl (2011) SEED-EYE BOARD.
http://www.evidence.eu.com/products/seed-eye.html

Shen Y, Hu W, Liu J, Yang M, Wei B, Chou C (2012) Ef-
ficient background subtraction for real-time tracking in
embedded camera networks. In: Proceedings of the 10th
ACM conference on Embedded Network Sensor Systems

Stauffer C, Grimson WEL (1999) Adaptive background mix-
ture models for real-time tracking. In: Computer Vision
and Pattern Recognition, 1999. IEEE Computer Society
Conference on., vol 2, DOI 10.1109/CVPR.1999.784637

Weinland D, Ronfard R, Boyer E (2006) Free viewpoint ac-
tion recognition using motion history volumes. Computer
Vision and Image Understanding 104(2-3):249–257

